Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

•Deep object-based semantic change detection framework (ChangeOS) is proposed.•ChangeOS seamlessly integrates object-based image analysis and deep learning.•City-scale building damage assessment can be achieved within one minute.•A global-scale dataset is used to evaluate the effectiveness of Change...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing of environment Ročník 265; s. 112636
Hlavní autoři: Zheng, Zhuo, Zhong, Yanfei, Wang, Junjue, Ma, Ailong, Zhang, Liangpei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Inc 01.11.2021
Elsevier BV
Témata:
ISSN:0034-4257, 1879-0704
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Deep object-based semantic change detection framework (ChangeOS) is proposed.•ChangeOS seamlessly integrates object-based image analysis and deep learning.•City-scale building damage assessment can be achieved within one minute.•A global-scale dataset is used to evaluate the effectiveness of ChangeOS.•Two local-scale datasets are used to show its great generalization ability. Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
AbstractList Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
•Deep object-based semantic change detection framework (ChangeOS) is proposed.•ChangeOS seamlessly integrates object-based image analysis and deep learning.•City-scale building damage assessment can be achieved within one minute.•A global-scale dataset is used to evaluate the effectiveness of ChangeOS.•Two local-scale datasets are used to show its great generalization ability. Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
ArticleNumber 112636
Author Ma, Ailong
Zhang, Liangpei
Wang, Junjue
Zhong, Yanfei
Zheng, Zhuo
Author_xml – sequence: 1
  givenname: Zhuo
  orcidid: 0000-0003-1811-6725
  surname: Zheng
  fullname: Zheng, Zhuo
  email: zhengzhuo@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430074, China
– sequence: 2
  givenname: Yanfei
  orcidid: 0000-0001-9446-5850
  surname: Zhong
  fullname: Zhong, Yanfei
  email: zhongyanfei@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430074, China
– sequence: 3
  givenname: Junjue
  orcidid: 0000-0002-9500-3399
  surname: Wang
  fullname: Wang, Junjue
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430074, China
– sequence: 4
  givenname: Ailong
  surname: Ma
  fullname: Ma, Ailong
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430074, China
– sequence: 5
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430074, China
BookMark eNp9kUFv1DAQhS1UJLaFH8DNEhcuWezEib1wgooCUiUucLZm7UnrkNjB423Fz-Gf4tUikHroaeTx-55G752zs5giMvZSiq0UcngzbTPhthWt3ErZDt3whG2k0btGaKHO2EaITjWq7fUzdk40CSF7o-WG_f5wCLMP8YZ7WOAGORAh0YKx8DFlnmENnvtAQAXrE2lNkZDfh3LLgXvElaf9hK40eyD0nHCBWILj7hZi9fNY6mdIkY8ZFrxP-cdbfpXTwiOUQ4b5nznxkniFmwU8_t8-Z09HmAlf_J0X7PvVx2-Xn5vrr5--XL6_blzXm9JoGNAr7aRRXvTjiL1Txo0doG_NYHqjdkJ3umphh_tBKe3dCP3eSdDSibG7YK9PvmtOPw9IxS6BHM4zREwHssdQjZLa6Cp99UA6pUOO9Trb9qaTNdtWVpU-qVxORBlH60KBYxQlQ5itFPZYnZ1src4eq7On6iopH5BrDgvkX48y704M1ozuAmZLLmB06EOuBVifwiP0H3Sntrw
CitedBy_id crossref_primary_10_1109_TGRS_2024_3410389
crossref_primary_10_1109_TGRS_2025_3546808
crossref_primary_10_1109_TGRS_2024_3484178
crossref_primary_10_1109_TGRS_2025_3543654
crossref_primary_10_3390_rs16010182
crossref_primary_10_1109_ACCESS_2024_3465027
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_1016_j_ijdrr_2025_105664
crossref_primary_10_1109_LGRS_2022_3217348
crossref_primary_10_1109_TGRS_2024_3439491
crossref_primary_10_1109_TGRS_2024_3400215
crossref_primary_10_1016_j_isprsjprs_2022_08_008
crossref_primary_10_1109_TGRS_2025_3584092
crossref_primary_10_1016_j_jag_2024_103918
crossref_primary_10_1109_TGRS_2024_3470325
crossref_primary_10_1109_TGRS_2025_3545040
crossref_primary_10_3390_rs14153687
crossref_primary_10_1109_TGRS_2025_3540013
crossref_primary_10_1038_s41598_025_03351_7
crossref_primary_10_1109_JSTARS_2024_3415171
crossref_primary_10_1109_TGRS_2023_3305554
crossref_primary_10_3390_rs17152624
crossref_primary_10_1109_TGRS_2023_3298037
crossref_primary_10_1109_TGRS_2025_3544737
crossref_primary_10_1016_j_isprsjprs_2022_08_012
crossref_primary_10_1109_TGRS_2024_3361211
crossref_primary_10_3390_rs17132249
crossref_primary_10_1109_TGRS_2024_3424317
crossref_primary_10_3390_rs16162910
crossref_primary_10_1109_TGRS_2025_3582106
crossref_primary_10_1117_1_JRS_18_014523
crossref_primary_10_1109_TGRS_2023_3264811
crossref_primary_10_1016_j_eswa_2023_121285
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_3390_rs16224223
crossref_primary_10_1109_TGRS_2025_3575591
crossref_primary_10_1109_TGRS_2023_3272694
crossref_primary_10_1109_TGRS_2024_3425540
crossref_primary_10_1109_TGRS_2024_3362680
crossref_primary_10_1109_TGRS_2025_3544402
crossref_primary_10_1016_j_jobe_2025_113467
crossref_primary_10_1109_JSTARS_2024_3435575
crossref_primary_10_1109_JSTARS_2025_3525595
crossref_primary_10_3390_rs15184503
crossref_primary_10_1109_JSTARS_2025_3553907
crossref_primary_10_1109_JSTARS_2025_3601996
crossref_primary_10_1109_TGRS_2024_3362795
crossref_primary_10_3390_app14167050
crossref_primary_10_1016_j_isprsjprs_2022_05_001
crossref_primary_10_1109_TGRS_2025_3584073
crossref_primary_10_1109_JSEN_2025_3583301
crossref_primary_10_1109_ACCESS_2023_3307208
crossref_primary_10_1109_TGRS_2025_3536473
crossref_primary_10_3390_rs17030550
crossref_primary_10_1109_TGRS_2024_3410977
crossref_primary_10_1016_j_isprsjprs_2024_04_013
crossref_primary_10_1109_TGRS_2023_3243900
crossref_primary_10_1109_LGRS_2024_3431212
crossref_primary_10_1109_TGRS_2024_3432749
crossref_primary_10_1007_s13748_025_00388_7
crossref_primary_10_1109_TGRS_2024_3408274
crossref_primary_10_1109_TGRS_2024_3440001
crossref_primary_10_1109_TGRS_2025_3597372
crossref_primary_10_3390_su17093909
crossref_primary_10_1109_JSTARS_2024_3450287
crossref_primary_10_3390_rs17132267
crossref_primary_10_1109_JSTARS_2025_3539733
crossref_primary_10_1109_TPAMI_2024_3475824
crossref_primary_10_1016_j_isprsjprs_2025_06_028
crossref_primary_10_1109_TGRS_2022_3200684
crossref_primary_10_3390_rs16132273
crossref_primary_10_1007_s40171_023_00346_z
crossref_primary_10_3390_buildings14040898
crossref_primary_10_1109_TGRS_2025_3566097
crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1016_j_jag_2025_104415
crossref_primary_10_1109_TGRS_2025_3565801
crossref_primary_10_1109_JSTARS_2024_3495217
crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_1109_TGRS_2024_3470808
crossref_primary_10_1007_s10489_023_04535_2
crossref_primary_10_1109_ACCESS_2023_3301177
crossref_primary_10_1109_TIP_2022_3226418
crossref_primary_10_1080_09243046_2025_2450175
crossref_primary_10_1109_TIP_2022_3233187
crossref_primary_10_1038_s41598_023_38100_1
crossref_primary_10_1109_TGRS_2025_3530934
crossref_primary_10_3390_rs17111849
crossref_primary_10_1109_TGRS_2024_3514305
crossref_primary_10_1109_JSTARS_2024_3427017
crossref_primary_10_1111_phor_12495
crossref_primary_10_1109_JSTARS_2025_3594044
crossref_primary_10_1007_s12145_024_01325_3
crossref_primary_10_3390_rs13245138
crossref_primary_10_1016_j_jobe_2025_112889
crossref_primary_10_1016_j_jag_2024_104300
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_1117_1_JRS_19_014501
crossref_primary_10_3390_rs15153909
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_1109_JSTARS_2023_3328561
crossref_primary_10_1109_JSTARS_2025_3545828
crossref_primary_10_1109_TGRS_2025_3604532
crossref_primary_10_1109_JSTARS_2025_3555849
crossref_primary_10_1016_j_jag_2023_103622
crossref_primary_10_1016_j_jag_2025_104756
crossref_primary_10_3390_rs15020478
crossref_primary_10_3390_rs16020327
crossref_primary_10_1016_j_jag_2025_104759
crossref_primary_10_1109_JSTARS_2025_3526088
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_3390_rs17172949
crossref_primary_10_1016_j_rse_2025_114694
crossref_primary_10_1109_JSTARS_2024_3387093
crossref_primary_10_1016_j_isprsjprs_2022_12_009
crossref_primary_10_1016_j_knosys_2023_110281
crossref_primary_10_1109_TGRS_2022_3199502
crossref_primary_10_1109_TGRS_2024_3392964
crossref_primary_10_1016_j_ijdrr_2024_105091
crossref_primary_10_1109_TGRS_2022_3174009
crossref_primary_10_1007_s40747_025_01998_3
crossref_primary_10_1109_JSTARS_2025_3595156
crossref_primary_10_1109_TGRS_2024_3483775
crossref_primary_10_1109_JSTARS_2024_3439340
crossref_primary_10_1109_TGRS_2024_3399215
crossref_primary_10_3390_buildings14082344
crossref_primary_10_3390_s22155920
crossref_primary_10_1016_j_jag_2025_104629
crossref_primary_10_1109_JSTARS_2024_3400458
crossref_primary_10_1007_s41024_024_00519_y
crossref_primary_10_1109_TGRS_2025_3583569
crossref_primary_10_1109_JSTARS_2022_3181155
crossref_primary_10_1016_j_aei_2024_102427
crossref_primary_10_1109_JSTARS_2025_3584145
crossref_primary_10_1109_JSTARS_2023_3268312
crossref_primary_10_1109_TGRS_2024_3367778
crossref_primary_10_1016_j_rse_2022_113371
crossref_primary_10_1016_j_isprsjprs_2024_05_015
crossref_primary_10_1016_j_conbuildmat_2025_143613
crossref_primary_10_1080_17538947_2024_2430678
crossref_primary_10_1109_TGRS_2023_3325316
crossref_primary_10_1016_j_isprsjprs_2025_02_004
crossref_primary_10_3390_rs14071552
crossref_primary_10_1109_TGRS_2023_3271986
crossref_primary_10_1061_AOMJAH_AOENG_0043
crossref_primary_10_1016_j_ijdrr_2025_105704
crossref_primary_10_1080_22797254_2024_2318357
crossref_primary_10_1109_JSTARS_2024_3435074
crossref_primary_10_1109_TGRS_2024_3520630
crossref_primary_10_1109_TGRS_2025_3584126
crossref_primary_10_1007_s11069_025_07120_7
crossref_primary_10_1016_j_jag_2023_103483
crossref_primary_10_1016_j_jag_2025_104571
crossref_primary_10_1109_JSTARS_2023_3339642
crossref_primary_10_1109_TGRS_2024_3494257
crossref_primary_10_1016_j_isprsjprs_2025_05_020
crossref_primary_10_1007_s10707_022_00480_3
crossref_primary_10_1109_TGRS_2024_3400979
crossref_primary_10_1016_j_compag_2023_108284
crossref_primary_10_1016_j_isprsjprs_2022_11_010
crossref_primary_10_1109_TGRS_2025_3598766
crossref_primary_10_1109_JSTARS_2024_3413715
crossref_primary_10_1016_j_isprsjprs_2024_11_017
crossref_primary_10_3390_ijgi13120430
crossref_primary_10_1007_s11263_024_02141_4
crossref_primary_10_1016_j_ijdrr_2023_103649
crossref_primary_10_1016_j_rse_2023_113462
crossref_primary_10_1109_JSTARS_2025_3529529
crossref_primary_10_1016_j_patrec_2025_08_020
crossref_primary_10_1109_TGRS_2025_3584115
crossref_primary_10_1109_JSTARS_2024_3360431
crossref_primary_10_3390_s24134371
crossref_primary_10_1016_j_compeleceng_2022_108536
crossref_primary_10_1109_TGRS_2023_3299642
crossref_primary_10_1038_s41598_025_14751_0
crossref_primary_10_1080_01431161_2025_2454531
crossref_primary_10_1109_TGRS_2024_3408330
crossref_primary_10_3390_rs16111846
crossref_primary_10_1109_TGRS_2024_3516001
crossref_primary_10_3390_app12199790
crossref_primary_10_1109_LGRS_2023_3330867
crossref_primary_10_1109_TGRS_2023_3296383
crossref_primary_10_1109_TGRS_2024_3508063
crossref_primary_10_3390_rs16224186
crossref_primary_10_1016_j_isprsjprs_2023_04_001
crossref_primary_10_1080_10095020_2024_2338224
crossref_primary_10_1109_TPAMI_2023_3296757
crossref_primary_10_1016_j_jag_2022_102899
crossref_primary_10_1016_j_jag_2024_104075
crossref_primary_10_1109_JSTARS_2023_3280589
crossref_primary_10_3390_rs15163972
crossref_primary_10_1016_j_jag_2022_102769
crossref_primary_10_1080_01431161_2024_2408496
crossref_primary_10_34133_remotesensing_0733
crossref_primary_10_1109_JSTARS_2024_3392917
crossref_primary_10_1016_j_isprsjprs_2023_09_012
crossref_primary_10_1080_17538947_2024_2418880
crossref_primary_10_1109_TGRS_2025_3542974
crossref_primary_10_3390_rs15092433
crossref_primary_10_1109_JSTARS_2024_3354310
crossref_primary_10_3390_s25092836
crossref_primary_10_1016_j_isprsjprs_2025_01_003
crossref_primary_10_1109_JSTARS_2024_3522135
crossref_primary_10_1016_j_isprsjprs_2025_01_007
crossref_primary_10_1016_j_jag_2023_103256
crossref_primary_10_1016_j_inffus_2023_03_021
crossref_primary_10_1109_TGRS_2023_3290817
crossref_primary_10_3390_app14103964
crossref_primary_10_3390_rs16132436
crossref_primary_10_1109_JSTARS_2024_3367853
crossref_primary_10_1109_TGRS_2024_3437244
crossref_primary_10_3390_su151511789
crossref_primary_10_1080_17538947_2024_2398070
crossref_primary_10_1109_TGRS_2024_3524639
crossref_primary_10_1109_ACCESS_2024_3350641
crossref_primary_10_1109_JSTARS_2024_3414452
crossref_primary_10_1109_TGRS_2025_3587318
crossref_primary_10_1080_22797254_2023_2252166
crossref_primary_10_3390_bdcc7030157
crossref_primary_10_1109_JSTARS_2024_3370151
crossref_primary_10_3390_rs17152717
crossref_primary_10_1016_j_jag_2024_103961
crossref_primary_10_1080_15623599_2024_2408183
crossref_primary_10_1109_TIM_2025_3608333
crossref_primary_10_1109_TIP_2024_3349868
crossref_primary_10_1109_JSTARS_2025_3591834
crossref_primary_10_1016_j_jag_2024_103839
crossref_primary_10_1016_j_isprsjprs_2022_04_028
crossref_primary_10_1111_tgis_70020
crossref_primary_10_1016_j_scitotenv_2022_157747
crossref_primary_10_1109_TGRS_2024_3493886
crossref_primary_10_1016_j_vrih_2024_08_005
crossref_primary_10_1109_TGRS_2024_3438248
crossref_primary_10_1109_JSTARS_2023_3279863
crossref_primary_10_1109_ACCESS_2025_3590987
crossref_primary_10_1109_TGRS_2025_3545906
crossref_primary_10_3390_app14188129
crossref_primary_10_1016_j_isprsjprs_2024_10_021
crossref_primary_10_1109_JSTARS_2024_3390427
crossref_primary_10_1109_JSTARS_2025_3525801
crossref_primary_10_1109_TGRS_2023_3332338
crossref_primary_10_1016_j_inffus_2025_103359
crossref_primary_10_1071_WF22181
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_1109_JSTARS_2025_3565383
crossref_primary_10_3390_rs15215243
crossref_primary_10_1109_TGRS_2025_3599401
crossref_primary_10_1109_TGRS_2025_3569581
crossref_primary_10_1109_TGRS_2023_3241436
crossref_primary_10_1515_geo_2025_0882
crossref_primary_10_3390_s24247887
crossref_primary_10_1186_s12889_024_19877_w
crossref_primary_10_1016_j_rse_2024_114416
crossref_primary_10_3390_rs15092406
crossref_primary_10_1016_j_rse_2025_114979
crossref_primary_10_1109_TGRS_2022_3165817
crossref_primary_10_1109_JSTARS_2023_3267847
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_1109_TGRS_2023_3337816
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1038_s43247_025_02183_7
crossref_primary_10_1038_s41598_025_00750_8
crossref_primary_10_1109_TIM_2025_3573775
crossref_primary_10_1016_j_knosys_2025_113877
crossref_primary_10_1007_s11760_025_04497_7
crossref_primary_10_3390_rs15225268
crossref_primary_10_1109_TGRS_2024_3454055
crossref_primary_10_1109_TGRS_2025_3555171
crossref_primary_10_1109_TGRS_2023_3305334
crossref_primary_10_1007_s41976_024_00115_1
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1142_S0218488525400100
crossref_primary_10_1080_17538947_2023_2298245
crossref_primary_10_3390_rs15215106
crossref_primary_10_1109_TGRS_2025_3545012
crossref_primary_10_1109_JSTARS_2025_3531499
crossref_primary_10_1016_j_jag_2024_104160
crossref_primary_10_1109_JSTARS_2024_3464117
crossref_primary_10_3390_make7010013
crossref_primary_10_1016_j_isprsjprs_2024_07_001
crossref_primary_10_1080_01431161_2023_2214274
crossref_primary_10_1016_j_rsase_2024_101167
crossref_primary_10_1109_MGRS_2023_3312347
Cites_doi 10.1016/j.isprsjprs.2009.06.004
10.3390/rs12172839
10.1016/j.rse.2018.11.014
10.1016/j.isprsjprs.2020.04.019
10.1016/j.rse.2020.111693
10.1016/j.rse.2021.112308
10.1037/0033-295X.84.4.327
10.1016/j.rse.2019.111593
10.1109/TGRS.2009.2038274
10.1016/j.isprsjprs.2018.02.014
10.1016/j.isprsjprs.2021.04.021
10.3390/geosciences10050177
10.3390/rs6064870
10.1007/BF02989909
10.1016/j.rse.2018.06.034
10.1016/j.isprsjprs.2013.06.011
10.1109/TGRS.2016.2601622
10.1016/j.rse.2018.04.050
10.1016/j.isprsjprs.2011.12.004
10.1016/j.isprsjprs.2020.12.009
10.1142/S1793431107000122
10.1061/(ASCE)1527-6988(2006)7:2(94)
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Nov 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Nov 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2021.112636
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
Statistics
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2021_112636
S0034425721003564
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-7a6ed47c184d05ffe5c48cf3aed286858490737358a9eb6447dcfa5bc1a71c0f3
ISICitedReferencesCount 330
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697024400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sat Sep 27 20:52:19 EDT 2025
Wed Aug 13 02:44:41 EDT 2025
Sat Nov 29 07:25:18 EST 2025
Tue Nov 18 22:44:27 EST 2025
Fri Feb 23 02:43:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Building damage assessment
Disaster response
Change detection
Remote sensing
OBIA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-7a6ed47c184d05ffe5c48cf3aed286858490737358a9eb6447dcfa5bc1a71c0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9446-5850
0000-0001-6890-3650
0000-0002-9500-3399
0000-0003-1811-6725
PQID 2583115821
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2636841787
proquest_journals_2583115821
crossref_citationtrail_10_1016_j_rse_2021_112636
crossref_primary_10_1016_j_rse_2021_112636
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112636
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Blaschke (bib0005) 2010; 65
Wu, Otoo, Shoshani (bib0150) 2005
Lee, Xu, Sohn, Lu, Berthelot, Gur, Khaitan, Koupparis, Kowatsch (bib0080) 2020
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bib0175) 2019; 221
Zheng, Zhong, Wang, Ma (bib0200) 2020
Chen, Zhu, Papandreou, Schroff, Adam (bib0015) 2018
Koshimura, Moya, Mas, Bai (bib0070) 2020; 5
Ge, Gokon, Meguro (bib0035) 2020; 240
Tversky (bib0135) 1977; 84
Zhong, Han, Zhang (bib0205) 2018; 138
Kelman (bib0065) 2003
Milletari, Navab, Ahmadi (bib0105) 2016
Yamazaki, Matsuoka (bib0155) 2007; 1
Valentijn, Margutti, van den Homberg, Laaksonen (bib0140) 2020; 12
Tong, Hong, Liu, Zhang, Xie, Li, Yang, Wang, Bao (bib0130) 2012; 68
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bib0170) 2018; 216
Simonyan, Zisserman (bib0125) 2014
Krizhevsky, Sutskever, Hinton (bib0075) 2012
Dong, Shan (bib0025) 2013; 84
Gupta, Goodman, Patel, Hosfelt, Sajeev, Heim, Doshi, Lucas, Choset, Gaston (bib0045) 2019
Gupta, Hosfelt, Sajeev, Patel, Goodman, Doshi, Heim, Choset, Gaston (bib0050) 2019
Yusuf, Matsuoka, Yamazaki (bib0160) 2001; 29
Cheng, Zhou, Han (bib0020) 2016; 54
He, Zhang, Ren, Sun (bib0055) 2016
Liu, Chen, Ma, Zhong, Fang, Xu (bib0095) 2020
Long, Shelhamer, Darrell (bib0100) 2015
Vickery, Skerlj, Lin, Twisdale, Young, Lavelle (bib0145) 2006; 7
Durnov (bib0030) 2020
Ronneberger, Fischer, Brox (bib0120) 2015
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0085) 2017
Zhang, Yuan, Li, Sun, Zhang (bib0180) 2021; 177
Liu, Yang, Lunga (bib0090) 2021; 256
Noh, Hong, Han (bib0110) 2015
Grünthal (bib0040) 1998
Plank (bib0115) 2014; 6
Zhang, Harrison, Pan, Li, Sargent, Atkinson (bib0165) 2020; 237
Brunner, Lemoine, Bruzzone (bib0010) 2010; 48
Zheng, Ma, Zhang, Zhong (bib0185) 2021; 174
Huang, Zhao, Song (bib0060) 2018; 214
Zheng, Zhong, Ma, Han, Zhao, Liu, Zhang (bib0190) 2020; 166
Zheng, Zhong, Ma, Zhang (bib0195) 2020
Wu (10.1016/j.rse.2021.112636_bib0150) 2005
Brunner (10.1016/j.rse.2021.112636_bib0010) 2010; 48
Zhang (10.1016/j.rse.2021.112636_bib0175) 2019; 221
Huang (10.1016/j.rse.2021.112636_bib0060) 2018; 214
Ronneberger (10.1016/j.rse.2021.112636_bib0120) 2015
Long (10.1016/j.rse.2021.112636_bib0100) 2015
Zheng (10.1016/j.rse.2021.112636_bib0185) 2021; 174
Zhang (10.1016/j.rse.2021.112636_bib0165) 2020; 237
Zheng (10.1016/j.rse.2021.112636_bib0200) 2020
Zhang (10.1016/j.rse.2021.112636_bib0180) 2021; 177
Cheng (10.1016/j.rse.2021.112636_bib0020) 2016; 54
Zheng (10.1016/j.rse.2021.112636_bib0195) 2020
He (10.1016/j.rse.2021.112636_bib0055) 2016
Dong (10.1016/j.rse.2021.112636_bib0025) 2013; 84
Milletari (10.1016/j.rse.2021.112636_bib0105) 2016
Tong (10.1016/j.rse.2021.112636_bib0130) 2012; 68
Liu (10.1016/j.rse.2021.112636_bib0090) 2021; 256
Ge (10.1016/j.rse.2021.112636_bib0035) 2020; 240
Durnov (10.1016/j.rse.2021.112636_bib0030) 2020
Valentijn (10.1016/j.rse.2021.112636_bib0140) 2020; 12
Lee (10.1016/j.rse.2021.112636_bib0080) 2020
Noh (10.1016/j.rse.2021.112636_bib0110) 2015
Chen (10.1016/j.rse.2021.112636_bib0015) 2018
Yamazaki (10.1016/j.rse.2021.112636_bib0155) 2007; 1
Zhang (10.1016/j.rse.2021.112636_bib0170) 2018; 216
Blaschke (10.1016/j.rse.2021.112636_bib0005) 2010; 65
Gupta (10.1016/j.rse.2021.112636_bib0050) 2019
Simonyan (10.1016/j.rse.2021.112636_bib0125) 2014
Koshimura (10.1016/j.rse.2021.112636_bib0070) 2020; 5
Gupta (10.1016/j.rse.2021.112636_bib0045) 2019
Lin (10.1016/j.rse.2021.112636_bib0085) 2017
Zhong (10.1016/j.rse.2021.112636_bib0205) 2018; 138
Zheng (10.1016/j.rse.2021.112636_bib0190) 2020; 166
Grünthal (10.1016/j.rse.2021.112636_bib0040) 1998
Krizhevsky (10.1016/j.rse.2021.112636_bib0075) 2012
Vickery (10.1016/j.rse.2021.112636_bib0145) 2006; 7
Liu (10.1016/j.rse.2021.112636_bib0095) 2020
Plank (10.1016/j.rse.2021.112636_bib0115) 2014; 6
Yusuf (10.1016/j.rse.2021.112636_bib0160) 2001; 29
Kelman (10.1016/j.rse.2021.112636_bib0065) 2003
Tversky (10.1016/j.rse.2021.112636_bib0135) 1977; 84
References_xml – volume: 240
  start-page: 111693
  year: 2020
  ident: bib0035
  article-title: A review on synthetic aperture radar-based building damage assessment in disasters
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bib0050
  article-title: xbd: A Dataset for Assessing Building Damage From Satellite Imagery
– volume: 216
  start-page: 57
  year: 2018
  end-page: 70
  ident: bib0170
  article-title: An object-based convolutional neural network (ocnn) for urban land use classification
  publication-title: Remote Sens. Environ.
– year: 2014
  ident: bib0125
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 84
  start-page: 327
  year: 1977
  ident: bib0135
  article-title: Features of similarity
  publication-title: Psychol. Rev.
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  ident: bib0060
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
– volume: 68
  start-page: 13
  year: 2012
  end-page: 27
  ident: bib0130
  article-title: Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: a case study of the may 2008 Wenchuan earthquake
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 54
  start-page: 7405
  year: 2016
  end-page: 7415
  ident: bib0020
  article-title: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 94
  year: 2006
  end-page: 103
  ident: bib0145
  article-title: Hazus-mh hurricane model methodology. ii: damage and loss estimation
  publication-title: Nat. Hazards Rev.
– volume: 138
  start-page: 281
  year: 2018
  end-page: 294
  ident: bib0205
  article-title: Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2020
  ident: bib0080
  article-title: Assessing Post-Disaster Damage From Satellite Imagery Using Semi-Supervised Learning Techniques
– volume: 174
  start-page: 254
  year: 2021
  end-page: 264
  ident: bib0185
  article-title: Deep multisensor learning for missing-modality all-weather mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2003
  ident: bib0065
  article-title: Physical Flood Vulnerability of Residential Properties in Coastal, Eastern England
– volume: 5
  start-page: 177
  year: 2020
  ident: bib0070
  article-title: Tsunami damage detection with remote sensing: a review
  publication-title: Geosciences
– volume: 1
  start-page: 193
  year: 2007
  end-page: 210
  ident: bib0155
  article-title: Remote sensing technologies in post-disaster damage assessment
  publication-title: J. Earthq. Tsunami
– volume: 166
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0190
  article-title: Hynet: hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0055
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0100
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 2839
  year: 2020
  ident: bib0140
  article-title: Multi-hazard and spatial transferability of a cnn for automated building damage assessment
  publication-title: Remote Sens.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0120
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bib0110
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0105
  article-title: V-net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– year: 2020
  ident: bib0095
  article-title: Multiscale u-shaped cnn building instance extraction framework with edge constraint for high-spatial-resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1965
  year: 2005
  end-page: 1976
  ident: bib0150
  article-title: Optimizing connected component labeling algorithms
  publication-title: Medical Imaging 2005: Image Processing. vol. 5747
– volume: 237
  start-page: 111593
  year: 2020
  ident: bib0165
  article-title: Scale sequence joint deep learning (ss-jdl) for land use and land cover classification
  publication-title: Remote Sens. Environ.
– volume: 177
  start-page: 161
  year: 2021
  end-page: 173
  ident: bib0180
  article-title: Combined deep prior with low-rank tensor svd for thick cloud removal in multitemporal images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 221
  start-page: 173
  year: 2019
  end-page: 187
  ident: bib0175
  article-title: Joint deep learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
– start-page: 801
  year: 2018
  end-page: 818
  ident: bib0015
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 48
  start-page: 2403
  year: 2010
  end-page: 2420
  ident: bib0010
  article-title: Earthquake damage assessment of buildings using vhr optical and sar imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 17
  year: 2001
  end-page: 22
  ident: bib0160
  article-title: Damage assessment after 2001 gujarat earthquake using landsat-7 satellite images
  publication-title: J. Indian Soc. Remote Sens.
– volume: 65
  start-page: 2
  year: 2010
  end-page: 16
  ident: bib0005
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 1998
  ident: bib0040
  article-title: European Macroseismic Scale 1998
– volume: 256
  start-page: 112308
  year: 2021
  ident: bib0090
  article-title: Change detection using deep learning approach with object-based image analysis
  publication-title: Remote Sens. Environ.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0075
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib0085
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 4870
  year: 2014
  end-page: 4906
  ident: bib0115
  article-title: Rapid damage assessment by means of multi-temporal sar-a comprehensive review and outlook to sentinel-1
  publication-title: Remote Sens.
– start-page: 4096
  year: 2020
  end-page: 4105
  ident: bib0200
  article-title: Foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0195
  article-title: Fpga: fast patch-free global learning framework for fully end-to-end hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 10
  year: 2019
  end-page: 17
  ident: bib0045
  article-title: Creating xbd: a dataset for assessing building damage from satellite imagery
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 84
  start-page: 85
  year: 2013
  end-page: 99
  ident: bib0025
  article-title: A comprehensive review of earthquake-induced building damage detection with remote sensing techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2020
  ident: bib0030
  article-title: xview2 First Place Solution
– volume: 65
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.rse.2021.112636_bib0005
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 12
  start-page: 2839
  issue: 17
  year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0140
  article-title: Multi-hazard and spatial transferability of a cnn for automated building damage assessment
  publication-title: Remote Sens.
  doi: 10.3390/rs12172839
– volume: 221
  start-page: 173
  year: 2019
  ident: 10.1016/j.rse.2021.112636_bib0175
  article-title: Joint deep learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.014
– start-page: 565
  year: 2016
  ident: 10.1016/j.rse.2021.112636_bib0105
  article-title: V-net: fully convolutional neural networks for volumetric medical image segmentation
– volume: 166
  start-page: 1
  year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0190
  article-title: Hynet: hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.019
– volume: 240
  start-page: 111693
  year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0035
  article-title: A review on synthetic aperture radar-based building damage assessment in disasters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111693
– volume: 256
  start-page: 112308
  year: 2021
  ident: 10.1016/j.rse.2021.112636_bib0090
  article-title: Change detection using deep learning approach with object-based image analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112308
– start-page: 770
  year: 2016
  ident: 10.1016/j.rse.2021.112636_bib0055
  article-title: Deep residual learning for image recognition
– year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0195
  article-title: Fpga: fast patch-free global learning framework for fully end-to-end hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 84
  start-page: 327
  issue: 4
  year: 1977
  ident: 10.1016/j.rse.2021.112636_bib0135
  article-title: Features of similarity
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.84.4.327
– volume: 237
  start-page: 111593
  year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0165
  article-title: Scale sequence joint deep learning (ss-jdl) for land use and land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111593
– start-page: 4096
  year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0200
  article-title: Foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery
– volume: 48
  start-page: 2403
  issue: 5
  year: 2010
  ident: 10.1016/j.rse.2021.112636_bib0010
  article-title: Earthquake damage assessment of buildings using vhr optical and sar imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2038274
– year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0095
  article-title: Multiscale u-shaped cnn building instance extraction framework with edge constraint for high-spatial-resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0030
– volume: 138
  start-page: 281
  year: 2018
  ident: 10.1016/j.rse.2021.112636_bib0205
  article-title: Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.014
– volume: 177
  start-page: 161
  year: 2021
  ident: 10.1016/j.rse.2021.112636_bib0180
  article-title: Combined deep prior with low-rank tensor svd for thick cloud removal in multitemporal images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.04.021
– start-page: 1520
  year: 2015
  ident: 10.1016/j.rse.2021.112636_bib0110
  article-title: Learning deconvolution network for semantic segmentation
– year: 1998
  ident: 10.1016/j.rse.2021.112636_bib0040
– volume: 5
  start-page: 177
  issue: 1
  year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0070
  article-title: Tsunami damage detection with remote sensing: a review
  publication-title: Geosciences
  doi: 10.3390/geosciences10050177
– start-page: 3431
  year: 2015
  ident: 10.1016/j.rse.2021.112636_bib0100
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 2117
  year: 2017
  ident: 10.1016/j.rse.2021.112636_bib0085
  article-title: Feature pyramid networks for object detection
– volume: 6
  start-page: 4870
  issue: 6
  year: 2014
  ident: 10.1016/j.rse.2021.112636_bib0115
  article-title: Rapid damage assessment by means of multi-temporal sar-a comprehensive review and outlook to sentinel-1
  publication-title: Remote Sens.
  doi: 10.3390/rs6064870
– start-page: 10
  year: 2019
  ident: 10.1016/j.rse.2021.112636_bib0045
  article-title: Creating xbd: a dataset for assessing building damage from satellite imagery
– year: 2019
  ident: 10.1016/j.rse.2021.112636_bib0050
– volume: 29
  start-page: 17
  issue: 1–2
  year: 2001
  ident: 10.1016/j.rse.2021.112636_bib0160
  article-title: Damage assessment after 2001 gujarat earthquake using landsat-7 satellite images
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/BF02989909
– volume: 216
  start-page: 57
  year: 2018
  ident: 10.1016/j.rse.2021.112636_bib0170
  article-title: An object-based convolutional neural network (ocnn) for urban land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.034
– start-page: 801
  year: 2018
  ident: 10.1016/j.rse.2021.112636_bib0015
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– year: 2003
  ident: 10.1016/j.rse.2021.112636_bib0065
– volume: 84
  start-page: 85
  year: 2013
  ident: 10.1016/j.rse.2021.112636_bib0025
  article-title: A comprehensive review of earthquake-induced building damage detection with remote sensing techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.06.011
– volume: 54
  start-page: 7405
  issue: 12
  year: 2016
  ident: 10.1016/j.rse.2021.112636_bib0020
  article-title: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2601622
– volume: 214
  start-page: 73
  year: 2018
  ident: 10.1016/j.rse.2021.112636_bib0060
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– year: 2014
  ident: 10.1016/j.rse.2021.112636_bib0125
– volume: 68
  start-page: 13
  year: 2012
  ident: 10.1016/j.rse.2021.112636_bib0130
  article-title: Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: a case study of the may 2008 Wenchuan earthquake
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.12.004
– start-page: 1965
  year: 2005
  ident: 10.1016/j.rse.2021.112636_bib0150
  article-title: Optimizing connected component labeling algorithms
– volume: 174
  start-page: 254
  year: 2021
  ident: 10.1016/j.rse.2021.112636_bib0185
  article-title: Deep multisensor learning for missing-modality all-weather mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.009
– year: 2020
  ident: 10.1016/j.rse.2021.112636_bib0080
– start-page: 1097
  year: 2012
  ident: 10.1016/j.rse.2021.112636_bib0075
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 1
  start-page: 193
  issue: 03
  year: 2007
  ident: 10.1016/j.rse.2021.112636_bib0155
  article-title: Remote sensing technologies in post-disaster damage assessment
  publication-title: J. Earthq. Tsunami
  doi: 10.1142/S1793431107000122
– start-page: 234
  year: 2015
  ident: 10.1016/j.rse.2021.112636_bib0120
  article-title: U-net: convolutional networks for biomedical image segmentation
– volume: 7
  start-page: 94
  issue: 2
  year: 2006
  ident: 10.1016/j.rse.2021.112636_bib0145
  article-title: Hazus-mh hurricane model methodology. ii: damage and loss estimation
  publication-title: Nat. Hazards Rev.
  doi: 10.1061/(ASCE)1527-6988(2006)7:2(94)
SSID ssj0015871
Score 2.725467
Snippet •Deep object-based semantic change detection framework (ChangeOS) is proposed.•ChangeOS seamlessly integrates object-based image analysis and deep...
Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112636
SubjectTerms Artificial neural networks
Barracks
Building damage
Building damage assessment
Change detection
Classification
Consistency
Damage assessment
Damage localization
data collection
Datasets
Deep learning
development aid
Disaster management
Disaster response
Disasters
environment
humans
Image analysis
Image processing
Image segmentation
Information processing
Localization
Machine learning
Man made disasters
Natural disasters
Neural networks
OBIA
Pattern recognition
Post-production processing
Remote sensing
Representations
Residential military buildings
Semantics
Spatial discrimination
Spatial distribution
Spatial resolution
Statistical analysis
statistics
Title Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters
URI https://dx.doi.org/10.1016/j.rse.2021.112636
https://www.proquest.com/docview/2583115821
https://www.proquest.com/docview/2636841787
Volume 265
WOSCitedRecordID wos000697024400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7qruK-iFYXu64ygk-WSG6TTHxbpbsqsoiuUn0Jk5kJ29ImpWmX9ef4I_x_nrklteKigi-hTOYSer6cc3KuCD1JGCkKUXIvTITwYl4mXlEUmRcqF01EWEF0bM6nt-npKR2Ps3e93neXC3MxS6uKXl5mi_9KahgDYqvU2b8gd7spDMBvIDpcgexw_SPCv7CNroeCzVVADmtrb-qQwiVbTITyyzBVImG4NDGy0ia5DYWUi2FdKOuMpyScGDZyDv_-hNscYZixkqa_eOkCu5RZ4Vjlqegyocbto7fX5SNguTdnQnajmxrxewlgkXBK1dgA7I3cu86sLQ1P-nK-rrtBG078mVWlnHSuARtkvK6m643IXs0FJ7Paimpr6QgDm_LXmt9cCs5PEaKqwI6nGI8RaIaL01RlZpm-xo7Nh6YnxS8iw1gvps-WjaqaGgY6qSraKs-tBf4HXR8RjoLPZD8iSXwN7YYpyYCZ7h69Ho3ftO4rQlPTqtE-m3On68DCrYN-pxBtqQZa3zm7jW7ZDxV8ZAB2B_Vk1Uf7o442cNMKhqaPbp5IW_u8j26c6G7RX--ibw6L2GARd1jEgEWssYgdLLDDIlZYxAwrLOJNLGKHRWywiFss4haLz7FCIrZIbDdv8KrGDond6D308Xh09vKVZ3uCeDwidOWlLJEiTnlAY-GTspSEx5SXEZMipKqXQpyB0EphLstkAcp-KngJ_IgHLA24X0b7aKeqK3kfYWBffsJAHQtFGZOsLApJie8XGVVaK_EHyHeEybktmK_6tsxyFxk5zYGWuaJlbmg5QE_bJQtTLeaqybGjdm7VXaPG5gDNq5YdOmTklu00ObBWVTaLhsEAPW5vg6RQ7j9WyXoNc2AxjQOQ0Af_dvIDtNe9lodoZ7Vcy4foOr9YTZrlI_sO_AAwD-zD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+damage+assessment+for+rapid+disaster+response+with+a+deep+object-based+semantic+change+detection+framework%3A+From+natural+disasters+to+man-made+disasters&rft.jtitle=Remote+sensing+of+environment&rft.au=Zheng%2C+Zhuo&rft.au=Zhong%2C+Yanfei&rft.au=Wang%2C+Junjue&rft.au=Ma%2C+Ailong&rft.date=2021-11-01&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=265&rft_id=info:doi/10.1016%2Fj.rse.2021.112636&rft.externalDocID=S0034425721003564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon