A Modified ALOS Method of Path Tracking for AUVs with Reinforcement Learning Accelerated by Dynamic Data-Driven AUV Model
Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight...
Uložené v:
| Vydané v: | Journal of intelligent & robotic systems Ročník 104; číslo 3; s. 49 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.03.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0921-0296, 1573-0409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight (LOS) algorithm with fixed lookahead distance does not perform well because it requires an urgent need for the automatic adjustment of the parameter. Considering the above, this study proposes an adaptive line-of-sight (ALOS) guidance method with reinforcement learning (RL) based on the dynamic data-driven AUV model (DDDAM). Firstly, we introduced a detailed AUV dynamic model mainly including the models with and without current influence. Next, we conducted a detailed analysis of the path tracking error dynamics and the factors influencing the tracking performance based on the model proposed above. We then used the DDDAM (using long short-term memory (LSTM) neural network) to pre-train the RL framework to generate more samples for online learning in order to speed up the learning process. Finally, the deterministic policy gradient (DPG) based RL was designed to optimize the continuously varying lookahead distance considering the previously analyzed factors. Collectively, this paper presents simulation cases and an evaluation of the algorithm. Our results indicate that the proposed method significantly improves the performance of path tracking with effectiveness and robustness. |
|---|---|
| AbstractList | Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight (LOS) algorithm with fixed lookahead distance does not perform well because it requires an urgent need for the automatic adjustment of the parameter. Considering the above, this study proposes an adaptive line-of-sight (ALOS) guidance method with reinforcement learning (RL) based on the dynamic data-driven AUV model (DDDAM). Firstly, we introduced a detailed AUV dynamic model mainly including the models with and without current influence. Next, we conducted a detailed analysis of the path tracking error dynamics and the factors influencing the tracking performance based on the model proposed above. We then used the DDDAM (using long short-term memory (LSTM) neural network) to pre-train the RL framework to generate more samples for online learning in order to speed up the learning process. Finally, the deterministic policy gradient (DPG) based RL was designed to optimize the continuously varying lookahead distance considering the previously analyzed factors. Collectively, this paper presents simulation cases and an evaluation of the algorithm. Our results indicate that the proposed method significantly improves the performance of path tracking with effectiveness and robustness. Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight (LOS) algorithm with fixed lookahead distance does not perform well because it requires an urgent need for the automatic adjustment of the parameter. Considering the above, this study proposes an adaptive line-of-sight (ALOS) guidance method with reinforcement learning (RL) based on the dynamic data-driven AUV model (DDDAM). Firstly, we introduced a detailed AUV dynamic model mainly including the models with and without current influence. Next, we conducted a detailed analysis of the path tracking error dynamics and the factors influencing the tracking performance based on the model proposed above. We then used the DDDAM (using long short-term memory (LSTM) neural network) to pre-train the RL framework to generate more samples for online learning in order to speed up the learning process. Finally, the deterministic policy gradient (DPG) based RL was designed to optimize the continuously varying lookahead distance considering the previously analyzed factors. Collectively, this paper presents simulation cases and an evaluation of the algorithm. Our results indicate that the proposed method significantly improves the performance of path tracking with effectiveness and robustness. Keywords Autonomous underwater vehicle (AUV) * Path tracking * Line-of-sight (LOS) * Reinforcement learning (RL) ? Deterministic policy gradient (DPG) * Data-driven (DD) * Long short-term memory (LSTM) |
| ArticleNumber | 49 |
| Audience | Academic |
| Author | Chen, Guanzhong Wang, Dianrui Li, Guangliang He, Bo Shen, Yue |
| Author_xml | – sequence: 1 givenname: Dianrui surname: Wang fullname: Wang, Dianrui organization: School of Information Science and Engineering, Ocean University of China – sequence: 2 givenname: Bo surname: He fullname: He, Bo email: bhe@ouc.edu.cn organization: School of Information Science and Engineering, Ocean University of China – sequence: 3 givenname: Yue surname: Shen fullname: Shen, Yue organization: School of Information Science and Engineering, Ocean University of China – sequence: 4 givenname: Guangliang surname: Li fullname: Li, Guangliang organization: School of Information Science and Engineering, Ocean University of China – sequence: 5 givenname: Guanzhong surname: Chen fullname: Chen, Guanzhong organization: School of Information Science and Engineering, Ocean University of China |
| BookMark | eNp9Uctu3CAURVUqdZL2B7pC6trJxRhjllamL2miVG3SLcL4MiH1QIpJq_n74LpSpS4iFkiX87iHc0pOQgxIyFsG5wxAXswMuqatoGYVMAFNBS_IhgnJK2hAnZANqOWpVu0rcjrP9wCgOqE25NjTqzh653Gk_e76G73CfBdHGh39YvIdvUnG_vBhT11MtL_9PtPfvoy_og9lYvGAIdMdmhQWUG8tTphMLmrDkW6PwRy8pVuTTbVN_heGRWNxxOk1eenMNOObv_cZuf3w_ubyU7W7_vj5st9VlosuV1IKYMgBWysH1vEWkDFpamtVN3ZqQCaUFfXIB-eANUq2jjnJBm6566QEfkberboPKf58xDnr-_iYQrHUddsIzqRoeEGdr6i9mVAv4XJJXs6IJUH5bOfLvJe1EjWXnSiEeiXYFOc5odMPyR9MOmoGeulEr53o0on-04ledun-I1mfTfYxFDc_PU_lK3UuPmGP6V-MZ1hPvPagTQ |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_122445 crossref_primary_10_3390_drones9040286 crossref_primary_10_3390_jmse10081002 crossref_primary_10_1016_j_oceaneng_2025_122789 crossref_primary_10_3389_frobt_2025_1598982 crossref_primary_10_1038_s41598_024_63419_8 crossref_primary_10_1016_j_oceaneng_2023_116168 crossref_primary_10_1016_j_oceaneng_2024_117410 crossref_primary_10_1109_TIV_2023_3282681 |
| Cites_doi | 10.1109/JOE.2018.2792278 10.1007/s10846-013-9873-z 10.1109/JOE.2016.2569218 10.1109/TCYB.2017.2752458 10.1002/acs.2550 10.1109/TCST.2014.2306774 10.1016/j.mechatronics.2014.08.001 10.1007/s11071-013-0840-9 10.1007/s11071-017-3611-1 10.1007/s10846-019-01146-3 10.1016/j.automatica.2014.10.018 10.1016/j.ins.2018.01.032 10.1016/j.ifacol.2017.08.228 10.1007/s10846-014-0151-5 10.1007/s10846-019-01004-2 10.1109/TMAG.2013.2240666 10.1016/j.mechatronics.2020.102443 10.1016/j.oceaneng.2019.04.099 10.1109/TSMC.1972.4309169 10.1016/j.cirp.2020.04.001 10.1007/s11071-019-05170-8 10.1109/JOE.2018.2809018 10.1002/rob.20370 10.1016/j.artint.2014.11.005 10.1016/j.oceaneng.2019.04.021 10.1007/s10846-017-0468-y 10.1007/s11071-018-4458-9 10.1016/j.automatica.2006.09.017 10.1007/s10846-020-01191-3 10.3182/20120919-3-IT-2046.00068 10.1109/TNN.1998.712192 10.1007/978-3-540-72584-8_137 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 COPYRIGHT 2022 Springer Copyright Springer Nature B.V. Mar 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: COPYRIGHT 2022 Springer – notice: Copyright Springer Nature B.V. Mar 2022 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10846-021-01504-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| ExternalDocumentID | A729523785 10_1007_s10846_021_01504_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51379198 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2018QF003 funderid: https://doi.org/10.13039/501100007129 – fundername: the National Key Research and Development Program of China grantid: 2016YFC0301400 – fundername: Fundamental Research Funds for the Central Universities grantid: 201961005 funderid: https://doi.org/10.13039/501100012226 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-77501e30e6c7b18360e117a2cc98d89be159c52d3bff014976f1f71b3c3f87703 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764820400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-0296 |
| IngestDate | Sat Oct 18 23:09:36 EDT 2025 Sat Nov 29 10:38:41 EST 2025 Tue Nov 18 22:30:03 EST 2025 Sat Nov 29 01:33:01 EST 2025 Fri Feb 21 02:47:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Path tracking Line-of-sight (LOS) Data-driven (DD) Deterministic policy gradient (DPG) Autonomous underwater vehicle (AUV) Reinforcement learning (RL) Long short-term memory (LSTM) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-77501e30e6c7b18360e117a2cc98d89be159c52d3bff014976f1f71b3c3f87703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2645317543 |
| PQPubID | 326251 |
| ParticipantIDs | proquest_journals_2645317543 gale_infotracacademiconefile_A729523785 crossref_primary_10_1007_s10846_021_01504_0 crossref_citationtrail_10_1007_s10846_021_01504_0 springer_journals_10_1007_s10846_021_01504_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20220300 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Abdurahman, Savvaris, Tsourdos (CR3) 2019; 182 Liu, Yu, Shuang (CR21) 2018; 94 Wang, Jia, Dong (CR36) 2013; 49 Anderson, Moore, Molinari (CR4) 1972; 93 CR18 Lekkas, Fossen (CR16) 2014; 74 Polydoros, Nalpantidis (CR27) 2017; 86 CR35 Mu, Wang, Fan, Bai, Zhao (CR25) 2018; 2018 CR33 Abdurahman, Savvaris, Tsourdos (CR2) 2017; 50 Khaled, Chalhoub (CR11) 2013; 73 Liu, Huda, Sun, Yu (CR19) 2020; 72 A, B, A, B, B (CR1) 2014; 24 Laghrouche, Plestan, Glumineau (CR13) 2007; 43 Fossen, Lekkas (CR8) 2017; 31 Sun, Cheng, Zhang, Xu (CR34) 2019; 96 Lekkas, Fossen (CR15) 2012; 45 Wang, Yao, Zhang (CR37) 2020; 99 Yue, Zhu (CR40) 2012; 27 Fossen, Pettersen (CR9) 2014; 50 Gers, Schraudolph (CR10) 2003; 3 Lekkas, Fossen (CR14) 2014; 22 CR7 Nouri, Valadi, Asgharian (CR26) 2018; 92 Woo (CR38) 2019; 183 CR28 Shi, Lin, Zhang, Li, Hwang (CR32) 2018; 436-437 Malus, Kozjek, Vrabic (CR23) 2020; 69 Praczyk (CR29) 2020; 100 Benjamin, Schmidt, Newman, Leonard (CR5) 2010; 27 CR24 Carreras, Hernndez, Vidal, Palomeras, Ribas, Ridao (CR6) 2018; 43 Yuan, Licht, He (CR39) 2018; 48 Sadeghzadeh, Calvert, Abdullah (CR31) 2015; 78 Lu, Dan, Peng (CR22) 2017; 42 Qiao, Zhang (CR30) 2019; 44 Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (CR17) 2015; 8 Liu, Yu, Cang (CR20) 2019; 98 Kupcsik, Deisenroth, Peters, Loh, Vadakkepat, Neumann (CR12) 2017; 247 H Shi (1504_CR32) 2018; 436-437 MR Benjamin (1504_CR5) 2010; 27 A Wang (1504_CR36) 2013; 49 A Kupcsik (1504_CR12) 2017; 247 A Lekkas (1504_CR14) 2014; 22 AM Lekkas (1504_CR15) 2012; 45 P Liu (1504_CR21) 2018; 94 1504_CR24 Y Sun (1504_CR34) 2019; 96 1504_CR28 TI Fossen (1504_CR8) 2017; 31 A Malus (1504_CR23) 2020; 69 FA Gers (1504_CR10) 2003; 3 AS Polydoros (1504_CR27) 2017; 86 TP Lillicrap (1504_CR17) 2015; 8 T Praczyk (1504_CR29) 2020; 100 B Abdurahman (1504_CR2) 2017; 50 Z Yue (1504_CR40) 2012; 27 1504_CR7 B Abdurahman (1504_CR3) 2019; 182 S Laghrouche (1504_CR13) 2007; 43 L Lu (1504_CR22) 2017; 42 P Liu (1504_CR19) 2020; 72 D Mu (1504_CR25) 2018; 2018 L Qiao (1504_CR30) 2019; 44 J Woo (1504_CR38) 2019; 183 AM Lekkas (1504_CR16) 2014; 74 TI Fossen (1504_CR9) 2014; 50 1504_CR35 NM Nouri (1504_CR26) 2018; 92 N Khaled (1504_CR11) 2013; 73 1504_CR18 X Wang (1504_CR37) 2020; 99 BDO Anderson (1504_CR4) 1972; 93 M Sadeghzadeh (1504_CR31) 2015; 78 BD A (1504_CR1) 2014; 24 M Carreras (1504_CR6) 2018; 43 P Liu (1504_CR20) 2019; 98 1504_CR33 C Yuan (1504_CR39) 2018; 48 |
| References_xml | – volume: 43 start-page: 344 issue: 2 year: 2018 end-page: 355 ident: CR6 article-title: Sparus ii auv-a hovering vehicle for seabed inspection publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2792278 – volume: 74 start-page: 1013 year: 2014 end-page: 1028 ident: CR16 article-title: Uav path following in windy urban environments publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9873-z – ident: CR18 – volume: 42 start-page: 477 issue: 2 year: 2017 end-page: 487 ident: CR22 article-title: Eso-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2016.2569218 – volume: 48 start-page: 2920 issue: 10 year: 2018 end-page: 2934 ident: CR39 article-title: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2752458 – volume: 31 start-page: 445 issue: 4 year: 2017 end-page: 463 ident: CR8 article-title: Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents publication-title: Int. J. Adapt. Control Signal Proc. doi: 10.1002/acs.2550 – volume: 22 start-page: 2287 issue: 6 year: 2014 end-page: 2301 ident: CR14 article-title: Integral los path following for curved paths based on a monotone cubic hermite spline parametrization publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2306774 – volume: 24 start-page: 1021 issue: 8 year: 2014 end-page: 1030 ident: CR1 article-title: Comparison of model-free and model-based methods for time optimal hit control of a badminton robot publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.08.001 – volume: 2018 start-page: 1 year: 2018 end-page: 12 ident: CR25 article-title: Fuzzy-based optimal adaptive line-of-sight path following for underactuated unmanned surface vehicle with uncertainties and time-varying disturbances publication-title: Math. Probl. Eng. – volume: 73 start-page: 897 issue: 1-2 year: 2013 end-page: 906 ident: CR11 article-title: A self-tuning guidance and control system for marine surface vessels publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0840-9 – volume: 8 start-page: 1 issue: 6 year: 2015 end-page: 14 ident: CR17 article-title: Continuous control with deep reinforcement learning publication-title: Comput. Sci. – ident: CR33 – volume: 92 start-page: 139 issue: 2 year: 2018 end-page: 151 ident: CR26 article-title: Optimal input design for hydrodynamic derivatives estimation of nonlinear dynamic model of auv publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3611-1 – ident: CR35 – volume: 99 start-page: 891 issue: 3 year: 2020 end-page: 908 ident: CR37 article-title: Path planning under constraints and path following control of autonomous underwater vehicle with dynamical uncertainties and wave disturbances publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01146-3 – volume: 50 start-page: 2912 issue: 11 year: 2014 end-page: 2917 ident: CR9 article-title: On uniform semiglobal exponential stability (usges) of proportional line-of-sight guidance laws publication-title: Automatica doi: 10.1016/j.automatica.2014.10.018 – volume: 436-437 start-page: 268 year: 2018 end-page: 281 ident: CR32 article-title: An adaptive decision-making method with fuzzy bayesian reinforcement learning for robot soccer publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.032 – volume: 50 start-page: 2290 issue: 1 year: 2017 end-page: 2295 ident: CR2 article-title: A switching los guidance with relative kinematics for path-following of underactuated underwater vehicles publication-title: Ifac Papersonline doi: 10.1016/j.ifacol.2017.08.228 – volume: 3 start-page: 115 year: 2003 end-page: 143 ident: CR10 article-title: Learning precise timing with lstm recurrent networks publication-title: J. Mach. Learn. Res. – volume: 78 start-page: 83 issue: 1 year: 2015 end-page: 104 ident: CR31 article-title: Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and q-learning publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-014-0151-5 – volume: 96 start-page: 591 year: 2019 end-page: 601 ident: CR34 article-title: Mapless motion planning system for an autonomous underwater vehicle using policy gradient-based deep reinforcement learning publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01004-2 – volume: 27 start-page: 298 issue: 3 year: 2012 end-page: 307 ident: CR40 article-title: A bio-inspired neurodynamics based back stepping path-following control of an auv with ocean current publication-title: Int. J. Robot. Autom – volume: 49 start-page: 2409 issue: 5 year: 2013 end-page: 2412 ident: CR36 article-title: A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor publication-title: IEEE Trans. Magnet. doi: 10.1109/TMAG.2013.2240666 – volume: 72 start-page: 102443 year: 2020 ident: CR19 article-title: A survey on underactuated robotic systems: Bio-inspiration, trajectory planning and control publication-title: Mechatronics doi: 10.1016/j.mechatronics.2020.102443 – volume: 183 start-page: 155 issue: 1 year: 2019 end-page: 166 ident: CR38 article-title: Y.C..K.N.: Deep reinforcement learning-based controller for path following of an unmanned surface vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.099 – volume: 93 start-page: 559 issue: 4 year: 1972 end-page: 559 ident: CR4 article-title: Linear optimal control publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1972.4309169 – volume: 69 start-page: 397 year: 2020 end-page: 400 ident: CR23 article-title: Real-time order dispatching for a fleet of autonomous mobile robots using multi-agent reinforcement learning publication-title: CIRP Ann. doi: 10.1016/j.cirp.2020.04.001 – volume: 98 start-page: 1447 year: 2019 end-page: 1464 ident: CR20 article-title: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05170-8 – volume: 44 start-page: 363 issue: 2 year: 2019 end-page: 385 ident: CR30 article-title: Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2809018 – volume: 27 start-page: 834 year: 2010 end-page: 875 ident: CR5 article-title: Nested autonomy for unmanned marine vehicles with moos-ivp publication-title: J. Field Robot. doi: 10.1002/rob.20370 – volume: 247 start-page: 415 year: 2017 end-page: 439 ident: CR12 article-title: Model-based contextual policy search for data-efficient generalization of robot skills publication-title: Artif. Intell. doi: 10.1016/j.artint.2014.11.005 – volume: 45 start-page: 398 issue: 27 year: 2012 end-page: 403 ident: CR15 article-title: A time-varying lookahead distance guidance law for path following publication-title: Ifac Proc. – volume: 182 start-page: 412 issue: JUN.15 year: 2019 end-page: 426 ident: CR3 article-title: Switching los guidance with speed allocation and vertical course control for path-following of unmanned underwater vehicles under ocean current disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.021 – volume: 86 start-page: 153 issue: 2 year: 2017 end-page: 173 ident: CR27 article-title: Survey of model-based reinforcement learning: Applications on robotics publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0468-y – volume: 94 start-page: 1803 year: 2018 end-page: 1817 ident: CR21 article-title: Optimized adaptive tracking control for an underactuated vibro-driven capsule system publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4458-9 – volume: 43 start-page: 531 issue: 3 year: 2007 end-page: 537 ident: CR13 article-title: Higher order sliding mode control based on integral sliding mode publication-title: Automatica doi: 10.1016/j.automatica.2006.09.017 – volume: 100 start-page: 363 year: 2020 end-page: 376 ident: CR29 article-title: Using neurocevolutionary techniques to tune odometric navigational system of small biomimetic autonomous underwater vehicle c preliminary report publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-020-01191-3 – ident: CR7 – ident: CR28 – ident: CR24 – ident: 1504_CR33 – ident: 1504_CR7 – volume: 92 start-page: 139 issue: 2 year: 2018 ident: 1504_CR26 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3611-1 – volume: 93 start-page: 559 issue: 4 year: 1972 ident: 1504_CR4 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1972.4309169 – volume: 27 start-page: 298 issue: 3 year: 2012 ident: 1504_CR40 publication-title: Int. J. Robot. Autom – volume: 50 start-page: 2912 issue: 11 year: 2014 ident: 1504_CR9 publication-title: Automatica doi: 10.1016/j.automatica.2014.10.018 – volume: 98 start-page: 1447 year: 2019 ident: 1504_CR20 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05170-8 – volume: 74 start-page: 1013 year: 2014 ident: 1504_CR16 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9873-z – volume: 86 start-page: 153 issue: 2 year: 2017 ident: 1504_CR27 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0468-y – volume: 73 start-page: 897 issue: 1-2 year: 2013 ident: 1504_CR11 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0840-9 – volume: 8 start-page: 1 issue: 6 year: 2015 ident: 1504_CR17 publication-title: Comput. Sci. – volume: 72 start-page: 102443 year: 2020 ident: 1504_CR19 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2020.102443 – volume: 436-437 start-page: 268 year: 2018 ident: 1504_CR32 publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.032 – volume: 96 start-page: 591 year: 2019 ident: 1504_CR34 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01004-2 – volume: 48 start-page: 2920 issue: 10 year: 2018 ident: 1504_CR39 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2752458 – volume: 45 start-page: 398 issue: 27 year: 2012 ident: 1504_CR15 publication-title: Ifac Proc. doi: 10.3182/20120919-3-IT-2046.00068 – ident: 1504_CR18 – volume: 43 start-page: 531 issue: 3 year: 2007 ident: 1504_CR13 publication-title: Automatica doi: 10.1016/j.automatica.2006.09.017 – volume: 42 start-page: 477 issue: 2 year: 2017 ident: 1504_CR22 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2016.2569218 – ident: 1504_CR35 doi: 10.1109/TNN.1998.712192 – volume: 43 start-page: 344 issue: 2 year: 2018 ident: 1504_CR6 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2792278 – volume: 69 start-page: 397 year: 2020 ident: 1504_CR23 publication-title: CIRP Ann. doi: 10.1016/j.cirp.2020.04.001 – volume: 3 start-page: 115 year: 2003 ident: 1504_CR10 publication-title: J. Mach. Learn. Res. – volume: 94 start-page: 1803 year: 2018 ident: 1504_CR21 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4458-9 – volume: 27 start-page: 834 year: 2010 ident: 1504_CR5 publication-title: J. Field Robot. doi: 10.1002/rob.20370 – volume: 31 start-page: 445 issue: 4 year: 2017 ident: 1504_CR8 publication-title: Int. J. Adapt. Control Signal Proc. doi: 10.1002/acs.2550 – ident: 1504_CR28 – volume: 100 start-page: 363 year: 2020 ident: 1504_CR29 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-020-01191-3 – volume: 2018 start-page: 1 year: 2018 ident: 1504_CR25 publication-title: Math. Probl. Eng. – volume: 22 start-page: 2287 issue: 6 year: 2014 ident: 1504_CR14 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2306774 – ident: 1504_CR24 doi: 10.1007/978-3-540-72584-8_137 – volume: 78 start-page: 83 issue: 1 year: 2015 ident: 1504_CR31 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-014-0151-5 – volume: 50 start-page: 2290 issue: 1 year: 2017 ident: 1504_CR2 publication-title: Ifac Papersonline doi: 10.1016/j.ifacol.2017.08.228 – volume: 24 start-page: 1021 issue: 8 year: 2014 ident: 1504_CR1 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.08.001 – volume: 182 start-page: 412 issue: JUN.15 year: 2019 ident: 1504_CR3 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.021 – volume: 44 start-page: 363 issue: 2 year: 2019 ident: 1504_CR30 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2809018 – volume: 183 start-page: 155 issue: 1 year: 2019 ident: 1504_CR38 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.099 – volume: 247 start-page: 415 year: 2017 ident: 1504_CR12 publication-title: Artif. Intell. doi: 10.1016/j.artint.2014.11.005 – volume: 99 start-page: 891 issue: 3 year: 2020 ident: 1504_CR37 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01146-3 – volume: 49 start-page: 2409 issue: 5 year: 2013 ident: 1504_CR36 publication-title: IEEE Trans. Magnet. doi: 10.1109/TMAG.2013.2240666 |
| SSID | ssj0009859 |
| Score | 2.35757 |
| Snippet | Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | Algorithms Analysis Artificial Intelligence Autonomous underwater vehicles Control Distance learning Dynamic models Electrical Engineering Energy conservation Engineering Error analysis Line of sight Machine learning Mechanical Engineering Mechatronics Methods Neural networks Ocean currents Path tracking Performance enhancement Remote submersibles Robotics Short Paper Topical collection on Unmanned Systems Tracking errors |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxwxDLYQcKCHUihVt6XIByQOMNK8H8cRC-qBl3iJWzTxJAgJ7Va7WyT-PXY2wwKlSHCeTBLFif05jj8DbOpM2zxi7Rc3lAapySmomiYJqDTWStynIZcofFAcHZVXV9WJTwobd6_du5Ck09RPkt3YVgbypEC89DRgR30hE7YZ8dHPLmdUu2U2ZdiTlnGV-1SZ1_t4Zo5eKuV_oqPO6Owvf2y6X-CzB5lYT3fFCsyZwSosdwUc0J_nVfj0hI3wK9zXeDhsbyyDUqwPjs_w0FWXxqHFE8aJyGaN5GIdGedifXE5RrnExVPjyFfJ3TOi52u9xpqILZoQUbSo77E_rXyP_WbSBP2R6FjpQ0Y0t2twsb93vvs78JUZAkqycsKQPAsjk4Qs2kJHkgdiWN5NTFSVbVlpwyCJsrhNtLXigxW5jWwR6YQSWxasZL7B_GA4MN8BTczfIp1rG-u0MK2EDcNQs2JoizihqgdRJyBFnrZcqmfcqhnhsqy04pVWbqVV2IPtx3_-TEk73my9JXJXsljcMzU-MYHnJ9xYqmb_g931osx6sN5tDeWP-lgxoswEhKVJD3a6rTD7_P9xf7yv-U9YiiX1wr1_W4f5yeiv-QWLdDe5GY823BF4AF4Y_JI priority: 102 providerName: Springer Nature |
| Title | A Modified ALOS Method of Path Tracking for AUVs with Reinforcement Learning Accelerated by Dynamic Data-Driven AUV Model |
| URI | https://link.springer.com/article/10.1007/s10846-021-01504-0 https://www.proquest.com/docview/2645317543 |
| Volume | 104 |
| WOSCitedRecordID | wos000764820400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMcKBQQgRL5gMQBLHa97xNaSCsk2hAltKq4WPasjSKVpCQBKf-emY2X8BC9cPHFu7a1MztPzzcAz2xmfR6T9FMGU5m6HGVlTCKxdN5z3sdgWyh8UgyH5cVFNQoBt2W4VtnJxFZQN3PkGPkrUtwZ67o0eX31VXLXKM6uhhYaO7DHSGXE53tvjoaj8RZ2t8w2aHuKnGZV5aFsJhTPke6VfEWBvf5URr-ppj8F9F-Z0lYBHe__79Hvwp1geop6wyv34IabHcB-19ZBhL_8AG7_glF4H9a1OJ03U0-mqqhPPkzEadtzWsy9GJH1KEjZIYfbBVm_oj47XwoO7YqxayFZsY0-ioDi-lnUiKTnGJ6iEXYtBuuZ-TJFMTArIwcLlry8Bu_oLh_A2fHRx7fvZOjXIDHJyhUZ6lkUuyQighc25uoQR1xgFGJVNmVlHZlOmKkmsd6zZ1bkPvZFbBNMfFmQ6HkIu7P5zD0C4RTNxTa3Xtm0cA0nE6PIkrhoCpVg1YO4I5XGAGbOPTUu9RaGmcmriby6Ja-OevDi5ztXGyiPa59-zhyg-WPRymhCuQKdjxGzdE1eCTnxRZn14LAjuw4CYKm3NO_By45xttP_3vfx9as9gVuKCzDaW3CHsLtafHNP4SZ-X02Xi35g_z7svC9kn--xTmgcZZ9oHE_OfwAXaAv1 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAk4UCggAgV8AHGAFbv2fh4QWkirVk1CVVrUm1nP2ihSSUoSQPlT_EZmNl7Ch-itB867a1ve53ljj-cNwGOTGJdGZP1khXEQ2xSDoqpUgLl1juM-FTaJwv1sOMxPToqDNfje5sLwtcrWJjaGup4gn5G_IOJOmOti9ersc8BVozi62pbQWMJi3y6-0ZZt9nKvR__3iZQ720dvdgNfVSBAleRzcieTMLIqpGFlJuIcBktjrSRikdd5YSwRPCayVsY53j9kqYtcFhmFyuUZLRBq9xKsxypOkw6sv94eHhyuZH7zZKnuJ2mTLovUp-n4ZD3i-oCvRPApQxyEv1Hhn4TwV2S2Ibydjf9tqm7Ade9ai3K5Fm7Cmh1vwkZbtkJ4K7YJ137RYLwFi1IMJvXIkSsuyv7bd2LQ1NQWEycOyDsWRObI4QRB3r0oj9_PBB9di0PbSM5ic7oqvErtR1EiEo-z_EYtzEL0FuPq0whFr5pXQW_KzMJtcI_29DYcX8h03IHOeDK2d0FYSc8ikxonTZzZmoOlYWjIHNaZVFh0IWqhodGLtXPNkFO9kplmOGmCk27gpMMuPPv5zdlSquTct58y4jRPFrWMlU_HoPGxIpguadeVSJXlSRe2Wphpb-BmeoWxLjxvgbp6_O9-753f2iO4sns06Ov-3nD_PlyVnGzS3Pjbgs58-sU-gMv4dT6aTR_6pSfgw0VD-Ad_OGMn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VghAcKBQQgQI-gDjAqrveL-8BoRVLRNU0REBRxcWsZ20UqSQlCaD8NX4dMxsv4UP01gPnTbyW93ne2DPzBuCBSY3LIrJ-ssYkSGyGQVHXcYDKOsdxnxrbQuFBPhyqo6NitAHfu1oYTqvsbGJrqJsp8h35LhF3ylyXxLvOp0WMqv6zk88Bd5DiSGvXTmMFkX27_EbHt_nTvYq-9UMp-y_ePn8Z-A4DAcapWpBrmYaRjUOaYm4irmewNO9aIhaqUYWxRPaYyiY2zvFZIs9c5PLIxBg7ldNmoXHPwfk8yRSnk43S92vBX5WudP4kHddlkfmCHV-2R6wfcHIE3zckQfgbKf5JDX_FaFvq62_9z4t2Fa54h1uUqx1yDTbsZBu2umYWwtu2bbj8izLjdViW4mDajB056KIcvHojDtpO22LqxIh8ZkEUjxxkEOTzi_Lw3VzwhbZ4bVshWmzvXIXXrv0oSkRidxblaIRZimo5qT-NUVT1og6qGfMNj8FvtMc34PBMluMmbE6mE3sLhJX0LDKZcdIkuW04hBqGhoxkk8sYix5EHUw0egl37iRyrNfi0wwtTdDSLbR02IPHP_9zshIwOfXXjxh9mheLRsbaF2nQ_FgnTJd0FktlnKu0Bzsd5LQ3e3O9xlsPnnSgXT_-93tvnz7afbhIuNWDveH-HbgkuQKlTQPcgc3F7Iu9Cxfw62I8n91r96CAD2eN3x9gLmq8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+ALOS+Method+of+Path+Tracking+for+AUVs+with+Reinforcement+Learning+Accelerated+by+Dynamic+Data-Driven+AUV+Model&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=104&rft.issue=3&rft.spage=49&rft_id=info:doi/10.1007%2Fs10846-021-01504-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |