A Modified ALOS Method of Path Tracking for AUVs with Reinforcement Learning Accelerated by Dynamic Data-Driven AUV Model

Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of intelligent & robotic systems Ročník 104; číslo 3; s. 49
Hlavní autori: Wang, Dianrui, He, Bo, Shen, Yue, Li, Guangliang, Chen, Guanzhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.03.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0921-0296, 1573-0409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight (LOS) algorithm with fixed lookahead distance does not perform well because it requires an urgent need for the automatic adjustment of the parameter. Considering the above, this study proposes an adaptive line-of-sight (ALOS) guidance method with reinforcement learning (RL) based on the dynamic data-driven AUV model (DDDAM). Firstly, we introduced a detailed AUV dynamic model mainly including the models with and without current influence. Next, we conducted a detailed analysis of the path tracking error dynamics and the factors influencing the tracking performance based on the model proposed above. We then used the DDDAM (using long short-term memory (LSTM) neural network) to pre-train the RL framework to generate more samples for online learning in order to speed up the learning process. Finally, the deterministic policy gradient (DPG) based RL was designed to optimize the continuously varying lookahead distance considering the previously analyzed factors. Collectively, this paper presents simulation cases and an evaluation of the algorithm. Our results indicate that the proposed method significantly improves the performance of path tracking with effectiveness and robustness.
AbstractList Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight (LOS) algorithm with fixed lookahead distance does not perform well because it requires an urgent need for the automatic adjustment of the parameter. Considering the above, this study proposes an adaptive line-of-sight (ALOS) guidance method with reinforcement learning (RL) based on the dynamic data-driven AUV model (DDDAM). Firstly, we introduced a detailed AUV dynamic model mainly including the models with and without current influence. Next, we conducted a detailed analysis of the path tracking error dynamics and the factors influencing the tracking performance based on the model proposed above. We then used the DDDAM (using long short-term memory (LSTM) neural network) to pre-train the RL framework to generate more samples for online learning in order to speed up the learning process. Finally, the deterministic policy gradient (DPG) based RL was designed to optimize the continuously varying lookahead distance considering the previously analyzed factors. Collectively, this paper presents simulation cases and an evaluation of the algorithm. Our results indicate that the proposed method significantly improves the performance of path tracking with effectiveness and robustness.
Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and efficiency. However, it is a challenging problem due to the model uncertainty, and ocean current disturbance. Moreover, the widely used line of sight (LOS) algorithm with fixed lookahead distance does not perform well because it requires an urgent need for the automatic adjustment of the parameter. Considering the above, this study proposes an adaptive line-of-sight (ALOS) guidance method with reinforcement learning (RL) based on the dynamic data-driven AUV model (DDDAM). Firstly, we introduced a detailed AUV dynamic model mainly including the models with and without current influence. Next, we conducted a detailed analysis of the path tracking error dynamics and the factors influencing the tracking performance based on the model proposed above. We then used the DDDAM (using long short-term memory (LSTM) neural network) to pre-train the RL framework to generate more samples for online learning in order to speed up the learning process. Finally, the deterministic policy gradient (DPG) based RL was designed to optimize the continuously varying lookahead distance considering the previously analyzed factors. Collectively, this paper presents simulation cases and an evaluation of the algorithm. Our results indicate that the proposed method significantly improves the performance of path tracking with effectiveness and robustness. Keywords Autonomous underwater vehicle (AUV) * Path tracking * Line-of-sight (LOS) * Reinforcement learning (RL) ? Deterministic policy gradient (DPG) * Data-driven (DD) * Long short-term memory (LSTM)
ArticleNumber 49
Audience Academic
Author Chen, Guanzhong
Wang, Dianrui
Li, Guangliang
He, Bo
Shen, Yue
Author_xml – sequence: 1
  givenname: Dianrui
  surname: Wang
  fullname: Wang, Dianrui
  organization: School of Information Science and Engineering, Ocean University of China
– sequence: 2
  givenname: Bo
  surname: He
  fullname: He, Bo
  email: bhe@ouc.edu.cn
  organization: School of Information Science and Engineering, Ocean University of China
– sequence: 3
  givenname: Yue
  surname: Shen
  fullname: Shen, Yue
  organization: School of Information Science and Engineering, Ocean University of China
– sequence: 4
  givenname: Guangliang
  surname: Li
  fullname: Li, Guangliang
  organization: School of Information Science and Engineering, Ocean University of China
– sequence: 5
  givenname: Guanzhong
  surname: Chen
  fullname: Chen, Guanzhong
  organization: School of Information Science and Engineering, Ocean University of China
BookMark eNp9Uctu3CAURVUqdZL2B7pC6trJxRhjllamL2miVG3SLcL4MiH1QIpJq_n74LpSpS4iFkiX87iHc0pOQgxIyFsG5wxAXswMuqatoGYVMAFNBS_IhgnJK2hAnZANqOWpVu0rcjrP9wCgOqE25NjTqzh653Gk_e76G73CfBdHGh39YvIdvUnG_vBhT11MtL_9PtPfvoy_og9lYvGAIdMdmhQWUG8tTphMLmrDkW6PwRy8pVuTTbVN_heGRWNxxOk1eenMNOObv_cZuf3w_ubyU7W7_vj5st9VlosuV1IKYMgBWysH1vEWkDFpamtVN3ZqQCaUFfXIB-eANUq2jjnJBm6566QEfkberboPKf58xDnr-_iYQrHUddsIzqRoeEGdr6i9mVAv4XJJXs6IJUH5bOfLvJe1EjWXnSiEeiXYFOc5odMPyR9MOmoGeulEr53o0on-04ledun-I1mfTfYxFDc_PU_lK3UuPmGP6V-MZ1hPvPagTQ
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_122445
crossref_primary_10_3390_drones9040286
crossref_primary_10_3390_jmse10081002
crossref_primary_10_1016_j_oceaneng_2025_122789
crossref_primary_10_3389_frobt_2025_1598982
crossref_primary_10_1038_s41598_024_63419_8
crossref_primary_10_1016_j_oceaneng_2023_116168
crossref_primary_10_1016_j_oceaneng_2024_117410
crossref_primary_10_1109_TIV_2023_3282681
Cites_doi 10.1109/JOE.2018.2792278
10.1007/s10846-013-9873-z
10.1109/JOE.2016.2569218
10.1109/TCYB.2017.2752458
10.1002/acs.2550
10.1109/TCST.2014.2306774
10.1016/j.mechatronics.2014.08.001
10.1007/s11071-013-0840-9
10.1007/s11071-017-3611-1
10.1007/s10846-019-01146-3
10.1016/j.automatica.2014.10.018
10.1016/j.ins.2018.01.032
10.1016/j.ifacol.2017.08.228
10.1007/s10846-014-0151-5
10.1007/s10846-019-01004-2
10.1109/TMAG.2013.2240666
10.1016/j.mechatronics.2020.102443
10.1016/j.oceaneng.2019.04.099
10.1109/TSMC.1972.4309169
10.1016/j.cirp.2020.04.001
10.1007/s11071-019-05170-8
10.1109/JOE.2018.2809018
10.1002/rob.20370
10.1016/j.artint.2014.11.005
10.1016/j.oceaneng.2019.04.021
10.1007/s10846-017-0468-y
10.1007/s11071-018-4458-9
10.1016/j.automatica.2006.09.017
10.1007/s10846-020-01191-3
10.3182/20120919-3-IT-2046.00068
10.1109/TNN.1998.712192
10.1007/978-3-540-72584-8_137
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
COPYRIGHT 2022 Springer
Copyright Springer Nature B.V. Mar 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: COPYRIGHT 2022 Springer
– notice: Copyright Springer Nature B.V. Mar 2022
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-021-01504-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID A729523785
10_1007_s10846_021_01504_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51379198
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2018QF003
  funderid: https://doi.org/10.13039/501100007129
– fundername: the National Key Research and Development Program of China
  grantid: 2016YFC0301400
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 201961005
  funderid: https://doi.org/10.13039/501100012226
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-77501e30e6c7b18360e117a2cc98d89be159c52d3bff014976f1f71b3c3f87703
IEDL.DBID BENPR
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764820400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
IngestDate Sat Oct 18 23:09:36 EDT 2025
Sat Nov 29 10:38:41 EST 2025
Tue Nov 18 22:30:03 EST 2025
Sat Nov 29 01:33:01 EST 2025
Fri Feb 21 02:47:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Path tracking
Line-of-sight (LOS)
Data-driven (DD)
Deterministic policy gradient (DPG)
Autonomous underwater vehicle (AUV)
Reinforcement learning (RL)
Long short-term memory (LSTM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-77501e30e6c7b18360e117a2cc98d89be159c52d3bff014976f1f71b3c3f87703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2645317543
PQPubID 326251
ParticipantIDs proquest_journals_2645317543
gale_infotracacademiconefile_A729523785
crossref_primary_10_1007_s10846_021_01504_0
crossref_citationtrail_10_1007_s10846_021_01504_0
springer_journals_10_1007_s10846_021_01504_0
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2022
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Abdurahman, Savvaris, Tsourdos (CR3) 2019; 182
Liu, Yu, Shuang (CR21) 2018; 94
Wang, Jia, Dong (CR36) 2013; 49
Anderson, Moore, Molinari (CR4) 1972; 93
CR18
Lekkas, Fossen (CR16) 2014; 74
Polydoros, Nalpantidis (CR27) 2017; 86
CR35
Mu, Wang, Fan, Bai, Zhao (CR25) 2018; 2018
CR33
Abdurahman, Savvaris, Tsourdos (CR2) 2017; 50
Khaled, Chalhoub (CR11) 2013; 73
Liu, Huda, Sun, Yu (CR19) 2020; 72
A, B, A, B, B (CR1) 2014; 24
Laghrouche, Plestan, Glumineau (CR13) 2007; 43
Fossen, Lekkas (CR8) 2017; 31
Sun, Cheng, Zhang, Xu (CR34) 2019; 96
Lekkas, Fossen (CR15) 2012; 45
Wang, Yao, Zhang (CR37) 2020; 99
Yue, Zhu (CR40) 2012; 27
Fossen, Pettersen (CR9) 2014; 50
Gers, Schraudolph (CR10) 2003; 3
Lekkas, Fossen (CR14) 2014; 22
CR7
Nouri, Valadi, Asgharian (CR26) 2018; 92
Woo (CR38) 2019; 183
CR28
Shi, Lin, Zhang, Li, Hwang (CR32) 2018; 436-437
Malus, Kozjek, Vrabic (CR23) 2020; 69
Praczyk (CR29) 2020; 100
Benjamin, Schmidt, Newman, Leonard (CR5) 2010; 27
CR24
Carreras, Hernndez, Vidal, Palomeras, Ribas, Ridao (CR6) 2018; 43
Yuan, Licht, He (CR39) 2018; 48
Sadeghzadeh, Calvert, Abdullah (CR31) 2015; 78
Lu, Dan, Peng (CR22) 2017; 42
Qiao, Zhang (CR30) 2019; 44
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (CR17) 2015; 8
Liu, Yu, Cang (CR20) 2019; 98
Kupcsik, Deisenroth, Peters, Loh, Vadakkepat, Neumann (CR12) 2017; 247
H Shi (1504_CR32) 2018; 436-437
MR Benjamin (1504_CR5) 2010; 27
A Wang (1504_CR36) 2013; 49
A Kupcsik (1504_CR12) 2017; 247
A Lekkas (1504_CR14) 2014; 22
AM Lekkas (1504_CR15) 2012; 45
P Liu (1504_CR21) 2018; 94
1504_CR24
Y Sun (1504_CR34) 2019; 96
1504_CR28
TI Fossen (1504_CR8) 2017; 31
A Malus (1504_CR23) 2020; 69
FA Gers (1504_CR10) 2003; 3
AS Polydoros (1504_CR27) 2017; 86
TP Lillicrap (1504_CR17) 2015; 8
T Praczyk (1504_CR29) 2020; 100
B Abdurahman (1504_CR2) 2017; 50
Z Yue (1504_CR40) 2012; 27
1504_CR7
B Abdurahman (1504_CR3) 2019; 182
S Laghrouche (1504_CR13) 2007; 43
L Lu (1504_CR22) 2017; 42
P Liu (1504_CR19) 2020; 72
D Mu (1504_CR25) 2018; 2018
L Qiao (1504_CR30) 2019; 44
J Woo (1504_CR38) 2019; 183
AM Lekkas (1504_CR16) 2014; 74
TI Fossen (1504_CR9) 2014; 50
1504_CR35
NM Nouri (1504_CR26) 2018; 92
N Khaled (1504_CR11) 2013; 73
1504_CR18
X Wang (1504_CR37) 2020; 99
BDO Anderson (1504_CR4) 1972; 93
M Sadeghzadeh (1504_CR31) 2015; 78
BD A (1504_CR1) 2014; 24
M Carreras (1504_CR6) 2018; 43
P Liu (1504_CR20) 2019; 98
1504_CR33
C Yuan (1504_CR39) 2018; 48
References_xml – volume: 43
  start-page: 344
  issue: 2
  year: 2018
  end-page: 355
  ident: CR6
  article-title: Sparus ii auv-a hovering vehicle for seabed inspection
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2018.2792278
– volume: 74
  start-page: 1013
  year: 2014
  end-page: 1028
  ident: CR16
  article-title: Uav path following in windy urban environments
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9873-z
– ident: CR18
– volume: 42
  start-page: 477
  issue: 2
  year: 2017
  end-page: 487
  ident: CR22
  article-title: Eso-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2016.2569218
– volume: 48
  start-page: 2920
  issue: 10
  year: 2018
  end-page: 2934
  ident: CR39
  article-title: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2752458
– volume: 31
  start-page: 445
  issue: 4
  year: 2017
  end-page: 463
  ident: CR8
  article-title: Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents
  publication-title: Int. J. Adapt. Control Signal Proc.
  doi: 10.1002/acs.2550
– volume: 22
  start-page: 2287
  issue: 6
  year: 2014
  end-page: 2301
  ident: CR14
  article-title: Integral los path following for curved paths based on a monotone cubic hermite spline parametrization
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2306774
– volume: 24
  start-page: 1021
  issue: 8
  year: 2014
  end-page: 1030
  ident: CR1
  article-title: Comparison of model-free and model-based methods for time optimal hit control of a badminton robot
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.08.001
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR25
  article-title: Fuzzy-based optimal adaptive line-of-sight path following for underactuated unmanned surface vehicle with uncertainties and time-varying disturbances
  publication-title: Math. Probl. Eng.
– volume: 73
  start-page: 897
  issue: 1-2
  year: 2013
  end-page: 906
  ident: CR11
  article-title: A self-tuning guidance and control system for marine surface vessels
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0840-9
– volume: 8
  start-page: 1
  issue: 6
  year: 2015
  end-page: 14
  ident: CR17
  article-title: Continuous control with deep reinforcement learning
  publication-title: Comput. Sci.
– ident: CR33
– volume: 92
  start-page: 139
  issue: 2
  year: 2018
  end-page: 151
  ident: CR26
  article-title: Optimal input design for hydrodynamic derivatives estimation of nonlinear dynamic model of auv
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3611-1
– ident: CR35
– volume: 99
  start-page: 891
  issue: 3
  year: 2020
  end-page: 908
  ident: CR37
  article-title: Path planning under constraints and path following control of autonomous underwater vehicle with dynamical uncertainties and wave disturbances
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01146-3
– volume: 50
  start-page: 2912
  issue: 11
  year: 2014
  end-page: 2917
  ident: CR9
  article-title: On uniform semiglobal exponential stability (usges) of proportional line-of-sight guidance laws
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.018
– volume: 436-437
  start-page: 268
  year: 2018
  end-page: 281
  ident: CR32
  article-title: An adaptive decision-making method with fuzzy bayesian reinforcement learning for robot soccer
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.032
– volume: 50
  start-page: 2290
  issue: 1
  year: 2017
  end-page: 2295
  ident: CR2
  article-title: A switching los guidance with relative kinematics for path-following of underactuated underwater vehicles
  publication-title: Ifac Papersonline
  doi: 10.1016/j.ifacol.2017.08.228
– volume: 3
  start-page: 115
  year: 2003
  end-page: 143
  ident: CR10
  article-title: Learning precise timing with lstm recurrent networks
  publication-title: J. Mach. Learn. Res.
– volume: 78
  start-page: 83
  issue: 1
  year: 2015
  end-page: 104
  ident: CR31
  article-title: Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and q-learning
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-014-0151-5
– volume: 96
  start-page: 591
  year: 2019
  end-page: 601
  ident: CR34
  article-title: Mapless motion planning system for an autonomous underwater vehicle using policy gradient-based deep reinforcement learning
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01004-2
– volume: 27
  start-page: 298
  issue: 3
  year: 2012
  end-page: 307
  ident: CR40
  article-title: A bio-inspired neurodynamics based back stepping path-following control of an auv with ocean current
  publication-title: Int. J. Robot. Autom
– volume: 49
  start-page: 2409
  issue: 5
  year: 2013
  end-page: 2412
  ident: CR36
  article-title: A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor
  publication-title: IEEE Trans. Magnet.
  doi: 10.1109/TMAG.2013.2240666
– volume: 72
  start-page: 102443
  year: 2020
  ident: CR19
  article-title: A survey on underactuated robotic systems: Bio-inspiration, trajectory planning and control
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2020.102443
– volume: 183
  start-page: 155
  issue: 1
  year: 2019
  end-page: 166
  ident: CR38
  article-title: Y.C..K.N.: Deep reinforcement learning-based controller for path following of an unmanned surface vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.099
– volume: 93
  start-page: 559
  issue: 4
  year: 1972
  end-page: 559
  ident: CR4
  article-title: Linear optimal control
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1972.4309169
– volume: 69
  start-page: 397
  year: 2020
  end-page: 400
  ident: CR23
  article-title: Real-time order dispatching for a fleet of autonomous mobile robots using multi-agent reinforcement learning
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2020.04.001
– volume: 98
  start-page: 1447
  year: 2019
  end-page: 1464
  ident: CR20
  article-title: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05170-8
– volume: 44
  start-page: 363
  issue: 2
  year: 2019
  end-page: 385
  ident: CR30
  article-title: Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2018.2809018
– volume: 27
  start-page: 834
  year: 2010
  end-page: 875
  ident: CR5
  article-title: Nested autonomy for unmanned marine vehicles with moos-ivp
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20370
– volume: 247
  start-page: 415
  year: 2017
  end-page: 439
  ident: CR12
  article-title: Model-based contextual policy search for data-efficient generalization of robot skills
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2014.11.005
– volume: 45
  start-page: 398
  issue: 27
  year: 2012
  end-page: 403
  ident: CR15
  article-title: A time-varying lookahead distance guidance law for path following
  publication-title: Ifac Proc.
– volume: 182
  start-page: 412
  issue: JUN.15
  year: 2019
  end-page: 426
  ident: CR3
  article-title: Switching los guidance with speed allocation and vertical course control for path-following of unmanned underwater vehicles under ocean current disturbances
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.021
– volume: 86
  start-page: 153
  issue: 2
  year: 2017
  end-page: 173
  ident: CR27
  article-title: Survey of model-based reinforcement learning: Applications on robotics
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0468-y
– volume: 94
  start-page: 1803
  year: 2018
  end-page: 1817
  ident: CR21
  article-title: Optimized adaptive tracking control for an underactuated vibro-driven capsule system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4458-9
– volume: 43
  start-page: 531
  issue: 3
  year: 2007
  end-page: 537
  ident: CR13
  article-title: Higher order sliding mode control based on integral sliding mode
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.09.017
– volume: 100
  start-page: 363
  year: 2020
  end-page: 376
  ident: CR29
  article-title: Using neurocevolutionary techniques to tune odometric navigational system of small biomimetic autonomous underwater vehicle c preliminary report
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01191-3
– ident: CR7
– ident: CR28
– ident: CR24
– ident: 1504_CR33
– ident: 1504_CR7
– volume: 92
  start-page: 139
  issue: 2
  year: 2018
  ident: 1504_CR26
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3611-1
– volume: 93
  start-page: 559
  issue: 4
  year: 1972
  ident: 1504_CR4
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1972.4309169
– volume: 27
  start-page: 298
  issue: 3
  year: 2012
  ident: 1504_CR40
  publication-title: Int. J. Robot. Autom
– volume: 50
  start-page: 2912
  issue: 11
  year: 2014
  ident: 1504_CR9
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.018
– volume: 98
  start-page: 1447
  year: 2019
  ident: 1504_CR20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05170-8
– volume: 74
  start-page: 1013
  year: 2014
  ident: 1504_CR16
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9873-z
– volume: 86
  start-page: 153
  issue: 2
  year: 2017
  ident: 1504_CR27
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0468-y
– volume: 73
  start-page: 897
  issue: 1-2
  year: 2013
  ident: 1504_CR11
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0840-9
– volume: 8
  start-page: 1
  issue: 6
  year: 2015
  ident: 1504_CR17
  publication-title: Comput. Sci.
– volume: 72
  start-page: 102443
  year: 2020
  ident: 1504_CR19
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2020.102443
– volume: 436-437
  start-page: 268
  year: 2018
  ident: 1504_CR32
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.032
– volume: 96
  start-page: 591
  year: 2019
  ident: 1504_CR34
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01004-2
– volume: 48
  start-page: 2920
  issue: 10
  year: 2018
  ident: 1504_CR39
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2752458
– volume: 45
  start-page: 398
  issue: 27
  year: 2012
  ident: 1504_CR15
  publication-title: Ifac Proc.
  doi: 10.3182/20120919-3-IT-2046.00068
– ident: 1504_CR18
– volume: 43
  start-page: 531
  issue: 3
  year: 2007
  ident: 1504_CR13
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.09.017
– volume: 42
  start-page: 477
  issue: 2
  year: 2017
  ident: 1504_CR22
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2016.2569218
– ident: 1504_CR35
  doi: 10.1109/TNN.1998.712192
– volume: 43
  start-page: 344
  issue: 2
  year: 2018
  ident: 1504_CR6
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2018.2792278
– volume: 69
  start-page: 397
  year: 2020
  ident: 1504_CR23
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2020.04.001
– volume: 3
  start-page: 115
  year: 2003
  ident: 1504_CR10
  publication-title: J. Mach. Learn. Res.
– volume: 94
  start-page: 1803
  year: 2018
  ident: 1504_CR21
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4458-9
– volume: 27
  start-page: 834
  year: 2010
  ident: 1504_CR5
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20370
– volume: 31
  start-page: 445
  issue: 4
  year: 2017
  ident: 1504_CR8
  publication-title: Int. J. Adapt. Control Signal Proc.
  doi: 10.1002/acs.2550
– ident: 1504_CR28
– volume: 100
  start-page: 363
  year: 2020
  ident: 1504_CR29
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01191-3
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1504_CR25
  publication-title: Math. Probl. Eng.
– volume: 22
  start-page: 2287
  issue: 6
  year: 2014
  ident: 1504_CR14
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2306774
– ident: 1504_CR24
  doi: 10.1007/978-3-540-72584-8_137
– volume: 78
  start-page: 83
  issue: 1
  year: 2015
  ident: 1504_CR31
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-014-0151-5
– volume: 50
  start-page: 2290
  issue: 1
  year: 2017
  ident: 1504_CR2
  publication-title: Ifac Papersonline
  doi: 10.1016/j.ifacol.2017.08.228
– volume: 24
  start-page: 1021
  issue: 8
  year: 2014
  ident: 1504_CR1
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.08.001
– volume: 182
  start-page: 412
  issue: JUN.15
  year: 2019
  ident: 1504_CR3
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.021
– volume: 44
  start-page: 363
  issue: 2
  year: 2019
  ident: 1504_CR30
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2018.2809018
– volume: 183
  start-page: 155
  issue: 1
  year: 2019
  ident: 1504_CR38
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.099
– volume: 247
  start-page: 415
  year: 2017
  ident: 1504_CR12
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2014.11.005
– volume: 99
  start-page: 891
  issue: 3
  year: 2020
  ident: 1504_CR37
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01146-3
– volume: 49
  start-page: 2409
  issue: 5
  year: 2013
  ident: 1504_CR36
  publication-title: IEEE Trans. Magnet.
  doi: 10.1109/TMAG.2013.2240666
SSID ssj0009859
Score 2.35757
Snippet Path tracking has a significant impact on the success of long-term autonomous underwater vehicle (AUV) missions in terms of safety, energy-saving, and...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Autonomous underwater vehicles
Control
Distance learning
Dynamic models
Electrical Engineering
Energy conservation
Engineering
Error analysis
Line of sight
Machine learning
Mechanical Engineering
Mechatronics
Methods
Neural networks
Ocean currents
Path tracking
Performance enhancement
Remote submersibles
Robotics
Short Paper
Topical collection on Unmanned Systems
Tracking errors
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxwxDLYQcKCHUihVt6XIByQOMNK8H8cRC-qBl3iJWzTxJAgJ7Va7WyT-PXY2wwKlSHCeTBLFif05jj8DbOpM2zxi7Rc3lAapySmomiYJqDTWStynIZcofFAcHZVXV9WJTwobd6_du5Ck09RPkt3YVgbypEC89DRgR30hE7YZ8dHPLmdUu2U2ZdiTlnGV-1SZ1_t4Zo5eKuV_oqPO6Owvf2y6X-CzB5lYT3fFCsyZwSosdwUc0J_nVfj0hI3wK9zXeDhsbyyDUqwPjs_w0FWXxqHFE8aJyGaN5GIdGedifXE5RrnExVPjyFfJ3TOi52u9xpqILZoQUbSo77E_rXyP_WbSBP2R6FjpQ0Y0t2twsb93vvs78JUZAkqycsKQPAsjk4Qs2kJHkgdiWN5NTFSVbVlpwyCJsrhNtLXigxW5jWwR6YQSWxasZL7B_GA4MN8BTczfIp1rG-u0MK2EDcNQs2JoizihqgdRJyBFnrZcqmfcqhnhsqy04pVWbqVV2IPtx3_-TEk73my9JXJXsljcMzU-MYHnJ9xYqmb_g931osx6sN5tDeWP-lgxoswEhKVJD3a6rTD7_P9xf7yv-U9YiiX1wr1_W4f5yeiv-QWLdDe5GY823BF4AF4Y_JI
  priority: 102
  providerName: Springer Nature
Title A Modified ALOS Method of Path Tracking for AUVs with Reinforcement Learning Accelerated by Dynamic Data-Driven AUV Model
URI https://link.springer.com/article/10.1007/s10846-021-01504-0
https://www.proquest.com/docview/2645317543
Volume 104
WOSCitedRecordID wos000764820400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMcKBQQgRL5gMQBLHa97xNaSCsk2hAltKq4WPasjSKVpCQBKf-emY2X8BC9cPHFu7a1MztPzzcAz2xmfR6T9FMGU5m6HGVlTCKxdN5z3sdgWyh8UgyH5cVFNQoBt2W4VtnJxFZQN3PkGPkrUtwZ67o0eX31VXLXKM6uhhYaO7DHSGXE53tvjoaj8RZ2t8w2aHuKnGZV5aFsJhTPke6VfEWBvf5URr-ppj8F9F-Z0lYBHe__79Hvwp1geop6wyv34IabHcB-19ZBhL_8AG7_glF4H9a1OJ03U0-mqqhPPkzEadtzWsy9GJH1KEjZIYfbBVm_oj47XwoO7YqxayFZsY0-ioDi-lnUiKTnGJ6iEXYtBuuZ-TJFMTArIwcLlry8Bu_oLh_A2fHRx7fvZOjXIDHJyhUZ6lkUuyQighc25uoQR1xgFGJVNmVlHZlOmKkmsd6zZ1bkPvZFbBNMfFmQ6HkIu7P5zD0C4RTNxTa3Xtm0cA0nE6PIkrhoCpVg1YO4I5XGAGbOPTUu9RaGmcmriby6Ja-OevDi5ztXGyiPa59-zhyg-WPRymhCuQKdjxGzdE1eCTnxRZn14LAjuw4CYKm3NO_By45xttP_3vfx9as9gVuKCzDaW3CHsLtafHNP4SZ-X02Xi35g_z7svC9kn--xTmgcZZ9oHE_OfwAXaAv1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAk4UCggAgV8AHGAFbv2fh4QWkirVk1CVVrUm1nP2ihSSUoSQPlT_EZmNl7Ch-itB867a1ve53ljj-cNwGOTGJdGZP1khXEQ2xSDoqpUgLl1juM-FTaJwv1sOMxPToqDNfje5sLwtcrWJjaGup4gn5G_IOJOmOti9ersc8BVozi62pbQWMJi3y6-0ZZt9nKvR__3iZQ720dvdgNfVSBAleRzcieTMLIqpGFlJuIcBktjrSRikdd5YSwRPCayVsY53j9kqYtcFhmFyuUZLRBq9xKsxypOkw6sv94eHhyuZH7zZKnuJ2mTLovUp-n4ZD3i-oCvRPApQxyEv1Hhn4TwV2S2Ibydjf9tqm7Ade9ai3K5Fm7Cmh1vwkZbtkJ4K7YJ137RYLwFi1IMJvXIkSsuyv7bd2LQ1NQWEycOyDsWRObI4QRB3r0oj9_PBB9di0PbSM5ic7oqvErtR1EiEo-z_EYtzEL0FuPq0whFr5pXQW_KzMJtcI_29DYcX8h03IHOeDK2d0FYSc8ikxonTZzZmoOlYWjIHNaZVFh0IWqhodGLtXPNkFO9kplmOGmCk27gpMMuPPv5zdlSquTct58y4jRPFrWMlU_HoPGxIpguadeVSJXlSRe2Wphpb-BmeoWxLjxvgbp6_O9-753f2iO4sns06Ov-3nD_PlyVnGzS3Pjbgs58-sU-gMv4dT6aTR_6pSfgw0VD-Ad_OGMn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VghAcKBQQgQI-gDjAqrveL-8BoRVLRNU0REBRxcWsZ20UqSQlCaD8NX4dMxsv4UP01gPnTbyW93ne2DPzBuCBSY3LIrJ-ssYkSGyGQVHXcYDKOsdxnxrbQuFBPhyqo6NitAHfu1oYTqvsbGJrqJsp8h35LhF3ylyXxLvOp0WMqv6zk88Bd5DiSGvXTmMFkX27_EbHt_nTvYq-9UMp-y_ePn8Z-A4DAcapWpBrmYaRjUOaYm4irmewNO9aIhaqUYWxRPaYyiY2zvFZIs9c5PLIxBg7ldNmoXHPwfk8yRSnk43S92vBX5WudP4kHddlkfmCHV-2R6wfcHIE3zckQfgbKf5JDX_FaFvq62_9z4t2Fa54h1uUqx1yDTbsZBu2umYWwtu2bbj8izLjdViW4mDajB056KIcvHojDtpO22LqxIh8ZkEUjxxkEOTzi_Lw3VzwhbZ4bVshWmzvXIXXrv0oSkRidxblaIRZimo5qT-NUVT1og6qGfMNj8FvtMc34PBMluMmbE6mE3sLhJX0LDKZcdIkuW04hBqGhoxkk8sYix5EHUw0egl37iRyrNfi0wwtTdDSLbR02IPHP_9zshIwOfXXjxh9mheLRsbaF2nQ_FgnTJd0FktlnKu0Bzsd5LQ3e3O9xlsPnnSgXT_-93tvnz7afbhIuNWDveH-HbgkuQKlTQPcgc3F7Iu9Cxfw62I8n91r96CAD2eN3x9gLmq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+ALOS+Method+of+Path+Tracking+for+AUVs+with+Reinforcement+Learning+Accelerated+by+Dynamic+Data-Driven+AUV+Model&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=104&rft.issue=3&rft.spage=49&rft_id=info:doi/10.1007%2Fs10846-021-01504-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon