Information depth of NIR/SWIR soil reflectance spectroscopy

Proximal and remote sensing techniques in the optical domain are cost-effective alternatives to standard soil property characterization methods. However, the extent of light penetration into the soil sample, also termed soil information depth, is not well understood. In this study a new analytical m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing of environment Ročník 256; s. 112315
Hlavní autoři: Norouzi, Sarem, Sadeghi, Morteza, Liaghat, Abdolmajid, Tuller, Markus, Jones, Scott B., Ebrahimian, Hamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Inc 01.04.2021
Elsevier BV
Témata:
ISSN:0034-4257, 1879-0704
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Proximal and remote sensing techniques in the optical domain are cost-effective alternatives to standard soil property characterization methods. However, the extent of light penetration into the soil sample, also termed soil information depth, is not well understood. In this study a new analytical model that links the particle size distribution and soil reflectance in the near infrared (NIR) and shortwave infrared (SWIR) bands of the electromagnetic spectrum is introduced. The model enables the partitioning of measured reflectance spectra into surface and volume (subsurface) contributions, thereby yielding insights about the soil information depth. The model simulations indicate that the surface reflectance contribution to the total reflectance is significantly higher than the volume reflectance contribution for a broad range of soils that vastly differ in texture, mineralogical composition and organic matter contents. The ratio of volume to total reflectance is higher for sandy soils than for clayey soils, especially at longer optical wavelengths, but the ratio rarely exceeds 15%. Therefore, the light reflection from dry soils is predominantly a surface phenomenon and the information depth in most soils rarely exceeds 1 mm. The results of this study reveal an intimate physical relationship between soil reflectance and the particle size distribution in the NIR/SWIR range, which opens a potential new avenue for retrieval of the particle size distribution from remotely sensed reflectance via a universal process-based approach. •A new model links the particle size distribution and soil NIR/SWIR reflectance.•It partitions reflectance spectra into surface and volume contributions.•It shows that light reflectance from dry soils is dominantly a surface phenomenon.•The volume/total reflectance ratio is higher for coarse than for fine soils.•The model opens new avenues for remote sensing of soil hydraulic properties.
AbstractList Proximal and remote sensing techniques in the optical domain are cost-effective alternatives to standard soil property characterization methods. However, the extent of light penetration into the soil sample, also termed soil information depth, is not well understood. In this study a new analytical model that links the particle size distribution and soil reflectance in the near infrared (NIR) and shortwave infrared (SWIR) bands of the electromagnetic spectrum is introduced. The model enables the partitioning of measured reflectance spectra into surface and volume (subsurface) contributions, thereby yielding insights about the soil information depth. The model simulations indicate that the surface reflectance contribution to the total reflectance is significantly higher than the volume reflectance contribution for a broad range of soils that vastly differ in texture, mineralogical composition and organic matter contents. The ratio of volume to total reflectance is higher for sandy soils than for clayey soils, especially at longer optical wavelengths, but the ratio rarely exceeds 15%. Therefore, the light reflection from dry soils is predominantly a surface phenomenon and the information depth in most soils rarely exceeds 1 mm. The results of this study reveal an intimate physical relationship between soil reflectance and the particle size distribution in the NIR/SWIR range, which opens a potential new avenue for retrieval of the particle size distribution from remotely sensed reflectance via a universal process-based approach.
Proximal and remote sensing techniques in the optical domain are cost-effective alternatives to standard soil property characterization methods. However, the extent of light penetration into the soil sample, also termed soil information depth, is not well understood. In this study a new analytical model that links the particle size distribution and soil reflectance in the near infrared (NIR) and shortwave infrared (SWIR) bands of the electromagnetic spectrum is introduced. The model enables the partitioning of measured reflectance spectra into surface and volume (subsurface) contributions, thereby yielding insights about the soil information depth. The model simulations indicate that the surface reflectance contribution to the total reflectance is significantly higher than the volume reflectance contribution for a broad range of soils that vastly differ in texture, mineralogical composition and organic matter contents. The ratio of volume to total reflectance is higher for sandy soils than for clayey soils, especially at longer optical wavelengths, but the ratio rarely exceeds 15%. Therefore, the light reflection from dry soils is predominantly a surface phenomenon and the information depth in most soils rarely exceeds 1 mm. The results of this study reveal an intimate physical relationship between soil reflectance and the particle size distribution in the NIR/SWIR range, which opens a potential new avenue for retrieval of the particle size distribution from remotely sensed reflectance via a universal process-based approach. •A new model links the particle size distribution and soil NIR/SWIR reflectance.•It partitions reflectance spectra into surface and volume contributions.•It shows that light reflectance from dry soils is dominantly a surface phenomenon.•The volume/total reflectance ratio is higher for coarse than for fine soils.•The model opens new avenues for remote sensing of soil hydraulic properties.
ArticleNumber 112315
Author Sadeghi, Morteza
Jones, Scott B.
Liaghat, Abdolmajid
Tuller, Markus
Norouzi, Sarem
Ebrahimian, Hamed
Author_xml – sequence: 1
  givenname: Sarem
  surname: Norouzi
  fullname: Norouzi, Sarem
  organization: Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
– sequence: 2
  givenname: Morteza
  surname: Sadeghi
  fullname: Sadeghi, Morteza
  organization: Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA
– sequence: 3
  givenname: Abdolmajid
  surname: Liaghat
  fullname: Liaghat, Abdolmajid
  organization: Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
– sequence: 4
  givenname: Markus
  surname: Tuller
  fullname: Tuller, Markus
  organization: Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
– sequence: 5
  givenname: Scott B.
  surname: Jones
  fullname: Jones, Scott B.
  organization: Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA
– sequence: 6
  givenname: Hamed
  surname: Ebrahimian
  fullname: Ebrahimian, Hamed
  email: ebrahimian@ut.ac.ir
  organization: Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
BookMark eNp9kEtLAzEURoNUsD5-gLsBN25mmjtJmgldSfFRKAo-cBmmmRtMmU7GZCr03xutKxddJYtzQr5zSkad75CQS6AFUJhO1kWIWJS0hAKgZCCOyBgqqXIqKR-RMaWM57wU8oScxrimFEQlYUxmi876sKkH57uswX74yLzNHhfPk5f3xXMWvWuzgLZFM9SdwSz26RZ8NL7fnZNjW7cRL_7OM_J2d_s6f8iXT_eL-c0yN0xUQy5B8JVQDVfcUlkzhcLKqRCUrVAKxcBYXqFB0yhmLbe4orZhjVG8lCtRSnZGrvfv9sF_bjEOeuOiwbatO_TbqEshQAk1hSqhV__Qtd-GLv0uUTCtKpWWJ0ruKZOWxDRPGzf8JhhC7VoNVP9E1WudouqfqHofNZnwz-yD29Rhd9CZ7R1Mjb4cBh2NwxSzcSHF1I13B-xvaeyPog
CitedBy_id crossref_primary_10_1016_j_geoderma_2025_117368
crossref_primary_10_1016_j_ecolind_2023_110792
crossref_primary_10_1029_2024JG008240
crossref_primary_10_1109_MGRS_2023_3315520
crossref_primary_10_3390_s25020453
crossref_primary_10_3390_s24216855
crossref_primary_10_1016_j_jhydrol_2023_130284
crossref_primary_10_1109_JSTARS_2024_3487645
crossref_primary_10_1007_s40808_023_01947_4
crossref_primary_10_1016_j_rse_2022_113443
crossref_primary_10_1007_s11104_025_07306_9
crossref_primary_10_1016_j_geoderma_2023_116366
crossref_primary_10_3390_rs14030714
crossref_primary_10_1111_ejss_13220
crossref_primary_10_1016_j_jhydrol_2022_128653
crossref_primary_10_1016_j_rsase_2025_101736
crossref_primary_10_1016_j_jag_2023_103250
crossref_primary_10_1016_j_jfca_2022_104868
crossref_primary_10_1029_2024WR038149
crossref_primary_10_3390_rs16101660
crossref_primary_10_1016_j_microc_2024_111666
crossref_primary_10_1016_j_still_2023_105947
crossref_primary_10_1139_cgj_2024_0656
crossref_primary_10_1002_adma_202419678
crossref_primary_10_3390_s24041153
crossref_primary_10_1016_j_geoderma_2023_116605
Cites_doi 10.2136/sssaj1981.03615995004500060004x
10.1021/jf00093a069
10.1029/JB095iB08p12653
10.1007/s11806-009-0160-x
10.2136/sssaj2002.7220
10.1104/pp.61.4.597
10.2136/sssaj2016.06.0188
10.1016/j.rse.2018.03.028
10.1017/S0043174500081376
10.1016/0034-4257(91)90087-M
10.1016/j.rse.2013.08.018
10.1109/TGRS.2003.812908
10.1080/0143116031000139944
10.1134/S106422931705012X
10.1021/es990910k
10.1287/ijoc.1060.0175
10.2136/sssaj2014.09.0355
10.1109/TGRS.2018.2810815
10.1111/j.1365-2389.2005.00787.x
10.1111/j.1365-2389.2005.00688.x
10.2136/vzj2017.05.0111
10.1109/TGRS.2004.828190
10.2136/vzj2014.07.0080
10.1016/S0065-2113(02)75005-0
10.1364/AO.18.001368
10.1007/s40828-019-0097-0
10.1016/j.rse.2003.11.009
10.1016/j.rse.2015.04.007
10.1111/j.1365-3040.1985.tb01683.x
10.2136/sssaj2017.02.0066
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Apr 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Apr 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2021.112315
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2021_112315
S003442572100033X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-7154b59d494f07a39e5f765503be75931cf48ececd93ff4feb0fd3dc9427b5273
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626631400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Sep 28 02:52:57 EDT 2025
Wed Aug 13 02:57:33 EDT 2025
Tue Nov 18 22:32:40 EST 2025
Sat Nov 29 07:28:56 EST 2025
Fri Feb 23 02:44:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle size distribution
Information depth
Soil reflectance spectrum
Optical remote sensing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-7154b59d494f07a39e5f765503be75931cf48ececd93ff4feb0fd3dc9427b5273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2516889001
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2551959618
proquest_journals_2516889001
crossref_citationtrail_10_1016_j_rse_2021_112315
crossref_primary_10_1016_j_rse_2021_112315
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112315
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Kubelka, Munk (bb0115) 1931; 12
Lobell, Asner (bb0125) 2002; 66
Ben-Dor (bb0040) 2002; 75
Tian, Philpot (bb0170) 2018; 56
Mulder, de Bruin, Weyermann, Kokaly, Schaepman (bb0130) 2013; 139
Ugray, Lasdon, Plummer, Glover, Kelly, Martí (bb0175) 2007; 19
Sadeghi, Jones, Philpot (bb0150) 2015; 164
Yuan, Wang, Yan, Chen, Wang, Zhang, Zhang (bb0190) 2020; 8
Benvenuti (bb0045) 1995; 43
Bliss, Smith (bb0050) 1985; 8
He, Wang, Lin, Cheng (bb0075) 2009; 12
Hebert, Miller (bb0080) 1990; 38
Jennings, Pinnick, Gillespie (bb0100) 1979; 18
Ingleby, Crowe (bb0090) 1999; 41
Woolley, Stoller (bb0185) 1978; 61
Clark, King, Klejwa, Swayze, Vergo (bb0060) 1990; 95
Baranoski, Kimmel, Varsa, Iwanchyshyn (bb0035) 2019
Leue, Eckhardt, Gerke, Ellerbrock, Leinweber (bb0120) 2017; 16
Sadeghi, Babaeian, Ebtehaj, Jones, Tuller (bb0160) 2018
Ishida, Ando, Fukuhara (bb0095) 1991; 38
Daniel, Tripathi, Honda, Apisit (bb0065) 2004; 25
Zeng, Xu, Huang, Wu, Tuller (bb0195) 2016; 80
de la Osa, Iparragirre, Ortiz, Saiz (bb0140) 2020; 6
Stokes (bb0165) 1862; vol. 11
Whiting, Li, Ustin (bb0180) 2004; 89
Babaeian, Homaee, Montzka, Vereecken, Norouzi (bb0010) 2015; 14
Balmer, Goss, Schwarzenbach (bb0020) 2000; 34
Ciani, Goss, Schwarzenbach (bb0055) 2005; 56
Sadeghi, Babaeian, Tuller, Jones (bb0155) 2018; 210
Babaeian, Homaee, Vereecken, Montzka, Norouzi, van Genuchten (bb0015) 2015; 79
Bänninger, Flühler (bb0025) 2004; 42
Kortüm (bb0105) 2012
Arya, Paris (bb0005) 1981; 45
Kruse, Boardman, Huntington (bb0110) 2003; 41
Omran (bb0135) 2017; 50
Hermansen, Knadel, Moldrup, Greve, Karup, de Jonge (bb0085) 2017; 81
Philips-Invernizzi, Dupont, Caze (bb0145) 2001; 40
Bänninger, Lehmann, Flühler (bb0030) 2006; 57
Haardt, Nielsen (bb0070) 1980; 3
Clark (10.1016/j.rse.2021.112315_bb0060) 1990; 95
Ben-Dor (10.1016/j.rse.2021.112315_bb0040) 2002; 75
Arya (10.1016/j.rse.2021.112315_bb0005) 1981; 45
Babaeian (10.1016/j.rse.2021.112315_bb0010) 2015; 14
Mulder (10.1016/j.rse.2021.112315_bb0130) 2013; 139
Omran (10.1016/j.rse.2021.112315_bb0135) 2017; 50
Sadeghi (10.1016/j.rse.2021.112315_bb0155) 2018; 210
Ingleby (10.1016/j.rse.2021.112315_bb0090) 1999; 41
Ugray (10.1016/j.rse.2021.112315_bb0175) 2007; 19
Philips-Invernizzi (10.1016/j.rse.2021.112315_bb0145) 2001; 40
Hermansen (10.1016/j.rse.2021.112315_bb0085) 2017; 81
Whiting (10.1016/j.rse.2021.112315_bb0180) 2004; 89
Bänninger (10.1016/j.rse.2021.112315_bb0025) 2004; 42
Ishida (10.1016/j.rse.2021.112315_bb0095) 1991; 38
Leue (10.1016/j.rse.2021.112315_bb0120) 2017; 16
Tian (10.1016/j.rse.2021.112315_bb0170) 2018; 56
Baranoski (10.1016/j.rse.2021.112315_bb0035) 2019
Kruse (10.1016/j.rse.2021.112315_bb0110) 2003; 41
Yuan (10.1016/j.rse.2021.112315_bb0190) 2020; 8
Ciani (10.1016/j.rse.2021.112315_bb0055) 2005; 56
Bliss (10.1016/j.rse.2021.112315_bb0050) 1985; 8
Haardt (10.1016/j.rse.2021.112315_bb0070) 1980; 3
Benvenuti (10.1016/j.rse.2021.112315_bb0045) 1995; 43
Balmer (10.1016/j.rse.2021.112315_bb0020) 2000; 34
Sadeghi (10.1016/j.rse.2021.112315_bb0160) 2018
Jennings (10.1016/j.rse.2021.112315_bb0100) 1979; 18
Lobell (10.1016/j.rse.2021.112315_bb0125) 2002; 66
Stokes (10.1016/j.rse.2021.112315_bb0165) 1862; vol. 11
Sadeghi (10.1016/j.rse.2021.112315_bb0150) 2015; 164
Babaeian (10.1016/j.rse.2021.112315_bb0015) 2015; 79
Bänninger (10.1016/j.rse.2021.112315_bb0030) 2006; 57
He (10.1016/j.rse.2021.112315_bb0075) 2009; 12
Woolley (10.1016/j.rse.2021.112315_bb0185) 1978; 61
Kubelka (10.1016/j.rse.2021.112315_bb0115) 1931; 12
Hebert (10.1016/j.rse.2021.112315_bb0080) 1990; 38
de la Osa (10.1016/j.rse.2021.112315_bb0140) 2020; 6
Daniel (10.1016/j.rse.2021.112315_bb0065) 2004; 25
Zeng (10.1016/j.rse.2021.112315_bb0195) 2016; 80
Kortüm (10.1016/j.rse.2021.112315_bb0105) 2012
References_xml – volume: 66
  start-page: 722
  year: 2002
  end-page: 727
  ident: bb0125
  article-title: Moisture effects on soil reflectance
  publication-title: Soil Sci. Soc. Am. J.
– volume: 57
  start-page: 906
  year: 2006
  end-page: 915
  ident: bb0030
  article-title: Modelling the effect of particle size, shape and orientation of light transfer through porous media
  publication-title: Eur. J. Soil Sci.
– volume: 18
  start-page: 1368
  year: 1979
  end-page: 1371
  ident: bb0100
  article-title: Relation between absorption coefficient and imaginary index of atmospheric aerosol constituents
  publication-title: Appl. Opt.
– year: 2012
  ident: bb0105
  article-title: Reflectance Spectroscopy: Principles, Methods, Applications
– volume: 50
  start-page: 597
  year: 2017
  end-page: 612
  ident: bb0135
  article-title: Rapid prediction of soil mineralogy using imaging spectroscopy
  publication-title: Eurasian Soil Sci.
– volume: 6
  start-page: 2
  year: 2020
  ident: bb0140
  article-title: The extended Kubelka–Munk theory and its application to spectroscopy
  publication-title: ChemTexts
– volume: 75
  start-page: 173
  year: 2002
  end-page: 244
  ident: bb0040
  article-title: Quantitative remote sensing of soil properties
  publication-title: Adv. Agron.
– volume: 95
  start-page: 12653
  year: 1990
  end-page: 12680
  ident: bb0060
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res. Solid Earth
– start-page: 6933
  year: 2019
  end-page: 6936
  ident: bb0035
  article-title: On the light penetration in Natural Sands
  publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium
– volume: 45
  start-page: 1023
  year: 1981
  end-page: 1030
  ident: bb0005
  article-title: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data 1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 42
  start-page: 1462
  year: 2004
  end-page: 1471
  ident: bb0025
  article-title: Modeling light scattering at soil surfaces
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 41
  start-page: 73
  year: 1999
  end-page: 80
  ident: bb0090
  article-title: Spectral reflectance measurements for organic matter sensing in Saskatchewan soils
  publication-title: Can. Agric. Eng.
– year: 2018
  ident: bb0160
  article-title: Remote sensing of environmental variables and fluxes
  publication-title: Handbook of Environmental Engineering
– volume: 8
  start-page: 475
  year: 1985
  end-page: 483
  ident: bb0050
  article-title: Penetration of light into soil and its role in the control of seed germination
  publication-title: Plant Cell Environ.
– volume: 3
  start-page: 333
  year: 1980
  end-page: 338
  ident: bb0070
  article-title: Attenuation measurements of monochromatic light in marine-sediments
  publication-title: Oceanol. Acta
– volume: 164
  start-page: 66
  year: 2015
  end-page: 76
  ident: bb0150
  article-title: A linear physically-based model for remote sensing of soil moisture using short wave infrared bands
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 1082
  year: 2001
  end-page: 1092
  ident: bb0145
  article-title: Bibliographical review for reflectance of diffusing media
  publication-title: OptEn
– volume: 210
  start-page: 375
  year: 2018
  end-page: 386
  ident: bb0155
  article-title: Particle size effects on soil reflectance explained by an analytical radiative transfer model
  publication-title: Remote Sens. Environ.
– volume: 80
  start-page: 1496
  year: 2016
  end-page: 1506
  ident: bb0195
  article-title: Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 41
  start-page: 1388
  year: 2003
  end-page: 1400
  ident: bb0110
  article-title: Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 139
  start-page: 415
  year: 2013
  end-page: 429
  ident: bb0130
  article-title: Characterizing regional soil mineral composition using spectroscopy and geostatistics
  publication-title: Remote Sens. Environ.
– volume: vol. 11
  start-page: 545
  year: 1862
  end-page: 556
  ident: bb0165
  article-title: IV. On the intensity of the light reflected from or transmitted through a pile of plates
  publication-title: Proceedings of the Royal Society of London
– volume: 61
  start-page: 597
  year: 1978
  end-page: 600
  ident: bb0185
  article-title: Light penetration and light-induced seed germination in soil
  publication-title: Plant Physiol.
– volume: 81
  start-page: 758
  year: 2017
  end-page: 769
  ident: bb0085
  article-title: Complete soil texture is accurately predicted by visible near-infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 89
  start-page: 535
  year: 2004
  end-page: 552
  ident: bb0180
  article-title: Predicting water content using Gaussian model on soil spectra
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 1240
  year: 2000
  end-page: 1245
  ident: bb0020
  article-title: Photolytic transformation of organic pollutants on soil surfaces an experimental approach
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 173
  year: 1991
  end-page: 182
  ident: bb0095
  article-title: Estimation of complex refractive index of soil particles and its dependence on soil chemical properties
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 33
  year: 2009
  end-page: 40
  ident: bb0075
  article-title: Spectral features of soil organic matter
  publication-title: Geo-spatial Inf. Sci.
– volume: 56
  start-page: 4307
  year: 2018
  end-page: 4317
  ident: bb0170
  article-title: Spectral transmittance of a translucent sand sample with directional illumination
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 19
  start-page: 328
  year: 2007
  end-page: 340
  ident: bb0175
  article-title: Scatter search and local NLP solvers: a multistart framework for global optimization
  publication-title: INFORMS J. Comput.
– volume: 8
  start-page: 176286
  year: 2020
  end-page: 176293
  ident: bb0190
  article-title: Wavelength Selection for Estimating Soil Organic Matter Contents Through the Radiative Transfer Model
– volume: 56
  start-page: 561
  year: 2005
  end-page: 574
  ident: bb0055
  article-title: Light penetration in soil and particulate minerals
  publication-title: Eur. J. Soil Sci.
– volume: 14
  year: 2015
  ident: bb0010
  article-title: Towards retrieving soil hydraulic properties by hyperspectral remote sensing
  publication-title: Vadose Zone J.
– volume: 16
  year: 2017
  ident: bb0120
  article-title: Spatial distribution of organic matter compounds at intact macropore surfaces predicted by DRIFT spectroscopy
  publication-title: Vadose Zone J.
– volume: 79
  start-page: 1043
  year: 2015
  end-page: 1058
  ident: bb0015
  article-title: A comparative study of multiple approaches for predicting the soil–water retention curve: Hyperspectral information vs. basic soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 25
  start-page: 643
  year: 2004
  end-page: 652
  ident: bb0065
  article-title: Analysis of VNIR (400–1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand
  publication-title: Int. J. Remote Sens.
– volume: 12
  start-page: 593
  year: 1931
  end-page: 601
  ident: bb0115
  article-title: Ein Beitrag zur Optik der Farbanstriche (contribution to the optic of paint)
  publication-title: Z. Tech. Phys.
– volume: 38
  start-page: 913
  year: 1990
  end-page: 918
  ident: bb0080
  article-title: Depth dependence of direct and indirect photolysis on soil surfaces
  publication-title: J. Agric. Food Chem.
– volume: 43
  start-page: 389
  year: 1995
  end-page: 393
  ident: bb0045
  article-title: Soil light penetration and dormancy of jimsonweed (
  publication-title: Weed Sci.
– volume: vol. 11
  start-page: 545
  year: 1862
  ident: 10.1016/j.rse.2021.112315_bb0165
  article-title: IV. On the intensity of the light reflected from or transmitted through a pile of plates
– volume: 45
  start-page: 1023
  issue: 6
  year: 1981
  ident: 10.1016/j.rse.2021.112315_bb0005
  article-title: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500060004x
– volume: 38
  start-page: 913
  issue: 3
  year: 1990
  ident: 10.1016/j.rse.2021.112315_bb0080
  article-title: Depth dependence of direct and indirect photolysis on soil surfaces
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00093a069
– volume: 95
  start-page: 12653
  issue: B8
  year: 1990
  ident: 10.1016/j.rse.2021.112315_bb0060
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB095iB08p12653
– volume: 12
  start-page: 33
  issue: 1
  year: 2009
  ident: 10.1016/j.rse.2021.112315_bb0075
  article-title: Spectral features of soil organic matter
  publication-title: Geo-spatial Inf. Sci.
  doi: 10.1007/s11806-009-0160-x
– volume: 66
  start-page: 722
  issue: 3
  year: 2002
  ident: 10.1016/j.rse.2021.112315_bb0125
  article-title: Moisture effects on soil reflectance
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.7220
– volume: 8
  start-page: 176286
  year: 2020
  ident: 10.1016/j.rse.2021.112315_bb0190
– volume: 61
  start-page: 597
  issue: 4
  year: 1978
  ident: 10.1016/j.rse.2021.112315_bb0185
  article-title: Light penetration and light-induced seed germination in soil
  publication-title: Plant Physiol.
  doi: 10.1104/pp.61.4.597
– volume: 80
  start-page: 1496
  issue: 6
  year: 2016
  ident: 10.1016/j.rse.2021.112315_bb0195
  article-title: Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.06.0188
– volume: 210
  start-page: 375
  year: 2018
  ident: 10.1016/j.rse.2021.112315_bb0155
  article-title: Particle size effects on soil reflectance explained by an analytical radiative transfer model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.028
– volume: 43
  start-page: 389
  issue: 3
  year: 1995
  ident: 10.1016/j.rse.2021.112315_bb0045
  article-title: Soil light penetration and dormancy of jimsonweed (Datura stramonium) seeds
  publication-title: Weed Sci.
  doi: 10.1017/S0043174500081376
– volume: 38
  start-page: 173
  issue: 3
  year: 1991
  ident: 10.1016/j.rse.2021.112315_bb0095
  article-title: Estimation of complex refractive index of soil particles and its dependence on soil chemical properties
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90087-M
– volume: 139
  start-page: 415
  year: 2013
  ident: 10.1016/j.rse.2021.112315_bb0130
  article-title: Characterizing regional soil mineral composition using spectroscopy and geostatistics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.018
– volume: 41
  start-page: 1388
  issue: 6
  year: 2003
  ident: 10.1016/j.rse.2021.112315_bb0110
  article-title: Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.812908
– volume: 25
  start-page: 643
  issue: 3
  year: 2004
  ident: 10.1016/j.rse.2021.112315_bb0065
  article-title: Analysis of VNIR (400–1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000139944
– volume: 50
  start-page: 597
  issue: 5
  year: 2017
  ident: 10.1016/j.rse.2021.112315_bb0135
  article-title: Rapid prediction of soil mineralogy using imaging spectroscopy
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S106422931705012X
– volume: 41
  start-page: 73
  issue: 2
  year: 1999
  ident: 10.1016/j.rse.2021.112315_bb0090
  article-title: Spectral reflectance measurements for organic matter sensing in Saskatchewan soils
  publication-title: Can. Agric. Eng.
– year: 2012
  ident: 10.1016/j.rse.2021.112315_bb0105
– volume: 34
  start-page: 1240
  issue: 7
  year: 2000
  ident: 10.1016/j.rse.2021.112315_bb0020
  article-title: Photolytic transformation of organic pollutants on soil surfaces an experimental approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990910k
– volume: 19
  start-page: 328
  issue: 3
  year: 2007
  ident: 10.1016/j.rse.2021.112315_bb0175
  article-title: Scatter search and local NLP solvers: a multistart framework for global optimization
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0175
– volume: 79
  start-page: 1043
  issue: 4
  year: 2015
  ident: 10.1016/j.rse.2021.112315_bb0015
  article-title: A comparative study of multiple approaches for predicting the soil–water retention curve: Hyperspectral information vs. basic soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.09.0355
– volume: 56
  start-page: 4307
  issue: 8
  year: 2018
  ident: 10.1016/j.rse.2021.112315_bb0170
  article-title: Spectral transmittance of a translucent sand sample with directional illumination
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2810815
– volume: 57
  start-page: 906
  issue: 6
  year: 2006
  ident: 10.1016/j.rse.2021.112315_bb0030
  article-title: Modelling the effect of particle size, shape and orientation of light transfer through porous media
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2005.00787.x
– volume: 56
  start-page: 561
  issue: 5
  year: 2005
  ident: 10.1016/j.rse.2021.112315_bb0055
  article-title: Light penetration in soil and particulate minerals
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2005.00688.x
– volume: 16
  issue: 9
  year: 2017
  ident: 10.1016/j.rse.2021.112315_bb0120
  article-title: Spatial distribution of organic matter compounds at intact macropore surfaces predicted by DRIFT spectroscopy
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2017.05.0111
– volume: 42
  start-page: 1462
  issue: 7
  year: 2004
  ident: 10.1016/j.rse.2021.112315_bb0025
  article-title: Modeling light scattering at soil surfaces
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.828190
– volume: 12
  start-page: 593
  year: 1931
  ident: 10.1016/j.rse.2021.112315_bb0115
  article-title: Ein Beitrag zur Optik der Farbanstriche (contribution to the optic of paint)
  publication-title: Z. Tech. Phys.
– volume: 14
  issue: 3
  year: 2015
  ident: 10.1016/j.rse.2021.112315_bb0010
  article-title: Towards retrieving soil hydraulic properties by hyperspectral remote sensing
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2014.07.0080
– year: 2018
  ident: 10.1016/j.rse.2021.112315_bb0160
  article-title: Remote sensing of environmental variables and fluxes
– volume: 75
  start-page: 173
  year: 2002
  ident: 10.1016/j.rse.2021.112315_bb0040
  article-title: Quantitative remote sensing of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(02)75005-0
– volume: 18
  start-page: 1368
  issue: 9
  year: 1979
  ident: 10.1016/j.rse.2021.112315_bb0100
  article-title: Relation between absorption coefficient and imaginary index of atmospheric aerosol constituents
  publication-title: Appl. Opt.
  doi: 10.1364/AO.18.001368
– volume: 6
  start-page: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.rse.2021.112315_bb0140
  article-title: The extended Kubelka–Munk theory and its application to spectroscopy
  publication-title: ChemTexts
  doi: 10.1007/s40828-019-0097-0
– volume: 89
  start-page: 535
  issue: 4
  year: 2004
  ident: 10.1016/j.rse.2021.112315_bb0180
  article-title: Predicting water content using Gaussian model on soil spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.009
– volume: 3
  start-page: 333
  issue: 3
  year: 1980
  ident: 10.1016/j.rse.2021.112315_bb0070
  article-title: Attenuation measurements of monochromatic light in marine-sediments
  publication-title: Oceanol. Acta
– volume: 164
  start-page: 66
  year: 2015
  ident: 10.1016/j.rse.2021.112315_bb0150
  article-title: A linear physically-based model for remote sensing of soil moisture using short wave infrared bands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.007
– volume: 8
  start-page: 475
  issue: 7
  year: 1985
  ident: 10.1016/j.rse.2021.112315_bb0050
  article-title: Penetration of light into soil and its role in the control of seed germination
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1985.tb01683.x
– start-page: 6933
  year: 2019
  ident: 10.1016/j.rse.2021.112315_bb0035
  article-title: On the light penetration in Natural Sands
– volume: 40
  start-page: 1082
  year: 2001
  ident: 10.1016/j.rse.2021.112315_bb0145
  article-title: Bibliographical review for reflectance of diffusing media
  publication-title: OptEn
– volume: 81
  start-page: 758
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2021.112315_bb0085
  article-title: Complete soil texture is accurately predicted by visible near-infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.02.0066
SSID ssj0015871
Score 2.4940035
Snippet Proximal and remote sensing techniques in the optical domain are cost-effective alternatives to standard soil property characterization methods. However, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112315
SubjectTerms Clay soils
cost effectiveness
environment
Information depth
Light penetration
Light reflection
Mathematical models
Near infrared radiation
Optical properties
Optical remote sensing
Organic matter
Particle size
Particle size distribution
Reflectance
reflectance spectroscopy
Remote sensing
Remote sensing techniques
Sandy soils
Sensing techniques
Short wave radiation
Size distribution
Soil properties
Soil reflectance spectrum
Spectroscopy
Spectrum analysis
texture
Wavelengths
Title Information depth of NIR/SWIR soil reflectance spectroscopy
URI https://dx.doi.org/10.1016/j.rse.2021.112315
https://www.proquest.com/docview/2516889001
https://www.proquest.com/docview/2551959618
Volume 256
WOSCitedRecordID wos000626631400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdgA8EFQWGiMFCQODFlpIkT2-I0oTKK0ISqIXqz4tjeWo2kalo09tfz_JE0LdrEDlyiKHYsK79fnp-f3wdCb0FDloBtFMLaqEKstQrzKCtCxWLNpMjiWEhbbIKcnNDJhH3zpuzalhMgZUkvL9n8v0INzwBsEzp7C7jbQeEB3APocAXY4fpPwPsAI4urVPPluTUKjMbmzPTHaHxQV1OTy18be72NF7DBliapZTXfOOMdK4ARmo2Lu3ON7kTFtUbkalGtrqbeuOztwMZik0vlCgYfWH_eq1b8f53mZ-e5y3YgZHXxM581XvXGzaMJTTRBRJtGiXjQ8WXxgjbBoREHXUEbp11RCYpe4iI5_5LizqAwO1zUJpFpPDhc993MmL21krX-hY3r2ozDENwMwd0Qd9FuTFIG4m_3aDScfGkPnFJKXHFFP-_mANy6Am7N4zoVZmsxtxrK6WP0yG8tgiNHiSfojip7aG-4xgwavSive-jBsfLZynvo_rGt7_z7KfrQYU9g2RNUOgD2vDfcCQx3gg53gi53nqHvn4anHz-Hvr5GWCQpXYYE1GeRMokZ1hHJE6ZSTTLYsiZCwUdKBoXGVBWqkCzRGmslIi0TWTAcE2ES9-2hnbIq1XMUYAnKEBWRIJnAhQAhz0DvURTEfa50Jvsoaj4ZL3zyeVMD5YJfC1UfvWtfmbvMKzd1xg0O3KuOTiXkwKmbXttvMOP-F645aPwZpQxI0Udv2maQuuYoLS9VtTJ9bFambEBf3GaaL9HD9d-yj3aWi5V6he4Vv5bTevHac_IPb5ejkA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+depth+of+NIR%2FSWIR+soil+reflectance+spectroscopy&rft.jtitle=Remote+sensing+of+environment&rft.au=Norouzi%2C+Sarem&rft.au=Sadeghi%2C+Morteza&rft.au=Liaghat%2C+Abdolmajid&rft.au=Tuller%2C+Markus&rft.date=2021-04-01&rft.issn=0034-4257&rft.volume=256&rft.spage=112315&rft_id=info:doi/10.1016%2Fj.rse.2021.112315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2021_112315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon