SAR image segmentation based on quantum-inspired multiobjective evolutionary clustering algorithm

The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 114; H. 6; S. 287 - 293
Hauptverfasser: Li, Yangyang, Feng, Shixia, Zhang, Xiangrong, Jiao, Licheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.06.2014
Elsevier Sequoia S.A
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms. •The image segmentation based on the clustering can be formulated as an optimization problem.•We design a novel multiobjective optimization to solve the image segmentation.•The multi-state quantum bits are used to represent individuals.•A simple heuristic method is adopted to select a preferred solution from the final Pareto front.•Our proposed method is tested on one simulated SAR image and two real SAR images.
AbstractList The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms. [PUBLICATION ABSTRACT]
The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms. •The image segmentation based on the clustering can be formulated as an optimization problem.•We design a novel multiobjective optimization to solve the image segmentation.•The multi-state quantum bits are used to represent individuals.•A simple heuristic method is adopted to select a preferred solution from the final Pareto front.•Our proposed method is tested on one simulated SAR image and two real SAR images.
The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms.
Author Zhang, Xiangrong
Jiao, Licheng
Feng, Shixia
Li, Yangyang
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Li
  fullname: Li, Yangyang
– sequence: 2
  givenname: Shixia
  surname: Feng
  fullname: Feng, Shixia
– sequence: 3
  givenname: Xiangrong
  surname: Zhang
  fullname: Zhang, Xiangrong
– sequence: 4
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
BookMark eNp9kMFq3DAQQEVJoZu0H9CboZde7M5Ia8umpxCapBAotMlZaOXxVkaWNpK8kL-vlu0ph5w0iPeG4V2yCx88MfYZoUHA7tvc2INrOKBokDeA8I5tsJe87hCHC7YB4FADDvCBXaY0A0C3FXLD9J_r35Vd9J6qRPuFfNbZBl_tdKKxKsPzqn1el9r6dLCx_C2rK8RuJpPtkSo6BreeFB1fKuPWlClav6-024do89_lI3s_aZfo0__3ij3d_ni8ua8fft39vLl-qI1o-1xLmMx2BDHJHndtN5lJo9SchrGDUQozSRqoFSR20HIAORlDU99xFHxs5XYQV-zree8hhueVUlaLTYac057CmhS2AkGUDm1Bv7xC57BGX64rFMgeetn1hZJnysSQUqRJGXuuk6O2TiGoU3o1q5JendIr5KqkLya-Mg-xNI4vbzrfzw6VRkdLUSVjyRsaS3WT1RjsG_Y_C1GfmQ
CODEN IFPLAT
CitedBy_id crossref_primary_10_1007_s00500_022_06916_0
crossref_primary_10_1016_j_asoc_2016_01_055
crossref_primary_10_1016_j_jpowsour_2015_09_052
crossref_primary_10_1038_s41598_019_48409_5
crossref_primary_10_1007_s40998_019_00251_1
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_3103_S014641161603007X
crossref_primary_10_1016_j_asoc_2017_07_035
crossref_primary_10_1155_2019_3740586
crossref_primary_10_3390_math11092018
crossref_primary_10_1007_s11128_015_1195_6
crossref_primary_10_1109_MGRS_2020_3004508
crossref_primary_10_1109_TITS_2020_3025796
crossref_primary_10_1016_j_asoc_2018_06_030
crossref_primary_10_1016_j_measurement_2015_02_005
crossref_primary_10_1007_s10462_022_10280_8
crossref_primary_10_1155_2014_714657
crossref_primary_10_3233_JIFS_169102
crossref_primary_10_1155_2014_976202
crossref_primary_10_1016_j_jksuci_2021_12_023
Cites_doi 10.1002/asjc.160
10.1049/iet-cta.2008.0322
10.1109/TSMCB.2007.904544
10.1109/LGRS.2007.903065
10.1109/TSMC.1973.4309314
10.1109/TEVC.2006.877146
10.1109/TGRS.2008.918647
10.1109/TEVC.2002.804320
10.1016/j.ins.2011.02.025
10.1109/TGRS.2007.892604
10.1016/S0031-3203(99)00137-5
10.1109/LGRS.2007.903064
10.1109/4235.996017
10.1109/TSMCB.2008.927271
10.1109/TPAMI.2002.1114856
10.2307/2346830
10.1109/36.789624
10.1109/TNN.2011.2169426
10.1109/83.730380
10.1109/TSMCC.2008.919172
10.1109/LGRS.2010.2040800
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jun 2014
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jun 2014
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7U5
DOI 10.1016/j.ipl.2013.12.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
DatabaseTitleList Computer and Information Systems Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
EndPage 293
ExternalDocumentID 3248029091
10_1016_j_ipl_2013_12_010
S0020019013003190
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
7U5
ID FETCH-LOGICAL-c358t-70fc4d03f781b56fcfa17a2e9d60d73cf7e9e53e3b052007fccef862132d57493
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334485800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Thu Oct 02 19:18:57 EDT 2025
Sun Nov 09 07:05:52 EST 2025
Sat Nov 29 03:44:20 EST 2025
Tue Nov 18 22:09:45 EST 2025
Fri Feb 23 02:16:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Image segmentation
Multiobjective clustering
Quantum computing
Algorithms
SAR image
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-70fc4d03f781b56fcfa17a2e9d60d73cf7e9e53e3b052007fccef862132d57493
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1507808768
PQPubID 45522
PageCount 7
ParticipantIDs proquest_miscellaneous_1531030025
proquest_journals_1507808768
crossref_citationtrail_10_1016_j_ipl_2013_12_010
crossref_primary_10_1016_j_ipl_2013_12_010
elsevier_sciencedirect_doi_10_1016_j_ipl_2013_12_010
PublicationCentury 2000
PublicationDate June 2014
2014-06-00
20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information processing letters
PublicationYear 2014
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Jiao, Li, Gong (br0150) 2008; 38
Goh, Teoh, Tan (br0050) 2008; 9
Hartigan, Wong (br0010) 1979; 28
Awad, Chehdi (br0090) 2007; 4
Xia, He, Sun (br0100) 2007; 4
Zhang, Jiao, Liu (br0230) 2008; 46
Chen (br0030) 2009; 3
Bandyopadhyay, Maulik (br0210) 2007; 45
Chen, Li (br0020) 2008; 38
Saha, Bandyopadhyay (br0110) 2010; 7
Yang, Jiao, Gong (br0140) 2011; 181
Tatt, Isa (br0070) 2011; 22
Jin, Sendhoff (br0060) 2008; 38
Handl, Knowles (br0130) 2007; 11
Han, Kim (br0160) 2002; 6
Chen, Li (br0040) 2010; 12
Fukuda, Hirosawa (br0170) 1999; 37
Maulik, Bandyopadhyay (br0080) 2000; 33
Hasanzadeh, Kasaei (br0120) 2010; 7
Deb, Pratap, Agarwal (br0200) 2002; 6
Haralick, Shanmugan (br0180) 1973; 3
Haris, Efstratiadis, Maglaveras, Katsaggelos (br0190) 1998; 7
Maulik, Bandyopadhyay (br0220) 2002; 24
Maulik (10.1016/j.ipl.2013.12.010_br0080) 2000; 33
Handl (10.1016/j.ipl.2013.12.010_br0130) 2007; 11
Deb (10.1016/j.ipl.2013.12.010_br0200) 2002; 6
Chen (10.1016/j.ipl.2013.12.010_br0030) 2009; 3
Chen (10.1016/j.ipl.2013.12.010_br0040) 2010; 12
Saha (10.1016/j.ipl.2013.12.010_br0110) 2010; 7
Tatt (10.1016/j.ipl.2013.12.010_br0070) 2011; 22
Haralick (10.1016/j.ipl.2013.12.010_br0180) 1973; 3
Goh (10.1016/j.ipl.2013.12.010_br0050) 2008; 9
Jiao (10.1016/j.ipl.2013.12.010_br0150) 2008; 38
Chen (10.1016/j.ipl.2013.12.010_br0020) 2008; 38
Awad (10.1016/j.ipl.2013.12.010_br0090) 2007; 4
Han (10.1016/j.ipl.2013.12.010_br0160) 2002; 6
Bandyopadhyay (10.1016/j.ipl.2013.12.010_br0210) 2007; 45
Hasanzadeh (10.1016/j.ipl.2013.12.010_br0120) 2010; 7
Zhang (10.1016/j.ipl.2013.12.010_br0230) 2008; 46
Yang (10.1016/j.ipl.2013.12.010_br0140) 2011; 181
Fukuda (10.1016/j.ipl.2013.12.010_br0170) 1999; 37
Xia (10.1016/j.ipl.2013.12.010_br0100) 2007; 4
Hartigan (10.1016/j.ipl.2013.12.010_br0010) 1979; 28
Jin (10.1016/j.ipl.2013.12.010_br0060) 2008; 38
Haris (10.1016/j.ipl.2013.12.010_br0190) 1998; 7
Maulik (10.1016/j.ipl.2013.12.010_br0220) 2002; 24
References_xml – volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: br0180
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 24
  start-page: 1650
  year: 2002
  end-page: 1654
  ident: br0220
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  year: 2010
  ident: br0110
  article-title: Application of a multiseed-based clustering technique for automatic satellite image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 181
  start-page: 2797
  year: 2011
  end-page: 2812
  ident: br0140
  article-title: Artificial immune multi-objective SAR image segmentation with fused complementary features
  publication-title: Inf. Sci.
– volume: 38
  start-page: 258
  year: 2008
  end-page: 266
  ident: br0020
  article-title: Decentralized output-feedback neural control for systems with unknown interconnections
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 12
  start-page: 96
  year: 2010
  end-page: 102
  ident: br0040
  article-title: Globally decentralized adaptive backstepping neural network tracking control for unknown nonlinear interconnected systems
  publication-title: Asian J. Control
– volume: 4
  year: 2007
  ident: br0090
  article-title: Multicomponent image segmentation using a genetic algorithm and artificial natural network
  publication-title: IEEE Trans. Geosci. Remote Sens. Lett.
– volume: 37
  start-page: 2282
  year: 1999
  end-page: 2286
  ident: br0170
  article-title: A wavelet-based texture set applied to classification of multifrequency polarimetric SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: br0080
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
– volume: 4
  year: 2007
  ident: br0100
  article-title: A rapid and automatic MRF-based clustering method for SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 22
  start-page: 1823
  year: 2011
  end-page: 1836
  ident: br0070
  article-title: Adaptive evolutionary artificial neural networks for pattern classification
  publication-title: IEEE Trans. Neural Netw.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: br0200
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 580
  year: 2002
  end-page: 593
  ident: br0160
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 56
  year: 2007
  end-page: 76
  ident: br0130
  article-title: An evolutionary approach to multiobjective clustering
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 1383
  year: 2009
  end-page: 1394
  ident: br0030
  article-title: Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks
  publication-title: IET Control Theory Appl.
– volume: 7
  year: 2010
  ident: br0120
  article-title: A multispectral image segmentation method using size-weighted fuzzy clustering and membership connectedness
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 46
  start-page: 2126
  year: 2008
  end-page: 2136
  ident: br0230
  article-title: Spectral clustering ensemble applied to texture features for SAR image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: br0010
  article-title: A k-means clustering algorithm
  publication-title: Appl. Stat.
– volume: 38
  start-page: 1234
  year: 2008
  end-page: 1253
  ident: br0150
  article-title: Quantum-inspired immune clonal algorithm for global optimization
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 7
  start-page: 1684
  year: 1998
  end-page: 1699
  ident: br0190
  article-title: Hybrid image segmentation using watersheds and fast region merging
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 1531
  year: 2008
  end-page: 1548
  ident: br0050
  article-title: Hybrid multiobjective evolutionary design for artificial neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 45
  start-page: 1506
  year: 2007
  end-page: 1511
  ident: br0210
  article-title: Multiobjective genetic clustering for pixel classification in remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 397
  year: 2008
  end-page: 415
  ident: br0060
  article-title: Pareto-based multiobjective machine learning: an overview and case studies
  publication-title: IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev.
– volume: 12
  start-page: 96
  issue: 1
  year: 2010
  ident: 10.1016/j.ipl.2013.12.010_br0040
  article-title: Globally decentralized adaptive backstepping neural network tracking control for unknown nonlinear interconnected systems
  publication-title: Asian J. Control
  doi: 10.1002/asjc.160
– volume: 3
  start-page: 1383
  issue: 10
  year: 2009
  ident: 10.1016/j.ipl.2013.12.010_br0030
  article-title: Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2008.0322
– volume: 38
  start-page: 258
  issue: 1
  year: 2008
  ident: 10.1016/j.ipl.2013.12.010_br0020
  article-title: Decentralized output-feedback neural control for systems with unknown interconnections
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
  doi: 10.1109/TSMCB.2007.904544
– volume: 4
  issue: 4
  year: 2007
  ident: 10.1016/j.ipl.2013.12.010_br0100
  article-title: A rapid and automatic MRF-based clustering method for SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2007.903065
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.ipl.2013.12.010_br0180
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 11
  start-page: 56
  issue: 1
  year: 2007
  ident: 10.1016/j.ipl.2013.12.010_br0130
  article-title: An evolutionary approach to multiobjective clustering
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.877146
– volume: 9
  start-page: 1531
  year: 2008
  ident: 10.1016/j.ipl.2013.12.010_br0050
  article-title: Hybrid multiobjective evolutionary design for artificial neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 7
  issue: 2
  year: 2010
  ident: 10.1016/j.ipl.2013.12.010_br0110
  article-title: Application of a multiseed-based clustering technique for automatic satellite image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 46
  start-page: 2126
  issue: 7
  year: 2008
  ident: 10.1016/j.ipl.2013.12.010_br0230
  article-title: Spectral clustering ensemble applied to texture features for SAR image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.918647
– volume: 6
  start-page: 580
  issue: 6
  year: 2002
  ident: 10.1016/j.ipl.2013.12.010_br0160
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.804320
– volume: 181
  start-page: 2797
  issue: 13
  year: 2011
  ident: 10.1016/j.ipl.2013.12.010_br0140
  article-title: Artificial immune multi-objective SAR image segmentation with fused complementary features
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.02.025
– volume: 45
  start-page: 1506
  issue: 5
  year: 2007
  ident: 10.1016/j.ipl.2013.12.010_br0210
  article-title: Multiobjective genetic clustering for pixel classification in remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.892604
– volume: 33
  start-page: 1455
  issue: 9
  year: 2000
  ident: 10.1016/j.ipl.2013.12.010_br0080
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 4
  issue: 4
  year: 2007
  ident: 10.1016/j.ipl.2013.12.010_br0090
  article-title: Multicomponent image segmentation using a genetic algorithm and artificial natural network
  publication-title: IEEE Trans. Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2007.903064
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ipl.2013.12.010_br0200
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 38
  start-page: 1234
  issue: 5
  year: 2008
  ident: 10.1016/j.ipl.2013.12.010_br0150
  article-title: Quantum-inspired immune clonal algorithm for global optimization
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
  doi: 10.1109/TSMCB.2008.927271
– volume: 24
  start-page: 1650
  issue: 12
  year: 2002
  ident: 10.1016/j.ipl.2013.12.010_br0220
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1114856
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.ipl.2013.12.010_br0010
  article-title: A k-means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 37
  start-page: 2282
  issue: 5
  year: 1999
  ident: 10.1016/j.ipl.2013.12.010_br0170
  article-title: A wavelet-based texture set applied to classification of multifrequency polarimetric SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.789624
– volume: 22
  start-page: 1823
  issue: 11
  year: 2011
  ident: 10.1016/j.ipl.2013.12.010_br0070
  article-title: Adaptive evolutionary artificial neural networks for pattern classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2169426
– volume: 7
  start-page: 1684
  issue: 12
  year: 1998
  ident: 10.1016/j.ipl.2013.12.010_br0190
  article-title: Hybrid image segmentation using watersheds and fast region merging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.730380
– volume: 38
  start-page: 397
  issue: 3
  year: 2008
  ident: 10.1016/j.ipl.2013.12.010_br0060
  article-title: Pareto-based multiobjective machine learning: an overview and case studies
  publication-title: IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev.
  doi: 10.1109/TSMCC.2008.919172
– volume: 7
  issue: 3
  year: 2010
  ident: 10.1016/j.ipl.2013.12.010_br0120
  article-title: A multispectral image segmentation method using size-weighted fuzzy clustering and membership connectedness
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2040800
SSID ssj0006437
Score 2.1911876
Snippet The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 287
SubjectTerms Algorithms
Clustering
Computer science
Evolutionary
Evolutionary algorithms
Heuristic
Image processing systems
Image segmentation
Mathematical models
Mathematical problems
Multiobjective clustering
Optimization algorithms
Quantum computing
SAR image
Simulation
Studies
Synthetic aperture radar
Title SAR image segmentation based on quantum-inspired multiobjective evolutionary clustering algorithm
URI https://dx.doi.org/10.1016/j.ipl.2013.12.010
https://www.proquest.com/docview/1507808768
https://www.proquest.com/docview/1531030025
Volume 114
WOSCitedRecordID wos000334485800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELbKLg-8cCMKCzIS4oEqKLeTxwp1BauqIOhK5clyHaebKk2ybVOVX8DfZnwkPRCr5QFFiiLHOeT5PDOew4PQ25D7Pg9dARMp8CzfmzKLgSS3eAi6bOwCDCKuik2Q0SiaTOKvnc6vJhdmk5OiiLbbuPqvpIY2ILZMnf0HcrcvhQa4BqLDGcgO51sR_nv_Wy9byFCclZgtTGpR0ZPiKpGugesaBrNeWFkhnezQpmIKy-lcs76e2Jjfk_F0PK_lTgoqkzGflctsfbXY12dNNpP6QqVzDmTfXCUJter6UIUM_GDF7CczklJpn8ZUfZVts1Y6tBbsCQB3tix3_S8yVmozAgDNNBt7hePv4qra_AEZCqeLhLY8WGeSGrAdcFQjj7VwdnU5xT_4vjZBzD9klXQnOZ4y8Zp42YM9tkdf6PnlcEjHg8n4XXVtyfJj0k1varHcQacuCWLg8Kf9z4PJRSvUpX9TRwvpn28c5CpU8Oirf1NxjoS90mDGD9F9s_TAfQ2ZR6gjisfoQVPWAxsu_wQxQBBWCML7CMIKQRgujhGEDxGE9xGEdwjCLYKeosvzwfjjJ8tU4rC4F0Rri9gp9xPbSwmscoIw5SlzCHNFnIR2QjyeEhGLwBPeVG3jRVLORQprZcdzk4D4sfcMnRRlIZ4jDJMfDhnQagvfZmkUJRELmUscV8Db3C6ym8Gj3GxTL6ul5LSJR5xTGG8qx5s6LoXx7qL37SOV3qPlps5-QxFqlEytPFLA0k2PnTXUo2ayr6hcTEVyT8eoi960t4E_S6cbK0RZyz6qkh8sLV7cos9LdG83Z87QyXpZi1foLt-ss9XytQHlb4K5trk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR+image+segmentation+based+on+quantum-inspired+multiobjective+evolutionary+clustering+algorithm&rft.jtitle=Information+processing+letters&rft.au=Li%2C+Yangyang&rft.au=Feng%2C+Shixia&rft.au=Zhang%2C+Xiangrong&rft.au=Jiao%2C+Licheng&rft.date=2014-06-01&rft.issn=0020-0190&rft.volume=114&rft.issue=6&rft.spage=287&rft.epage=293&rft_id=info:doi/10.1016%2Fj.ipl.2013.12.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon