Fully polynomial time (Σ,Π)-approximation schemes for continuous nonlinear newsvendor and continuous stochastic dynamic programs

We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas such as supply chain management and economics. The class is characterized by continuous state and action spaces, either convex or monotone co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 195; H. 1-2; S. 183 - 242
Hauptverfasser: Halman, Nir, Nannicini, Giacomo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas such as supply chain management and economics. The class is characterized by continuous state and action spaces, either convex or monotone cost functions that are accessed via value oracles, and affine transition functions. We establish that these problems cannot be approximated to any degree of either relative or additive error, regardless of the scheme used. To circumvent these hardness results, we generalize the concept of fully polynomial-time approximation scheme allowing arbitrarily small additive and multiplicative error at the same time, while requiring a polynomial running time in the input size and the error parameters. We develop approximation schemes of this type for the classes of problems mentioned above. In light of our hardness results, such approximation schemes are “best possible”. A computational evaluation shows the promise of this approach.
AbstractList We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas such as supply chain management and economics. The class is characterized by continuous state and action spaces, either convex or monotone cost functions that are accessed via value oracles, and affine transition functions. We establish that these problems cannot be approximated to any degree of either relative or additive error, regardless of the scheme used. To circumvent these hardness results, we generalize the concept of fully polynomial-time approximation scheme allowing arbitrarily small additive and multiplicative error at the same time, while requiring a polynomial running time in the input size and the error parameters. We develop approximation schemes of this type for the classes of problems mentioned above. In light of our hardness results, such approximation schemes are “best possible”. A computational evaluation shows the promise of this approach.
Audience Academic
Author Nannicini, Giacomo
Halman, Nir
Author_xml – sequence: 1
  givenname: Nir
  orcidid: 0000-0002-6098-9792
  surname: Halman
  fullname: Halman, Nir
  email: halman@biu.ac.il
  organization: Bar-Ilan University
– sequence: 2
  givenname: Giacomo
  orcidid: 0000-0002-4936-1259
  surname: Nannicini
  fullname: Nannicini, Giacomo
  organization: IBM Quantum, IBM T. J. Watson Research Center
BookMark eNp9kd9qFTEQxoNU8PTPC3gV8EbBtJNNNpu9LMWqUPDGXoc0yZ6m7CbHZFd7bn0SwffpMzl2BcWLMhcDme83M5nvkByknAIhLzmccoDurHLg0DFoOAOudMvkM7LhUigmlVQHZAPQtKxVHF6Qw1rvAIALrTfk--Uyjnu6y-M-5Snakc5xCvT1w8-3Dz_eMLvblXwfJzvHnGh1t2EKlQ65UJfTHNOSl0pxlzGmYAtN4Vv9GpLHuk3-X02ds7u1dY6O-n2yE2bsvC12qsfk-WDHGk7-5CNyffnu88UHdvXp_ceL8yvmRKtnprwOfed70SkQwXmrpXDO94Poes29VQA3vPXOST84p_sgQfmbfugBNLIgjsirtS8O_rKEOpu7vJSEI03TYXANUqHqdFVt7RhMTEOei3UYPuDSePUh4vt514gORC9bBPQKuJJrLWEwLs6P90IwjoaD-W2RWS0yaJF5tMhIRJv_0F3BW5f905BYoYritA3l7zeeoH4BMBKqRg
CitedBy_id crossref_primary_10_1287_ijoc_2023_0126
Cites_doi 10.1287/opre.1120.1093
10.1002/(SICI)1520-6750(199802)45:1<67::AID-NAV4>3.0.CO;2-J
10.1145/990308.990310
10.2307/1909322
10.1016/j.ejor.2010.11.024
10.1016/0885-064X(92)90013-2
10.1007/BF01582895
10.1137/18M1208423
10.1109/TNN.2010.2076370
10.1016/S1574-0021(96)01016-7
10.1287/moor.26.2.339.10552
10.1016/S0305-0483(99)00017-1
10.1109/SFCS.1982.61
10.1137/100789269
10.1016/j.tcs.2007.03.006
10.1007/s101070100263
10.1016/j.jco.2016.11.001
10.1287/moor.1040.0107
10.1137/S0097539701393384
10.1287/mnsc.47.8.1101.10231
10.1287/moor.1090.0391
10.1016/0885-064X(89)90021-6
10.1016/j.orl.2004.04.015
10.1109/TAC.2013.2272973
10.1287/mnsc.23.8.789
10.1007/978-1-4614-9149-1
10.1287/mnsc.5.1.89
10.1287/moor.1070.0272
10.1145/972639.972644
10.1137/130925153
10.1287/opre.1110.1031
10.1287/mnsc.1100.1143
10.1007/s00453-012-9646-2
10.1287/opre.51.6.850.24925
10.1137/13094774X
10.1007/s10107-005-0641-0
10.1002/9781118029176
10.1287/ijoc.12.1.57.11901
10.1145/1217856.1217860
10.1137/1.9781611973105.103
10.2307/1906813
10.1287/mnsc.26.7.669
10.1515/9781400874651
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01685-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 242
ExternalDocumentID A723703945
10_1007_s10107_021_01685_4
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 399/17
– fundername: United States - Israel Binational Science Foundation
  grantid: 2018095
  funderid: http://dx.doi.org/10.13039/100006221
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-6d8e97d937603ecda843ccd9f37981da600b15dcc4dfcc89e406db9f90086d803
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678489500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:55:16 EDT 2025
Sat Nov 29 10:53:14 EST 2025
Tue Nov 18 22:04:24 EST 2025
Sat Nov 29 03:34:02 EST 2025
Fri Feb 21 02:47:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Stochastic dynamic programming
approximation sets and functions
Approximation algorithms
Newsvendor problem
Stochastic inventory control
Hardness of approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-6d8e97d937603ecda843ccd9f37981da600b15dcc4dfcc89e406db9f90086d803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6098-9792
0000-0002-4936-1259
PQID 2727218046
PQPubID 25307
PageCount 60
ParticipantIDs proquest_journals_2727218046
gale_infotracacademiconefile_A723703945
crossref_citationtrail_10_1007_s10107_021_01685_4
crossref_primary_10_1007_s10107_021_01685_4
springer_journals_10_1007_s10107_021_01685_4
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References DworkCKenthapadiKMcSherryFMironovINaorMOur data, ourselves: privacy via distributed noise generationAdv. Cryptol. EUROCRYPT2006200648650324235601140.94336
HalmanNOrlinJBSimchi-LeviDApproximating the nonlinear newsvendor and single-item stochastic lot-sizing problems when data is given by an oracleOper. Res.201260242944629350691248.90007
ChauhanSSEremeevAVRomanovaAAServakhVVWoegingerGJApproximation of the supply scheduling problemOper. Res. Lett.20053324925421082731140.90392
ChowCSTsitsiklisJNThe complexity of dynamic programmingJ. Complex.19895446648810289080685.90098
FlorianMLenstraJKRinnooy KanAHGDeterministic production planning: algorithms and complexityManag. Sci.19802676696795912920445.90025
FeigeUImmorlicaNMirrokniVSNazerzadehHPass approximation: a framework for analyzing and designing heuristicsAlgorithmica201366245047830286481298.90133
HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item inventory control with discrete demandMath. Oper. Res.200934367468525553421231.90030
NemirovskiASInformation-based complexity of linear operator equationsJ. Complex.1992821531751167910
GodfreyGAPowellWBAn adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distributionManag. Sci.2001478110111121232.90053
Nemirovski, A.S.: Information-based Complexity of Convex Programming. Lecture Notes (1995)
PhelpsESThe accumulation of risky capital: a sequential utility analysisEconometrica1962307297430126.36402
PowellWBApproximate Dynamic Programming: Solving the Curses of Dimensionality20112HobokenWiley1242.90002
WangF-YJinNLiuDWeiQAdaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-error boundIEEE Trans. Neural Netw.20102212436
KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ. ACM20045126328021456551317.90329
BertsekasDDynamic Programming and Optimal Control2005BelmontAthena Scientific1125.90056
CornuejolsGFisherMLNemhauserGLLocation of bank accounts to optimize float: an analytic study of exact and approximate algorithmsManag. Sci.19772387898104440490361.90034
AddaJCooperRWDynamic Economics: Quantitative Methods and Applications2003BostonThe MIT Press
De FariasDPVan RoyBThe linear programming approach to approximate dynamic programmingOper. Res.200351685086520196511165.90666
VaziraniVApproximation Algorithms2001BerlinSpringer0999.68546
HalmanNNanniciniGOrlinJA computationally efficient FPTAS for convex stochastic dynamic programsSIAM J. Optim.201525131735033042691358.90116
MittalSSchultzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124
ShmoysDBSwamyCAn approximation scheme for stochastic linear programming and its application to stochastic integer programsJ. ACM2006536978101222820991326.90059
NascimentoJMPowellWBAn optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controlsIEEE Trans. Autom. Control201358122995301031522641369.49035
NascimentoJMPowellWBDynamic programming models and algorithms for the mutual fund cash balance problemManag. Sci.20105658018151232.90341
QinYWangRVakhariaAJChenYSerefMMHThe newsvendor problem: review and directions for future researchEur. J. Oper. Res.2011213236137427999561215.90005
WagnerHMWhitinTMDynamic version of the economic lot size modelManag. Sci.19585189961024420977.90500
HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discrete Math.20142841725179632686041408.68078
ChubanovSKovalyovMYPeschEAn FPTAS for a single-item capacitated economic lot-sizing problem with monotone cost structureMath. Program.2006106245346622167901134.90003
SpielmanDATengS-HSmoothed analysis of algorithms: why the simplex algorithm usually takes polynomial timeJ. ACM (JACM)200451338546321458601192.90120
LawlerELLenstraJKRinnooy KanAHGShmoysDBGravesSCRinnooy KanAHGZipkinPHSequencing and scheduling: algorithms and complexityHandbooks in Operations Research and Management Science1993AmsterdamNorth-Holland445522
Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: Proceedings of the Conference on Learning Theory, pp. 3–24 (2013)
Simchi-LeviDChenXBramelJThe Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management20143New YorkSpringer1327.90020
HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829
TraubJFWasilkowskiGWWozniakowskiHInformation-Based Complexity1988New YorkAcademic Press0654.94004
RustJNumerical dynamic programming in economicsHandb. Comput. Econ.1996161972914166191126.65316
HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional action and scalar stateSIAM J. Optim.2019291131116339393381411.90296
WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000121577417646861034.90014
ChengTCEChenZLLiCLLinBTScheduling to minimize the total compression and late costsNaval Res. Logist.199845678216022010897.90125
HochbaumDHochbaumDVarious notions of approximations: good, better, best, and moreApproximation Algorithms for NP-hard Problems1997BostonPWS Publishing Company1368.68010
PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.2007382215115623521101119.90077
Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–1453 (2013)
DroriYThe exact information-based complexity of smooth convex minimizationJ. Complex.20173911636057511357.68072
ArrowKJHarrisTMarschakJOptimal inventory policyEconometrica195119250272440940045.23205
LeviRRoundyRShmoysDBProvably near-optimal sampling-based policies for stochastic inventory control modelsMath. Oper. Res.20073282183923631991341.90005
KhoujaMThe single-period (news-vendor) problem: literature review and suggestions for future researchOmega1999275537553
Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 312–320 (1982)
ElkinMPelegD(1+ϵ,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon , \beta )$$\end{document}-spanner constructions for general graphsSIAM J. Comput.200433360863120666451056.05134
DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291220121318755151049.90004
PorteusELHeymanDPSobelMJStochastic inventory theoryHandbook in OR & MS1990North-HollandElsevier Science Publishers B.V
PowellWBRuszczyńskiATopalogluHLearning algorithms for separable approximations of discrete stochastic optimization problemsMath. Oper. Res.200429481483621041561082.90079
Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization (2020). Available online at https://www2.isye.gatech.edu/~nemirovs/LMCOLN2020.pdf. Accessed 20 July 2021
PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. program.1991521–335937511261760749.90057
BellmanRDreyfusSApplied Dynamic Programming1962PrincetonPrinceton University Press0106.34901
SwamyCShmoysDBSampling-based approximation algorithms for multistage stochastic optimizationSIAM J. Comput.2012414975100429747591253.68379
Van HoeselAPMWagelmansCPMFully polynomial approximation schemes for single-item capacitated economic lot-sizing problemsMath. Oper. Res.200126233935718958331082.90532
D Simchi-Levi (1685_CR45) 2014
SS Chauhan (1685_CR7) 2005; 33
J Rust (1685_CR44) 1996; 1
ES Phelps (1685_CR37) 1962; 30
1685_CR34
R Bellman (1685_CR3) 1962
WB Powell (1685_CR41) 2004; 29
G Cornuejols (1685_CR8) 1977; 23
WB Powell (1685_CR39) 2011
N Halman (1685_CR22) 2009; 34
S Mittal (1685_CR32) 2013; 61
1685_CR5
TCE Cheng (1685_CR6) 1998; 45
N Halman (1685_CR23) 2019; 29
DP De Farias (1685_CR11) 2003; 51
C Dwork (1685_CR12) 2006; 2006
JM Nascimento (1685_CR36) 2013; 58
R Levi (1685_CR31) 2007; 32
Y Qin (1685_CR43) 2011; 213
N Halman (1685_CR21) 2014; 28
D Bertsekas (1685_CR4) 2005
N Halman (1685_CR24) 2015; 25
1685_CR46
M Florian (1685_CR17) 1980; 26
Y Drori (1685_CR14) 2017; 39
J Adda (1685_CR1) 2003
EL Porteus (1685_CR38) 1990
F-Y Wang (1685_CR53) 2010; 22
N Halman (1685_CR26) 2012; 60
N Halman (1685_CR20) 2020; 32
AS Nemirovski (1685_CR33) 1992; 8
V Vazirani (1685_CR52) 2001
J Kleinberg (1685_CR29) 2004; 51
EL Lawler (1685_CR30) 1993
KJ Arrow (1685_CR2) 1951; 19
M Elkin (1685_CR15) 2004; 33
HM Wagner (1685_CR55) 1958; 5
S Chubanov (1685_CR9) 2006; 106
MVF Pereira (1685_CR40) 1991; 52
DA Spielman (1685_CR49) 2004; 51
M Khouja (1685_CR27) 1999; 27
1685_CR18
U Feige (1685_CR16) 2013; 66
GA Godfrey (1685_CR19) 2001; 47
GJ Woeginger (1685_CR54) 2000; 12
DB Shmoys (1685_CR47) 2006; 53
JF Traub (1685_CR50) 1988
APM Van Hoesel (1685_CR51) 2001; 26
ED Dolan (1685_CR13) 2002; 91
D Hochbaum (1685_CR25) 1997
CS Chow (1685_CR10) 1989; 5
1685_CR28
K Pruhs (1685_CR42) 2007; 382
JM Nascimento (1685_CR35) 2010; 56
C Swamy (1685_CR48) 2012; 41
References_xml – reference: DworkCKenthapadiKMcSherryFMironovINaorMOur data, ourselves: privacy via distributed noise generationAdv. Cryptol. EUROCRYPT2006200648650324235601140.94336
– reference: Van HoeselAPMWagelmansCPMFully polynomial approximation schemes for single-item capacitated economic lot-sizing problemsMath. Oper. Res.200126233935718958331082.90532
– reference: PowellWBRuszczyńskiATopalogluHLearning algorithms for separable approximations of discrete stochastic optimization problemsMath. Oper. Res.200429481483621041561082.90079
– reference: ChubanovSKovalyovMYPeschEAn FPTAS for a single-item capacitated economic lot-sizing problem with monotone cost structureMath. Program.2006106245346622167901134.90003
– reference: GodfreyGAPowellWBAn adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distributionManag. Sci.2001478110111121232.90053
– reference: ChowCSTsitsiklisJNThe complexity of dynamic programmingJ. Complex.19895446648810289080685.90098
– reference: LawlerELLenstraJKRinnooy KanAHGShmoysDBGravesSCRinnooy KanAHGZipkinPHSequencing and scheduling: algorithms and complexityHandbooks in Operations Research and Management Science1993AmsterdamNorth-Holland445522
– reference: Nemirovski, A.S.: Information-based Complexity of Convex Programming. Lecture Notes (1995)
– reference: NascimentoJMPowellWBDynamic programming models and algorithms for the mutual fund cash balance problemManag. Sci.20105658018151232.90341
– reference: TraubJFWasilkowskiGWWozniakowskiHInformation-Based Complexity1988New YorkAcademic Press0654.94004
– reference: Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 312–320 (1982)
– reference: PorteusELHeymanDPSobelMJStochastic inventory theoryHandbook in OR & MS1990North-HollandElsevier Science Publishers B.V
– reference: ChauhanSSEremeevAVRomanovaAAServakhVVWoegingerGJApproximation of the supply scheduling problemOper. Res. Lett.20053324925421082731140.90392
– reference: PhelpsESThe accumulation of risky capital: a sequential utility analysisEconometrica1962307297430126.36402
– reference: HalmanNOrlinJBSimchi-LeviDApproximating the nonlinear newsvendor and single-item stochastic lot-sizing problems when data is given by an oracleOper. Res.201260242944629350691248.90007
– reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291220121318755151049.90004
– reference: WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000121577417646861034.90014
– reference: AddaJCooperRWDynamic Economics: Quantitative Methods and Applications2003BostonThe MIT Press
– reference: ChengTCEChenZLLiCLLinBTScheduling to minimize the total compression and late costsNaval Res. Logist.199845678216022010897.90125
– reference: FeigeUImmorlicaNMirrokniVSNazerzadehHPass approximation: a framework for analyzing and designing heuristicsAlgorithmica201366245047830286481298.90133
– reference: HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item inventory control with discrete demandMath. Oper. Res.200934367468525553421231.90030
– reference: PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. program.1991521–335937511261760749.90057
– reference: HochbaumDHochbaumDVarious notions of approximations: good, better, best, and moreApproximation Algorithms for NP-hard Problems1997BostonPWS Publishing Company1368.68010
– reference: VaziraniVApproximation Algorithms2001BerlinSpringer0999.68546
– reference: MittalSSchultzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124
– reference: KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ. ACM20045126328021456551317.90329
– reference: HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829
– reference: Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–1453 (2013)
– reference: PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.2007382215115623521101119.90077
– reference: SwamyCShmoysDBSampling-based approximation algorithms for multistage stochastic optimizationSIAM J. Comput.2012414975100429747591253.68379
– reference: NemirovskiASInformation-based complexity of linear operator equationsJ. Complex.1992821531751167910
– reference: WangF-YJinNLiuDWeiQAdaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-error boundIEEE Trans. Neural Netw.20102212436
– reference: Simchi-LeviDChenXBramelJThe Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management20143New YorkSpringer1327.90020
– reference: BellmanRDreyfusSApplied Dynamic Programming1962PrincetonPrinceton University Press0106.34901
– reference: ArrowKJHarrisTMarschakJOptimal inventory policyEconometrica195119250272440940045.23205
– reference: HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discrete Math.20142841725179632686041408.68078
– reference: BertsekasDDynamic Programming and Optimal Control2005BelmontAthena Scientific1125.90056
– reference: LeviRRoundyRShmoysDBProvably near-optimal sampling-based policies for stochastic inventory control modelsMath. Oper. Res.20073282183923631991341.90005
– reference: KhoujaMThe single-period (news-vendor) problem: literature review and suggestions for future researchOmega1999275537553
– reference: CornuejolsGFisherMLNemhauserGLLocation of bank accounts to optimize float: an analytic study of exact and approximate algorithmsManag. Sci.19772387898104440490361.90034
– reference: WagnerHMWhitinTMDynamic version of the economic lot size modelManag. Sci.19585189961024420977.90500
– reference: De FariasDPVan RoyBThe linear programming approach to approximate dynamic programmingOper. Res.200351685086520196511165.90666
– reference: DroriYThe exact information-based complexity of smooth convex minimizationJ. Complex.20173911636057511357.68072
– reference: HalmanNNanniciniGOrlinJA computationally efficient FPTAS for convex stochastic dynamic programsSIAM J. Optim.201525131735033042691358.90116
– reference: Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: Proceedings of the Conference on Learning Theory, pp. 3–24 (2013)
– reference: PowellWBApproximate Dynamic Programming: Solving the Curses of Dimensionality20112HobokenWiley1242.90002
– reference: RustJNumerical dynamic programming in economicsHandb. Comput. Econ.1996161972914166191126.65316
– reference: ElkinMPelegD(1+ϵ,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon , \beta )$$\end{document}-spanner constructions for general graphsSIAM J. Comput.200433360863120666451056.05134
– reference: SpielmanDATengS-HSmoothed analysis of algorithms: why the simplex algorithm usually takes polynomial timeJ. ACM (JACM)200451338546321458601192.90120
– reference: HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional action and scalar stateSIAM J. Optim.2019291131116339393381411.90296
– reference: Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization (2020). Available online at https://www2.isye.gatech.edu/~nemirovs/LMCOLN2020.pdf. Accessed 20 July 2021
– reference: NascimentoJMPowellWBAn optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controlsIEEE Trans. Autom. Control201358122995301031522641369.49035
– reference: FlorianMLenstraJKRinnooy KanAHGDeterministic production planning: algorithms and complexityManag. Sci.19802676696795912920445.90025
– reference: ShmoysDBSwamyCAn approximation scheme for stochastic linear programming and its application to stochastic integer programsJ. ACM2006536978101222820991326.90059
– reference: QinYWangRVakhariaAJChenYSerefMMHThe newsvendor problem: review and directions for future researchEur. J. Oper. Res.2011213236137427999561215.90005
– volume: 61
  start-page: 386
  issue: 2
  year: 2013
  ident: 1685_CR32
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1093
– volume: 45
  start-page: 67
  year: 1998
  ident: 1685_CR6
  publication-title: Naval Res. Logist.
  doi: 10.1002/(SICI)1520-6750(199802)45:1<67::AID-NAV4>3.0.CO;2-J
– volume: 51
  start-page: 385
  issue: 3
  year: 2004
  ident: 1685_CR49
  publication-title: J. ACM (JACM)
  doi: 10.1145/990308.990310
– volume-title: Dynamic Programming and Optimal Control
  year: 2005
  ident: 1685_CR4
– volume: 30
  start-page: 729
  year: 1962
  ident: 1685_CR37
  publication-title: Econometrica
  doi: 10.2307/1909322
– volume-title: Approximation Algorithms for NP-hard Problems
  year: 1997
  ident: 1685_CR25
– volume: 213
  start-page: 361
  issue: 2
  year: 2011
  ident: 1685_CR43
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.024
– volume: 8
  start-page: 153
  issue: 2
  year: 1992
  ident: 1685_CR33
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(92)90013-2
– volume: 52
  start-page: 359
  issue: 1–3
  year: 1991
  ident: 1685_CR40
  publication-title: Math. program.
  doi: 10.1007/BF01582895
– volume: 29
  start-page: 1131
  year: 2019
  ident: 1685_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1208423
– volume: 22
  start-page: 24
  issue: 1
  year: 2010
  ident: 1685_CR53
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2076370
– volume: 1
  start-page: 619
  year: 1996
  ident: 1685_CR44
  publication-title: Handb. Comput. Econ.
  doi: 10.1016/S1574-0021(96)01016-7
– volume: 26
  start-page: 339
  issue: 2
  year: 2001
  ident: 1685_CR51
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.2.339.10552
– volume: 27
  start-page: 537
  issue: 5
  year: 1999
  ident: 1685_CR27
  publication-title: Omega
  doi: 10.1016/S0305-0483(99)00017-1
– ident: 1685_CR28
  doi: 10.1109/SFCS.1982.61
– volume: 41
  start-page: 975
  issue: 4
  year: 2012
  ident: 1685_CR48
  publication-title: SIAM J. Comput.
  doi: 10.1137/100789269
– volume: 2006
  start-page: 486
  year: 2006
  ident: 1685_CR12
  publication-title: Adv. Cryptol. EUROCRYPT
– volume: 382
  start-page: 151
  issue: 2
  year: 2007
  ident: 1685_CR42
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2007.03.006
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 1685_CR13
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 39
  start-page: 1
  year: 2017
  ident: 1685_CR14
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2016.11.001
– ident: 1685_CR34
– volume: 29
  start-page: 814
  issue: 4
  year: 2004
  ident: 1685_CR41
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1040.0107
– volume-title: Dynamic Economics: Quantitative Methods and Applications
  year: 2003
  ident: 1685_CR1
– volume: 33
  start-page: 608
  issue: 3
  year: 2004
  ident: 1685_CR15
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701393384
– volume: 47
  start-page: 1101
  issue: 8
  year: 2001
  ident: 1685_CR19
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.47.8.1101.10231
– start-page: 445
  volume-title: Handbooks in Operations Research and Management Science
  year: 1993
  ident: 1685_CR30
– ident: 1685_CR5
– volume: 34
  start-page: 674
  issue: 3
  year: 2009
  ident: 1685_CR22
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1090.0391
– volume: 5
  start-page: 466
  issue: 4
  year: 1989
  ident: 1685_CR10
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(89)90021-6
– volume: 33
  start-page: 249
  year: 2005
  ident: 1685_CR7
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2004.04.015
– volume: 58
  start-page: 2995
  issue: 12
  year: 2013
  ident: 1685_CR36
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2013.2272973
– volume: 23
  start-page: 789
  issue: 8
  year: 1977
  ident: 1685_CR8
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.23.8.789
– volume-title: The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management
  year: 2014
  ident: 1685_CR45
  doi: 10.1007/978-1-4614-9149-1
– volume: 5
  start-page: 89
  issue: 1
  year: 1958
  ident: 1685_CR55
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.5.1.89
– volume: 32
  start-page: 821
  year: 2007
  ident: 1685_CR31
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1070.0272
– volume: 51
  start-page: 263
  year: 2004
  ident: 1685_CR29
  publication-title: J. ACM
  doi: 10.1145/972639.972644
– volume: 28
  start-page: 1725
  issue: 4
  year: 2014
  ident: 1685_CR21
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/130925153
– volume: 60
  start-page: 429
  issue: 2
  year: 2012
  ident: 1685_CR26
  publication-title: Oper. Res.
  doi: 10.1287/opre.1110.1031
– volume: 56
  start-page: 801
  issue: 5
  year: 2010
  ident: 1685_CR35
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1100.1143
– volume-title: Information-Based Complexity
  year: 1988
  ident: 1685_CR50
– volume: 66
  start-page: 450
  issue: 2
  year: 2013
  ident: 1685_CR16
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9646-2
– volume: 51
  start-page: 850
  issue: 6
  year: 2003
  ident: 1685_CR11
  publication-title: Oper. Res.
  doi: 10.1287/opre.51.6.850.24925
– volume: 25
  start-page: 317
  issue: 1
  year: 2015
  ident: 1685_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/13094774X
– volume: 106
  start-page: 453
  issue: 2
  year: 2006
  ident: 1685_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0641-0
– volume-title: Approximation Algorithms
  year: 2001
  ident: 1685_CR52
– volume-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality
  year: 2011
  ident: 1685_CR39
  doi: 10.1002/9781118029176
– volume: 12
  start-page: 57
  issue: 1
  year: 2000
  ident: 1685_CR54
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.12.1.57.11901
– volume: 53
  start-page: 978
  issue: 6
  year: 2006
  ident: 1685_CR47
  publication-title: J. ACM
  doi: 10.1145/1217856.1217860
– volume-title: Handbook in OR & MS
  year: 1990
  ident: 1685_CR38
– ident: 1685_CR18
  doi: 10.1137/1.9781611973105.103
– volume: 19
  start-page: 250
  year: 1951
  ident: 1685_CR2
  publication-title: Econometrica
  doi: 10.2307/1906813
– volume: 26
  start-page: 669
  issue: 7
  year: 1980
  ident: 1685_CR17
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.26.7.669
– ident: 1685_CR46
– volume-title: Applied Dynamic Programming
  year: 1962
  ident: 1685_CR3
  doi: 10.1515/9781400874651
– volume: 32
  start-page: 1157
  issue: 4
  year: 2020
  ident: 1685_CR20
  publication-title: INFORMS J. Comput.
SSID ssj0001388
Score 2.3643782
Snippet We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Cost function
Full Length Paper
Hardness
Logistics
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mechanical properties
Numerical Analysis
Polynomials
Supply chains
Theoretical
Title Fully polynomial time (Σ,Π)-approximation schemes for continuous nonlinear newsvendor and continuous stochastic dynamic programs
URI https://link.springer.com/article/10.1007/s10107-021-01685-4
https://www.proquest.com/docview/2727218046
Volume 195
WOSCitedRecordID wos000678489500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdr1of2Yf-6sWzZ0MNgK6vAtmRbegyjZQ9bKWwrfRPKSaaBxC1xUpbXfZLBvk8-0-4cO03btbCCwRhJ9iGdTr-z7n5i7J1MQRPJiAiDyAmFFlAMgpECXAiplkUS6ijf4y_54aE-OTFHTVJY1Ua7t1uStaVeS3aL6bdaQu5vplOhNtjDlNhmyEf_dryyv7HUuj2oldBBkyrz73dcWY6uG-Ubu6P1onPw-H7iPmGPGpDJ-0uteMoehPIZ216jHsSnryu-1mqH_SJPdM7Pz0ZzSlPGtnTmPP-w-LO3-L0rauLxn8NlliNHfziMQ8UR7nKKdB-Ws7NZxcsl6YabcELqaEM9lrvSr9dBpAmnjqihuZ-Xboz3JkCses5-HOx___RZNKczCJCpnorM62BybyiqRgbwTisJ4E0hc4Mg2CGSGsSpB1C-ANAmIHTwA1MY8qI8KsgL1kHJwkvG8yiAJC4zVWR45Yj6igQgUiEUeWayLovbQbLQUJfTCRoje0m6TL1tsbdt3dtWddnHVZvzJXHHnbXf09hbmtX4ZnBNcgLKR_xYtp8nEm2jUWmX9Vr1sM10r2xC29mxjhSKuteqw2Xx7d999X_VX7OthNIv6hi3HutMJ7Pwhm3CxXRYTd7W0-Av1IIEAA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB60CuqH-o5nq-4HQcUuXLKbZPdjKZaK10Owln5b9mY3eNCm5XIn3ld_ieD_6W_qTC65nq-gEAhhd5NhX2afyc48A_BcZWiYZETGUd9LTRpQjqJVEn2MmVFlGhsv38NBMRyaoyP7vg0Kqztv9-5IstHUK8FuCf9WS9n8zU0m9VW4pjnNDtvoHw6X-jdRxnSJWhkdtKEyv3_HD9vRz0r5l9PRZtPZvf1_4t6B9RZkiu3FrLgLV2J1D26tUA_S0_6Sr7W-D1_ZEp2Ls9PjOYcpU1vOOS9enn_fOv_2SjbE41_GiyhHQfZwPIm1ILgr2NN9XM1OZ7WoFqQbfiIYqZMODVTuq7Bah5AmfvJMDS3CvPIndG8dxOoH8HH3zcHOnmyzM0hUmZnKPJhoi2DZq0ZFDN5ohRhsqQpLINgTkholWUDUoUQ0NhJ0CCNbWraiAk2Qh7BGksVHIIp-RMVcZrrM6SoI9ZUpYl_HWBa5zXuQdIPksKUu5wwax-6SdJl721Fvu6a3ne7B62WbswVxx19rv-Cxd7yq6c3o2-AEko_5sdx2kSrSjVZnPdjspodrl3vtUj7OTkxfk6hb3XS4LP7zdx__W_VncGPvYH_gBm-H7zbgZsqhGI2_2yasTSez-ASu4-fpuJ48bZbEBQocBuQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3batwwEB3apJT2oUlvdNuk0UOgLY3I2pJt6TEkXVqaLKGXkDehlWS6kDjLerd0X_slgfxPvikzvmy2VygFg7Ely4M8Gp2xZo4ANkXiFJGM8DDoWi7RAvJB0II7G0KiRB6HKsr3aD_r99XxsT5cyOKvot3bJck6p4FYmorJ9sjn2wuJbxH9YovJFU5VwuVNWJZ4i4K6Pnw8mtviSCjVbtpKSKFJm_l9Gz9MTT8b6F9WSqsJqLfy_6Kvwr0GfLKdWlvuw41QPIC7C5SEeHUw53EtH8J38lBnbHR2MqP0ZXyW9qJnLy8vti7PX_GKkPzbsM5-ZOgnh9NQMoTBjGQaFtOzacmKmozDjhkheLStHstt4RfrIAJ1XyxRRjM_K-wpnpvAsfIRfO69-bT7lje7NnAnEjXhqVdBZ15TtI0IzlslhXNe5yLTCI4tIqxBlHjnpM-dUzogpPADnWvyrjwqzmNYQsnCE2BZNzhBHGcyT_HIEA3msXNdGUKepTrtQNR-MOMaSnPaWePEXJMxU28b7G1T9baRHXg9f2ZUE3r8tfYL0gNDox1bdrZJWkD5iDfL7GSxQJupZdKBtVZVTGMGShPTMnekuhJF3WpV47r4z-99-m_VN-D24V7P7L_rv38Gd2LK0KjC4NZgaTKehnW45b5OhuX4eTU6rgAm6Q_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+polynomial+time+%28%CE%A3%2C%CE%A0%29-approximation+schemes+for+continuous+nonlinear+newsvendor+and+continuous+stochastic+dynamic+programs&rft.jtitle=Mathematical+programming&rft.au=Halman+Nir&rft.au=Nannicini+Giacomo&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=195&rft.issue=1-2&rft.spage=183&rft.epage=242&rft_id=info:doi/10.1007%2Fs10107-021-01685-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon