Fully polynomial time (Σ,Π)-approximation schemes for continuous nonlinear newsvendor and continuous stochastic dynamic programs
We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas such as supply chain management and economics. The class is characterized by continuous state and action spaces, either convex or monotone co...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 195; H. 1-2; S. 183 - 242 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas such as supply chain management and economics. The class is characterized by continuous state and action spaces, either convex or monotone cost functions that are accessed via value oracles, and affine transition functions. We establish that these problems cannot be approximated to any degree of either relative or additive error, regardless of the scheme used. To circumvent these hardness results, we generalize the concept of fully polynomial-time approximation scheme allowing arbitrarily small additive and multiplicative error at the same time, while requiring a polynomial running time in the input size and the error parameters. We develop approximation schemes of this type for the classes of problems mentioned above. In light of our hardness results, such approximation schemes are “best possible”. A computational evaluation shows the promise of this approach. |
|---|---|
| AbstractList | We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas such as supply chain management and economics. The class is characterized by continuous state and action spaces, either convex or monotone cost functions that are accessed via value oracles, and affine transition functions. We establish that these problems cannot be approximated to any degree of either relative or additive error, regardless of the scheme used. To circumvent these hardness results, we generalize the concept of fully polynomial-time approximation scheme allowing arbitrarily small additive and multiplicative error at the same time, while requiring a polynomial running time in the input size and the error parameters. We develop approximation schemes of this type for the classes of problems mentioned above. In light of our hardness results, such approximation schemes are “best possible”. A computational evaluation shows the promise of this approach. |
| Audience | Academic |
| Author | Nannicini, Giacomo Halman, Nir |
| Author_xml | – sequence: 1 givenname: Nir orcidid: 0000-0002-6098-9792 surname: Halman fullname: Halman, Nir email: halman@biu.ac.il organization: Bar-Ilan University – sequence: 2 givenname: Giacomo orcidid: 0000-0002-4936-1259 surname: Nannicini fullname: Nannicini, Giacomo organization: IBM Quantum, IBM T. J. Watson Research Center |
| BookMark | eNp9kd9qFTEQxoNU8PTPC3gV8EbBtJNNNpu9LMWqUPDGXoc0yZ6m7CbHZFd7bn0SwffpMzl2BcWLMhcDme83M5nvkByknAIhLzmccoDurHLg0DFoOAOudMvkM7LhUigmlVQHZAPQtKxVHF6Qw1rvAIALrTfk--Uyjnu6y-M-5Snakc5xCvT1w8-3Dz_eMLvblXwfJzvHnGh1t2EKlQ65UJfTHNOSl0pxlzGmYAtN4Vv9GpLHuk3-X02ds7u1dY6O-n2yE2bsvC12qsfk-WDHGk7-5CNyffnu88UHdvXp_ceL8yvmRKtnprwOfed70SkQwXmrpXDO94Poes29VQA3vPXOST84p_sgQfmbfugBNLIgjsirtS8O_rKEOpu7vJSEI03TYXANUqHqdFVt7RhMTEOei3UYPuDSePUh4vt514gORC9bBPQKuJJrLWEwLs6P90IwjoaD-W2RWS0yaJF5tMhIRJv_0F3BW5f905BYoYritA3l7zeeoH4BMBKqRg |
| CitedBy_id | crossref_primary_10_1287_ijoc_2023_0126 |
| Cites_doi | 10.1287/opre.1120.1093 10.1002/(SICI)1520-6750(199802)45:1<67::AID-NAV4>3.0.CO;2-J 10.1145/990308.990310 10.2307/1909322 10.1016/j.ejor.2010.11.024 10.1016/0885-064X(92)90013-2 10.1007/BF01582895 10.1137/18M1208423 10.1109/TNN.2010.2076370 10.1016/S1574-0021(96)01016-7 10.1287/moor.26.2.339.10552 10.1016/S0305-0483(99)00017-1 10.1109/SFCS.1982.61 10.1137/100789269 10.1016/j.tcs.2007.03.006 10.1007/s101070100263 10.1016/j.jco.2016.11.001 10.1287/moor.1040.0107 10.1137/S0097539701393384 10.1287/mnsc.47.8.1101.10231 10.1287/moor.1090.0391 10.1016/0885-064X(89)90021-6 10.1016/j.orl.2004.04.015 10.1109/TAC.2013.2272973 10.1287/mnsc.23.8.789 10.1007/978-1-4614-9149-1 10.1287/mnsc.5.1.89 10.1287/moor.1070.0272 10.1145/972639.972644 10.1137/130925153 10.1287/opre.1110.1031 10.1287/mnsc.1100.1143 10.1007/s00453-012-9646-2 10.1287/opre.51.6.850.24925 10.1137/13094774X 10.1007/s10107-005-0641-0 10.1002/9781118029176 10.1287/ijoc.12.1.57.11901 10.1145/1217856.1217860 10.1137/1.9781611973105.103 10.2307/1906813 10.1287/mnsc.26.7.669 10.1515/9781400874651 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-021-01685-4 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 242 |
| ExternalDocumentID | A723703945 10_1007_s10107_021_01685_4 |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 399/17 – fundername: United States - Israel Binational Science Foundation grantid: 2018095 funderid: http://dx.doi.org/10.13039/100006221 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-6d8e97d937603ecda843ccd9f37981da600b15dcc4dfcc89e406db9f90086d803 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678489500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:55:16 EDT 2025 Sat Nov 29 10:53:14 EST 2025 Tue Nov 18 22:04:24 EST 2025 Sat Nov 29 03:34:02 EST 2025 Fri Feb 21 02:47:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Stochastic dynamic programming approximation sets and functions Approximation algorithms Newsvendor problem Stochastic inventory control Hardness of approximation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-6d8e97d937603ecda843ccd9f37981da600b15dcc4dfcc89e406db9f90086d803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6098-9792 0000-0002-4936-1259 |
| PQID | 2727218046 |
| PQPubID | 25307 |
| PageCount | 60 |
| ParticipantIDs | proquest_journals_2727218046 gale_infotracacademiconefile_A723703945 crossref_citationtrail_10_1007_s10107_021_01685_4 crossref_primary_10_1007_s10107_021_01685_4 springer_journals_10_1007_s10107_021_01685_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | DworkCKenthapadiKMcSherryFMironovINaorMOur data, ourselves: privacy via distributed noise generationAdv. Cryptol. EUROCRYPT2006200648650324235601140.94336 HalmanNOrlinJBSimchi-LeviDApproximating the nonlinear newsvendor and single-item stochastic lot-sizing problems when data is given by an oracleOper. Res.201260242944629350691248.90007 ChauhanSSEremeevAVRomanovaAAServakhVVWoegingerGJApproximation of the supply scheduling problemOper. Res. Lett.20053324925421082731140.90392 ChowCSTsitsiklisJNThe complexity of dynamic programmingJ. Complex.19895446648810289080685.90098 FlorianMLenstraJKRinnooy KanAHGDeterministic production planning: algorithms and complexityManag. Sci.19802676696795912920445.90025 FeigeUImmorlicaNMirrokniVSNazerzadehHPass approximation: a framework for analyzing and designing heuristicsAlgorithmica201366245047830286481298.90133 HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item inventory control with discrete demandMath. Oper. Res.200934367468525553421231.90030 NemirovskiASInformation-based complexity of linear operator equationsJ. Complex.1992821531751167910 GodfreyGAPowellWBAn adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distributionManag. Sci.2001478110111121232.90053 Nemirovski, A.S.: Information-based Complexity of Convex Programming. Lecture Notes (1995) PhelpsESThe accumulation of risky capital: a sequential utility analysisEconometrica1962307297430126.36402 PowellWBApproximate Dynamic Programming: Solving the Curses of Dimensionality20112HobokenWiley1242.90002 WangF-YJinNLiuDWeiQAdaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-error boundIEEE Trans. Neural Netw.20102212436 KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ. ACM20045126328021456551317.90329 BertsekasDDynamic Programming and Optimal Control2005BelmontAthena Scientific1125.90056 CornuejolsGFisherMLNemhauserGLLocation of bank accounts to optimize float: an analytic study of exact and approximate algorithmsManag. Sci.19772387898104440490361.90034 AddaJCooperRWDynamic Economics: Quantitative Methods and Applications2003BostonThe MIT Press De FariasDPVan RoyBThe linear programming approach to approximate dynamic programmingOper. Res.200351685086520196511165.90666 VaziraniVApproximation Algorithms2001BerlinSpringer0999.68546 HalmanNNanniciniGOrlinJA computationally efficient FPTAS for convex stochastic dynamic programsSIAM J. Optim.201525131735033042691358.90116 MittalSSchultzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124 ShmoysDBSwamyCAn approximation scheme for stochastic linear programming and its application to stochastic integer programsJ. ACM2006536978101222820991326.90059 NascimentoJMPowellWBAn optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controlsIEEE Trans. Autom. Control201358122995301031522641369.49035 NascimentoJMPowellWBDynamic programming models and algorithms for the mutual fund cash balance problemManag. Sci.20105658018151232.90341 QinYWangRVakhariaAJChenYSerefMMHThe newsvendor problem: review and directions for future researchEur. J. Oper. Res.2011213236137427999561215.90005 WagnerHMWhitinTMDynamic version of the economic lot size modelManag. Sci.19585189961024420977.90500 HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discrete Math.20142841725179632686041408.68078 ChubanovSKovalyovMYPeschEAn FPTAS for a single-item capacitated economic lot-sizing problem with monotone cost structureMath. Program.2006106245346622167901134.90003 SpielmanDATengS-HSmoothed analysis of algorithms: why the simplex algorithm usually takes polynomial timeJ. ACM (JACM)200451338546321458601192.90120 LawlerELLenstraJKRinnooy KanAHGShmoysDBGravesSCRinnooy KanAHGZipkinPHSequencing and scheduling: algorithms and complexityHandbooks in Operations Research and Management Science1993AmsterdamNorth-Holland445522 Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: Proceedings of the Conference on Learning Theory, pp. 3–24 (2013) Simchi-LeviDChenXBramelJThe Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management20143New YorkSpringer1327.90020 HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829 TraubJFWasilkowskiGWWozniakowskiHInformation-Based Complexity1988New YorkAcademic Press0654.94004 RustJNumerical dynamic programming in economicsHandb. Comput. Econ.1996161972914166191126.65316 HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional action and scalar stateSIAM J. Optim.2019291131116339393381411.90296 WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000121577417646861034.90014 ChengTCEChenZLLiCLLinBTScheduling to minimize the total compression and late costsNaval Res. Logist.199845678216022010897.90125 HochbaumDHochbaumDVarious notions of approximations: good, better, best, and moreApproximation Algorithms for NP-hard Problems1997BostonPWS Publishing Company1368.68010 PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.2007382215115623521101119.90077 Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–1453 (2013) DroriYThe exact information-based complexity of smooth convex minimizationJ. Complex.20173911636057511357.68072 ArrowKJHarrisTMarschakJOptimal inventory policyEconometrica195119250272440940045.23205 LeviRRoundyRShmoysDBProvably near-optimal sampling-based policies for stochastic inventory control modelsMath. Oper. Res.20073282183923631991341.90005 KhoujaMThe single-period (news-vendor) problem: literature review and suggestions for future researchOmega1999275537553 Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 312–320 (1982) ElkinMPelegD(1+ϵ,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon , \beta )$$\end{document}-spanner constructions for general graphsSIAM J. Comput.200433360863120666451056.05134 DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291220121318755151049.90004 PorteusELHeymanDPSobelMJStochastic inventory theoryHandbook in OR & MS1990North-HollandElsevier Science Publishers B.V PowellWBRuszczyńskiATopalogluHLearning algorithms for separable approximations of discrete stochastic optimization problemsMath. Oper. Res.200429481483621041561082.90079 Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization (2020). Available online at https://www2.isye.gatech.edu/~nemirovs/LMCOLN2020.pdf. Accessed 20 July 2021 PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. program.1991521–335937511261760749.90057 BellmanRDreyfusSApplied Dynamic Programming1962PrincetonPrinceton University Press0106.34901 SwamyCShmoysDBSampling-based approximation algorithms for multistage stochastic optimizationSIAM J. Comput.2012414975100429747591253.68379 Van HoeselAPMWagelmansCPMFully polynomial approximation schemes for single-item capacitated economic lot-sizing problemsMath. Oper. Res.200126233935718958331082.90532 D Simchi-Levi (1685_CR45) 2014 SS Chauhan (1685_CR7) 2005; 33 J Rust (1685_CR44) 1996; 1 ES Phelps (1685_CR37) 1962; 30 1685_CR34 R Bellman (1685_CR3) 1962 WB Powell (1685_CR41) 2004; 29 G Cornuejols (1685_CR8) 1977; 23 WB Powell (1685_CR39) 2011 N Halman (1685_CR22) 2009; 34 S Mittal (1685_CR32) 2013; 61 1685_CR5 TCE Cheng (1685_CR6) 1998; 45 N Halman (1685_CR23) 2019; 29 DP De Farias (1685_CR11) 2003; 51 C Dwork (1685_CR12) 2006; 2006 JM Nascimento (1685_CR36) 2013; 58 R Levi (1685_CR31) 2007; 32 Y Qin (1685_CR43) 2011; 213 N Halman (1685_CR21) 2014; 28 D Bertsekas (1685_CR4) 2005 N Halman (1685_CR24) 2015; 25 1685_CR46 M Florian (1685_CR17) 1980; 26 Y Drori (1685_CR14) 2017; 39 J Adda (1685_CR1) 2003 EL Porteus (1685_CR38) 1990 F-Y Wang (1685_CR53) 2010; 22 N Halman (1685_CR26) 2012; 60 N Halman (1685_CR20) 2020; 32 AS Nemirovski (1685_CR33) 1992; 8 V Vazirani (1685_CR52) 2001 J Kleinberg (1685_CR29) 2004; 51 EL Lawler (1685_CR30) 1993 KJ Arrow (1685_CR2) 1951; 19 M Elkin (1685_CR15) 2004; 33 HM Wagner (1685_CR55) 1958; 5 S Chubanov (1685_CR9) 2006; 106 MVF Pereira (1685_CR40) 1991; 52 DA Spielman (1685_CR49) 2004; 51 M Khouja (1685_CR27) 1999; 27 1685_CR18 U Feige (1685_CR16) 2013; 66 GA Godfrey (1685_CR19) 2001; 47 GJ Woeginger (1685_CR54) 2000; 12 DB Shmoys (1685_CR47) 2006; 53 JF Traub (1685_CR50) 1988 APM Van Hoesel (1685_CR51) 2001; 26 ED Dolan (1685_CR13) 2002; 91 D Hochbaum (1685_CR25) 1997 CS Chow (1685_CR10) 1989; 5 1685_CR28 K Pruhs (1685_CR42) 2007; 382 JM Nascimento (1685_CR35) 2010; 56 C Swamy (1685_CR48) 2012; 41 |
| References_xml | – reference: DworkCKenthapadiKMcSherryFMironovINaorMOur data, ourselves: privacy via distributed noise generationAdv. Cryptol. EUROCRYPT2006200648650324235601140.94336 – reference: Van HoeselAPMWagelmansCPMFully polynomial approximation schemes for single-item capacitated economic lot-sizing problemsMath. Oper. Res.200126233935718958331082.90532 – reference: PowellWBRuszczyńskiATopalogluHLearning algorithms for separable approximations of discrete stochastic optimization problemsMath. Oper. Res.200429481483621041561082.90079 – reference: ChubanovSKovalyovMYPeschEAn FPTAS for a single-item capacitated economic lot-sizing problem with monotone cost structureMath. Program.2006106245346622167901134.90003 – reference: GodfreyGAPowellWBAn adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distributionManag. Sci.2001478110111121232.90053 – reference: ChowCSTsitsiklisJNThe complexity of dynamic programmingJ. Complex.19895446648810289080685.90098 – reference: LawlerELLenstraJKRinnooy KanAHGShmoysDBGravesSCRinnooy KanAHGZipkinPHSequencing and scheduling: algorithms and complexityHandbooks in Operations Research and Management Science1993AmsterdamNorth-Holland445522 – reference: Nemirovski, A.S.: Information-based Complexity of Convex Programming. Lecture Notes (1995) – reference: NascimentoJMPowellWBDynamic programming models and algorithms for the mutual fund cash balance problemManag. Sci.20105658018151232.90341 – reference: TraubJFWasilkowskiGWWozniakowskiHInformation-Based Complexity1988New YorkAcademic Press0654.94004 – reference: Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 312–320 (1982) – reference: PorteusELHeymanDPSobelMJStochastic inventory theoryHandbook in OR & MS1990North-HollandElsevier Science Publishers B.V – reference: ChauhanSSEremeevAVRomanovaAAServakhVVWoegingerGJApproximation of the supply scheduling problemOper. Res. Lett.20053324925421082731140.90392 – reference: PhelpsESThe accumulation of risky capital: a sequential utility analysisEconometrica1962307297430126.36402 – reference: HalmanNOrlinJBSimchi-LeviDApproximating the nonlinear newsvendor and single-item stochastic lot-sizing problems when data is given by an oracleOper. Res.201260242944629350691248.90007 – reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291220121318755151049.90004 – reference: WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000121577417646861034.90014 – reference: AddaJCooperRWDynamic Economics: Quantitative Methods and Applications2003BostonThe MIT Press – reference: ChengTCEChenZLLiCLLinBTScheduling to minimize the total compression and late costsNaval Res. Logist.199845678216022010897.90125 – reference: FeigeUImmorlicaNMirrokniVSNazerzadehHPass approximation: a framework for analyzing and designing heuristicsAlgorithmica201366245047830286481298.90133 – reference: HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item inventory control with discrete demandMath. Oper. Res.200934367468525553421231.90030 – reference: PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. program.1991521–335937511261760749.90057 – reference: HochbaumDHochbaumDVarious notions of approximations: good, better, best, and moreApproximation Algorithms for NP-hard Problems1997BostonPWS Publishing Company1368.68010 – reference: VaziraniVApproximation Algorithms2001BerlinSpringer0999.68546 – reference: MittalSSchultzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124 – reference: KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ. ACM20045126328021456551317.90329 – reference: HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829 – reference: Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–1453 (2013) – reference: PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.2007382215115623521101119.90077 – reference: SwamyCShmoysDBSampling-based approximation algorithms for multistage stochastic optimizationSIAM J. Comput.2012414975100429747591253.68379 – reference: NemirovskiASInformation-based complexity of linear operator equationsJ. Complex.1992821531751167910 – reference: WangF-YJinNLiuDWeiQAdaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-error boundIEEE Trans. Neural Netw.20102212436 – reference: Simchi-LeviDChenXBramelJThe Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management20143New YorkSpringer1327.90020 – reference: BellmanRDreyfusSApplied Dynamic Programming1962PrincetonPrinceton University Press0106.34901 – reference: ArrowKJHarrisTMarschakJOptimal inventory policyEconometrica195119250272440940045.23205 – reference: HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discrete Math.20142841725179632686041408.68078 – reference: BertsekasDDynamic Programming and Optimal Control2005BelmontAthena Scientific1125.90056 – reference: LeviRRoundyRShmoysDBProvably near-optimal sampling-based policies for stochastic inventory control modelsMath. Oper. Res.20073282183923631991341.90005 – reference: KhoujaMThe single-period (news-vendor) problem: literature review and suggestions for future researchOmega1999275537553 – reference: CornuejolsGFisherMLNemhauserGLLocation of bank accounts to optimize float: an analytic study of exact and approximate algorithmsManag. Sci.19772387898104440490361.90034 – reference: WagnerHMWhitinTMDynamic version of the economic lot size modelManag. Sci.19585189961024420977.90500 – reference: De FariasDPVan RoyBThe linear programming approach to approximate dynamic programmingOper. Res.200351685086520196511165.90666 – reference: DroriYThe exact information-based complexity of smooth convex minimizationJ. Complex.20173911636057511357.68072 – reference: HalmanNNanniciniGOrlinJA computationally efficient FPTAS for convex stochastic dynamic programsSIAM J. Optim.201525131735033042691358.90116 – reference: Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: Proceedings of the Conference on Learning Theory, pp. 3–24 (2013) – reference: PowellWBApproximate Dynamic Programming: Solving the Curses of Dimensionality20112HobokenWiley1242.90002 – reference: RustJNumerical dynamic programming in economicsHandb. Comput. Econ.1996161972914166191126.65316 – reference: ElkinMPelegD(1+ϵ,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon , \beta )$$\end{document}-spanner constructions for general graphsSIAM J. Comput.200433360863120666451056.05134 – reference: SpielmanDATengS-HSmoothed analysis of algorithms: why the simplex algorithm usually takes polynomial timeJ. ACM (JACM)200451338546321458601192.90120 – reference: HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional action and scalar stateSIAM J. Optim.2019291131116339393381411.90296 – reference: Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization (2020). Available online at https://www2.isye.gatech.edu/~nemirovs/LMCOLN2020.pdf. Accessed 20 July 2021 – reference: NascimentoJMPowellWBAn optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controlsIEEE Trans. Autom. Control201358122995301031522641369.49035 – reference: FlorianMLenstraJKRinnooy KanAHGDeterministic production planning: algorithms and complexityManag. Sci.19802676696795912920445.90025 – reference: ShmoysDBSwamyCAn approximation scheme for stochastic linear programming and its application to stochastic integer programsJ. ACM2006536978101222820991326.90059 – reference: QinYWangRVakhariaAJChenYSerefMMHThe newsvendor problem: review and directions for future researchEur. J. Oper. Res.2011213236137427999561215.90005 – volume: 61 start-page: 386 issue: 2 year: 2013 ident: 1685_CR32 publication-title: Oper. Res. doi: 10.1287/opre.1120.1093 – volume: 45 start-page: 67 year: 1998 ident: 1685_CR6 publication-title: Naval Res. Logist. doi: 10.1002/(SICI)1520-6750(199802)45:1<67::AID-NAV4>3.0.CO;2-J – volume: 51 start-page: 385 issue: 3 year: 2004 ident: 1685_CR49 publication-title: J. ACM (JACM) doi: 10.1145/990308.990310 – volume-title: Dynamic Programming and Optimal Control year: 2005 ident: 1685_CR4 – volume: 30 start-page: 729 year: 1962 ident: 1685_CR37 publication-title: Econometrica doi: 10.2307/1909322 – volume-title: Approximation Algorithms for NP-hard Problems year: 1997 ident: 1685_CR25 – volume: 213 start-page: 361 issue: 2 year: 2011 ident: 1685_CR43 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.11.024 – volume: 8 start-page: 153 issue: 2 year: 1992 ident: 1685_CR33 publication-title: J. Complex. doi: 10.1016/0885-064X(92)90013-2 – volume: 52 start-page: 359 issue: 1–3 year: 1991 ident: 1685_CR40 publication-title: Math. program. doi: 10.1007/BF01582895 – volume: 29 start-page: 1131 year: 2019 ident: 1685_CR23 publication-title: SIAM J. Optim. doi: 10.1137/18M1208423 – volume: 22 start-page: 24 issue: 1 year: 2010 ident: 1685_CR53 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2076370 – volume: 1 start-page: 619 year: 1996 ident: 1685_CR44 publication-title: Handb. Comput. Econ. doi: 10.1016/S1574-0021(96)01016-7 – volume: 26 start-page: 339 issue: 2 year: 2001 ident: 1685_CR51 publication-title: Math. Oper. Res. doi: 10.1287/moor.26.2.339.10552 – volume: 27 start-page: 537 issue: 5 year: 1999 ident: 1685_CR27 publication-title: Omega doi: 10.1016/S0305-0483(99)00017-1 – ident: 1685_CR28 doi: 10.1109/SFCS.1982.61 – volume: 41 start-page: 975 issue: 4 year: 2012 ident: 1685_CR48 publication-title: SIAM J. Comput. doi: 10.1137/100789269 – volume: 2006 start-page: 486 year: 2006 ident: 1685_CR12 publication-title: Adv. Cryptol. EUROCRYPT – volume: 382 start-page: 151 issue: 2 year: 2007 ident: 1685_CR42 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2007.03.006 – volume: 91 start-page: 201 issue: 2 year: 2002 ident: 1685_CR13 publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 39 start-page: 1 year: 2017 ident: 1685_CR14 publication-title: J. Complex. doi: 10.1016/j.jco.2016.11.001 – ident: 1685_CR34 – volume: 29 start-page: 814 issue: 4 year: 2004 ident: 1685_CR41 publication-title: Math. Oper. Res. doi: 10.1287/moor.1040.0107 – volume-title: Dynamic Economics: Quantitative Methods and Applications year: 2003 ident: 1685_CR1 – volume: 33 start-page: 608 issue: 3 year: 2004 ident: 1685_CR15 publication-title: SIAM J. Comput. doi: 10.1137/S0097539701393384 – volume: 47 start-page: 1101 issue: 8 year: 2001 ident: 1685_CR19 publication-title: Manag. Sci. doi: 10.1287/mnsc.47.8.1101.10231 – start-page: 445 volume-title: Handbooks in Operations Research and Management Science year: 1993 ident: 1685_CR30 – ident: 1685_CR5 – volume: 34 start-page: 674 issue: 3 year: 2009 ident: 1685_CR22 publication-title: Math. Oper. Res. doi: 10.1287/moor.1090.0391 – volume: 5 start-page: 466 issue: 4 year: 1989 ident: 1685_CR10 publication-title: J. Complex. doi: 10.1016/0885-064X(89)90021-6 – volume: 33 start-page: 249 year: 2005 ident: 1685_CR7 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2004.04.015 – volume: 58 start-page: 2995 issue: 12 year: 2013 ident: 1685_CR36 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2013.2272973 – volume: 23 start-page: 789 issue: 8 year: 1977 ident: 1685_CR8 publication-title: Manag. Sci. doi: 10.1287/mnsc.23.8.789 – volume-title: The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management year: 2014 ident: 1685_CR45 doi: 10.1007/978-1-4614-9149-1 – volume: 5 start-page: 89 issue: 1 year: 1958 ident: 1685_CR55 publication-title: Manag. Sci. doi: 10.1287/mnsc.5.1.89 – volume: 32 start-page: 821 year: 2007 ident: 1685_CR31 publication-title: Math. Oper. Res. doi: 10.1287/moor.1070.0272 – volume: 51 start-page: 263 year: 2004 ident: 1685_CR29 publication-title: J. ACM doi: 10.1145/972639.972644 – volume: 28 start-page: 1725 issue: 4 year: 2014 ident: 1685_CR21 publication-title: SIAM J. Discrete Math. doi: 10.1137/130925153 – volume: 60 start-page: 429 issue: 2 year: 2012 ident: 1685_CR26 publication-title: Oper. Res. doi: 10.1287/opre.1110.1031 – volume: 56 start-page: 801 issue: 5 year: 2010 ident: 1685_CR35 publication-title: Manag. Sci. doi: 10.1287/mnsc.1100.1143 – volume-title: Information-Based Complexity year: 1988 ident: 1685_CR50 – volume: 66 start-page: 450 issue: 2 year: 2013 ident: 1685_CR16 publication-title: Algorithmica doi: 10.1007/s00453-012-9646-2 – volume: 51 start-page: 850 issue: 6 year: 2003 ident: 1685_CR11 publication-title: Oper. Res. doi: 10.1287/opre.51.6.850.24925 – volume: 25 start-page: 317 issue: 1 year: 2015 ident: 1685_CR24 publication-title: SIAM J. Optim. doi: 10.1137/13094774X – volume: 106 start-page: 453 issue: 2 year: 2006 ident: 1685_CR9 publication-title: Math. Program. doi: 10.1007/s10107-005-0641-0 – volume-title: Approximation Algorithms year: 2001 ident: 1685_CR52 – volume-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality year: 2011 ident: 1685_CR39 doi: 10.1002/9781118029176 – volume: 12 start-page: 57 issue: 1 year: 2000 ident: 1685_CR54 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.12.1.57.11901 – volume: 53 start-page: 978 issue: 6 year: 2006 ident: 1685_CR47 publication-title: J. ACM doi: 10.1145/1217856.1217860 – volume-title: Handbook in OR & MS year: 1990 ident: 1685_CR38 – ident: 1685_CR18 doi: 10.1137/1.9781611973105.103 – volume: 19 start-page: 250 year: 1951 ident: 1685_CR2 publication-title: Econometrica doi: 10.2307/1906813 – volume: 26 start-page: 669 issue: 7 year: 1980 ident: 1685_CR17 publication-title: Manag. Sci. doi: 10.1287/mnsc.26.7.669 – ident: 1685_CR46 – volume-title: Applied Dynamic Programming year: 1962 ident: 1685_CR3 doi: 10.1515/9781400874651 – volume: 32 start-page: 1157 issue: 4 year: 2020 ident: 1685_CR20 publication-title: INFORMS J. Comput. |
| SSID | ssj0001388 |
| Score | 2.3643782 |
| Snippet | We study the nonlinear newsvendor problem concerning goods of a non-discrete nature, and a class of stochastic dynamic programs with several application areas... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 183 |
| SubjectTerms | Approximation Calculus of Variations and Optimal Control; Optimization Combinatorics Cost function Full Length Paper Hardness Logistics Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Mechanical properties Numerical Analysis Polynomials Supply chains Theoretical |
| Title | Fully polynomial time (Σ,Π)-approximation schemes for continuous nonlinear newsvendor and continuous stochastic dynamic programs |
| URI | https://link.springer.com/article/10.1007/s10107-021-01685-4 https://www.proquest.com/docview/2727218046 |
| Volume | 195 |
| WOSCitedRecordID | wos000678489500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdr1of2Yf-6sWzZ0MNgK6vAtmRbegyjZQ9bKWwrfRPKSaaBxC1xUpbXfZLBvk8-0-4cO03btbCCwRhJ9iGdTr-z7n5i7J1MQRPJiAiDyAmFFlAMgpECXAiplkUS6ijf4y_54aE-OTFHTVJY1Ua7t1uStaVeS3aL6bdaQu5vplOhNtjDlNhmyEf_dryyv7HUuj2oldBBkyrz73dcWY6uG-Ubu6P1onPw-H7iPmGPGpDJ-0uteMoehPIZ216jHsSnryu-1mqH_SJPdM7Pz0ZzSlPGtnTmPP-w-LO3-L0rauLxn8NlliNHfziMQ8UR7nKKdB-Ws7NZxcsl6YabcELqaEM9lrvSr9dBpAmnjqihuZ-Xboz3JkCses5-HOx___RZNKczCJCpnorM62BybyiqRgbwTisJ4E0hc4Mg2CGSGsSpB1C-ANAmIHTwA1MY8qI8KsgL1kHJwkvG8yiAJC4zVWR45Yj6igQgUiEUeWayLovbQbLQUJfTCRoje0m6TL1tsbdt3dtWddnHVZvzJXHHnbXf09hbmtX4ZnBNcgLKR_xYtp8nEm2jUWmX9Vr1sM10r2xC29mxjhSKuteqw2Xx7d999X_VX7OthNIv6hi3HutMJ7Pwhm3CxXRYTd7W0-Av1IIEAA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB60CuqH-o5nq-4HQcUuXLKbZPdjKZaK10Owln5b9mY3eNCm5XIn3ld_ieD_6W_qTC65nq-gEAhhd5NhX2afyc48A_BcZWiYZETGUd9LTRpQjqJVEn2MmVFlGhsv38NBMRyaoyP7vg0Kqztv9-5IstHUK8FuCf9WS9n8zU0m9VW4pjnNDtvoHw6X-jdRxnSJWhkdtKEyv3_HD9vRz0r5l9PRZtPZvf1_4t6B9RZkiu3FrLgLV2J1D26tUA_S0_6Sr7W-D1_ZEp2Ls9PjOYcpU1vOOS9enn_fOv_2SjbE41_GiyhHQfZwPIm1ILgr2NN9XM1OZ7WoFqQbfiIYqZMODVTuq7Bah5AmfvJMDS3CvPIndG8dxOoH8HH3zcHOnmyzM0hUmZnKPJhoi2DZq0ZFDN5ohRhsqQpLINgTkholWUDUoUQ0NhJ0CCNbWraiAk2Qh7BGksVHIIp-RMVcZrrM6SoI9ZUpYl_HWBa5zXuQdIPksKUu5wwax-6SdJl721Fvu6a3ne7B62WbswVxx19rv-Cxd7yq6c3o2-AEko_5sdx2kSrSjVZnPdjspodrl3vtUj7OTkxfk6hb3XS4LP7zdx__W_VncGPvYH_gBm-H7zbgZsqhGI2_2yasTSez-ASu4-fpuJ48bZbEBQocBuQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3batwwEB3apJT2oUlvdNuk0UOgLY3I2pJt6TEkXVqaLKGXkDehlWS6kDjLerd0X_slgfxPvikzvmy2VygFg7Ely4M8Gp2xZo4ANkXiFJGM8DDoWi7RAvJB0II7G0KiRB6HKsr3aD_r99XxsT5cyOKvot3bJck6p4FYmorJ9sjn2wuJbxH9YovJFU5VwuVNWJZ4i4K6Pnw8mtviSCjVbtpKSKFJm_l9Gz9MTT8b6F9WSqsJqLfy_6Kvwr0GfLKdWlvuw41QPIC7C5SEeHUw53EtH8J38lBnbHR2MqP0ZXyW9qJnLy8vti7PX_GKkPzbsM5-ZOgnh9NQMoTBjGQaFtOzacmKmozDjhkheLStHstt4RfrIAJ1XyxRRjM_K-wpnpvAsfIRfO69-bT7lje7NnAnEjXhqVdBZ15TtI0IzlslhXNe5yLTCI4tIqxBlHjnpM-dUzogpPADnWvyrjwqzmNYQsnCE2BZNzhBHGcyT_HIEA3msXNdGUKepTrtQNR-MOMaSnPaWePEXJMxU28b7G1T9baRHXg9f2ZUE3r8tfYL0gNDox1bdrZJWkD5iDfL7GSxQJupZdKBtVZVTGMGShPTMnekuhJF3WpV47r4z-99-m_VN-D24V7P7L_rv38Gd2LK0KjC4NZgaTKehnW45b5OhuX4eTU6rgAm6Q_I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+polynomial+time+%28%CE%A3%2C%CE%A0%29-approximation+schemes+for+continuous+nonlinear+newsvendor+and+continuous+stochastic+dynamic+programs&rft.jtitle=Mathematical+programming&rft.au=Halman+Nir&rft.au=Nannicini+Giacomo&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=195&rft.issue=1-2&rft.spage=183&rft.epage=242&rft_id=info:doi/10.1007%2Fs10107-021-01685-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |