k-Pareto Optimality-Based Sorting with Maximization of Choice and Its Application to Genetic Optimization
Deterioration of the searchability of Pareto dominance-based, many-objective evolutionary optimization algorithms is a well-known problem. Alternative solutions, such as scalarization-based and indicator-based approaches, have been proposed in the literature. However, Pareto dominance-based algorith...
Gespeichert in:
| Veröffentlicht in: | Algorithms Jg. 15; H. 11; S. 420 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2022
|
| Schlagworte: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Deterioration of the searchability of Pareto dominance-based, many-objective evolutionary optimization algorithms is a well-known problem. Alternative solutions, such as scalarization-based and indicator-based approaches, have been proposed in the literature. However, Pareto dominance-based algorithms are still widely used. In this paper, we propose to redefine the calculation of Pareto-dominance. Instead of assigning solutions to non-dominated fronts, they are ranked according to the measure of dominating solutions referred to as k-Pareto optimality. In the case of probability measures, such re-definition results in an elegant and fast approximate procedure. Through experimental results on the many-objective 0/1 knapsack problem, we demonstrate the advantages of the proposed approach: (1) the approximate calculation procedure is much faster than the standard sorting by Pareto dominance; (2) it allows for achieving higher hypervolume values for both multi-objective (two objectives) and many-objective (25 objectives) optimization; (3) in the case of many-objective optimization, the increased ability to differentiate between solutions results in a better compared to NSGA-II and NSGA-III. Apart from the numerical improvements, the probabilistic procedure can be considered as a linear extension of multidimentional topological sorting. It produces almost no ties and, as opposed to other popular linear extensions, has an intuitive interpretation. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1999-4893 1999-4893 |
| DOI: | 10.3390/a15110420 |