Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications
For two matroids M 1 and M 2 with the same ground set V and two cost functions w 1 and w 2 on 2 V , we consider the problem of finding bases X 1 of M 1 and X 2 of M 2 minimizing w 1 ( X 1 ) + w 2 ( X 2 ) subject to a certain cardinality constraint on their intersection X 1 ∩ X 2 . For this problem,...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 194; číslo 1-2; s. 229 - 256 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For two matroids
M
1
and
M
2
with the same ground set
V
and two cost functions
w
1
and
w
2
on
2
V
, we consider the problem of finding bases
X
1
of
M
1
and
X
2
of
M
2
minimizing
w
1
(
X
1
)
+
w
2
(
X
2
)
subject to a certain cardinality constraint on their intersection
X
1
∩
X
2
. For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection,
arXiv:1907.04741v2
, 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is
|
X
1
∩
X
2
|
≤
k
or
|
X
1
∩
X
2
|
≥
k
; and designed a new primal-dual algorithm for the case where the constraint is
|
X
1
∩
X
2
|
=
k
. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or
M
-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games. |
|---|---|
| AbstractList | For two matroids
M
1
and
M
2
with the same ground set
V
and two cost functions
w
1
and
w
2
on
2
V
, we consider the problem of finding bases
X
1
of
M
1
and
X
2
of
M
2
minimizing
w
1
(
X
1
)
+
w
2
(
X
2
)
subject to a certain cardinality constraint on their intersection
X
1
∩
X
2
. For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection,
arXiv:1907.04741v2
, 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is
|
X
1
∩
X
2
|
≤
k
or
|
X
1
∩
X
2
|
≥
k
; and designed a new primal-dual algorithm for the case where the constraint is
|
X
1
∩
X
2
|
=
k
. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or
M
-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games. For two matroids M1 and M2 with the same ground set V and two cost functions w1 and w2 on 2V, we consider the problem of finding bases X1 of M1 and X2 of M2 minimizing w1(X1)+w2(X2) subject to a certain cardinality constraint on their intersection X1∩X2. For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection, arXiv:1907.04741v2, 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is |X1∩X2|≤k or |X1∩X2|≥k; and designed a new primal-dual algorithm for the case where the constraint is |X1∩X2|=k. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or M-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games. For two matroids [Formula omitted] and [Formula omitted] with the same ground set V and two cost functions [Formula omitted] and [Formula omitted] on [Formula omitted], we consider the problem of finding bases [Formula omitted] of [Formula omitted] and [Formula omitted] of [Formula omitted] minimizing [Formula omitted] subject to a certain cardinality constraint on their intersection [Formula omitted]. For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection, arXiv:1907.04741v2, 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is [Formula omitted] or [Formula omitted]; and designed a new primal-dual algorithm for the case where the constraint is [Formula omitted]. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or [Formula omitted]-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games. |
| Audience | Academic |
| Author | Iwamasa, Yuni Takazawa, Kenjiro |
| Author_xml | – sequence: 1 givenname: Yuni orcidid: 0000-0002-6794-3543 surname: Iwamasa fullname: Iwamasa, Yuni email: iwamasa@i.kyoto-u.ac.jp organization: Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University – sequence: 2 givenname: Kenjiro orcidid: 0000-0002-7662-7374 surname: Takazawa fullname: Takazawa, Kenjiro organization: Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University |
| BookMark | eNp9kUFP3DAQhS0EUhfoH-jJUq-Ejh3HyXJDqNBKIC70bDnOGIyyTmp7Kfx7hk1RpR6QDyM9vc-jN--Q7ccpImNfBJwKgPZbFiCgrUCKCoSWTSX32EqoWldKK73PVgAkNlrAJ3aY8yMAiLrrVizdziVs7Mg3tqQpDLy3GTP_E8oDD7FgyuhKmCJ3U8wlWdLyGX-y49YWHN6pfMJvKnI84TP327gjSLNx4OUBQ-J2nsfg7E4_Zgfejhk__51H7Nfl97uLH9X17dXPi_PrytVNVyq97hoptPcW1Np69NArgUpiK7z0yvVi0Kg8iW0vlBu0GKTu1444p0Ha-oh9Xf6d0_R7i7mYx2mbIq00UndCrZtW1-Q6XVz3dkQTop8opaM34CZQJPSB9PMWOtVJ1SgC5AK4NOWc0Js50QXTixFg3sowSxmGyjC7MowkqPsPcqHszvF20_FjtF7QTHviPaZ_MT6gXgFdR6IR |
| CitedBy_id | crossref_primary_10_1007_s10107_021_01642_1 |
| Cites_doi | 10.1137/S1052623499352012 10.1007/s11590-016-1057-x 10.1016/S0167-5060(08)70734-9 10.1287/moor.7.3.334 10.1006/aima.1996.0084 10.1016/0196-6774(81)90032-8 10.1007/s004930050047 10.1145/351827.384253 10.1002/net.3230120102 10.1007/978-3-540-76796-1_11 10.1287/moor.24.1.95 10.1016/0893-9659(90)90009-Z 10.1145/1455248.1455249 10.1137/16M1107450 10.1007/978-3-319-00795-3_22 10.1016/0001-8708(92)90028-J 10.1007/s10107-016-1053-z 10.1007/s10878-016-0089-6 10.1145/28869.28874 10.1007/s10107-004-0562-3 10.1137/S0895480195280009 10.1093/acprof:oso/9780198566946.001.0001 10.1007/BF01737559 10.1016/j.disopt.2019.03.004 10.1007/BF01681329 10.1006/game.1996.0044 10.1137/1.9780898718508 10.1007/s10878-019-00435-9 10.1137/S0895480195279994 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-021-01625-2 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 256 |
| ExternalDocumentID | A708482454 10_1007_s10107_021_01625_2 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: JP17K00029; 20K23323 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Japan Society for the Promotion of Science grantid: JP19J01302; JP16K16012 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Japan Society for the Promotion of Science grantid: JP26280004 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Japan Society for the Promotion of Science grantid: 20H05795 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Japan Society for the Promotion of Science grantid: JP20K11699 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-6985216ffa049afef0b41e42e71f2f4cb1d6e4fb417b14cd61d26b9c698c602a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619886400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:41:15 EDT 2025 Sat Nov 29 10:25:23 EST 2025 Sat Nov 29 03:34:02 EST 2025 Tue Nov 18 20:55:01 EST 2025 Fri Feb 21 02:46:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90C27 (Mathematical programming: Combinatorial optimization Combinatorial optimization problem with interaction costs Congestion game Valuated independent assignment 68Q25 (Theory of computing: Analysis of algorithms and problem complexity) M-convex submodular flow Recoverable robust matroid basis problem Valuated matroid intersection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-6985216ffa049afef0b41e42e71f2f4cb1d6e4fb417b14cd61d26b9c698c602a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7662-7374 0000-0002-6794-3543 |
| PQID | 2681495763 |
| PQPubID | 25307 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2681495763 gale_infotracacademiconefile_A708482454 crossref_primary_10_1007_s10107_021_01625_2 crossref_citationtrail_10_1007_s10107_021_01625_2 springer_journals_10_1007_s10107_021_01625_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | Kasperski, Kurpisz, Zieliíski (CR19) 2014; 2012 Fredman, Tarjan (CR10) 1987; 34 Hassin (CR13) 1982; 12 Murota, Cook, Lovász, Vygen (CR33) 2009 Lawler, Martel (CR22) 1982; 16 Iwata, Shigeno (CR18) 2003; 13 Murota (CR31) 2000 Büsing (CR3) 2011 Hradovich, Kasperski, Zieliński (CR15) 2017; 11 Frank (CR9) 1981; 2 Schrijver (CR38) 2003 Monderer, Shapley (CR25) 1996; 14 Ackermann, Röglin, Vöcking (CR1) 2008; 55 Murota (CR34) 2016; 1 Hradovich, Kasperski, Zielínski (CR14) 2017; 34 Murota (CR32) 2003 Lawler, Martel (CR21) 1982; 7 Murota (CR30) 1999; 19 Rosenthal (CR37) 1973; 2 Dress, Wenzel (CR6) 1992; 93 Oxley (CR36) 2011 Murota (CR29) 1998; 83 Buchheim, Kurtz (CR2) 2017; 163 CR4 Edmonds, Giles (CR8) 1977; 1 Harks, Klimm, Peis (CR12) 2018; 28 CR24 Fujishige (CR11) 2005 Murota (CR28) 1996; 9 Iri, Tomizawa (CR16) 1976; 19 Lawler (CR20) 1975; 9 Werneck, Setubal (CR41) 2000; 5 Lendl, Ćustić, Punnen (CR23) 2019; 33 Murota, Shioura (CR35) 1999; 24 CR40 Iwata, Moriguchi, Murota (CR17) 2005; 103 Murota (CR27) 1996; 9 Takazawa (CR39) 2019; 38 Edmonds, Guy, Hanani, Sauer, Schönheim (CR7) 1970 Dress, Wenzel (CR5) 1990; 3 Murota (CR26) 1996; 124 EL Lawler (1625_CR21) 1982; 7 K Murota (1625_CR34) 2016; 1 K Takazawa (1625_CR39) 2019; 38 K Murota (1625_CR28) 1996; 9 K Murota (1625_CR35) 1999; 24 J Oxley (1625_CR36) 2011 EL Lawler (1625_CR22) 1982; 16 AWM Dress (1625_CR6) 1992; 93 S Iwata (1625_CR18) 2003; 13 A Kasperski (1625_CR19) 2014; 2012 K Murota (1625_CR29) 1998; 83 M Hradovich (1625_CR15) 2017; 11 K Murota (1625_CR31) 2000 ML Fredman (1625_CR10) 1987; 34 C Buchheim (1625_CR2) 2017; 163 1625_CR4 J Edmonds (1625_CR7) 1970 T Harks (1625_CR12) 2018; 28 RF Werneck (1625_CR41) 2000; 5 S Fujishige (1625_CR11) 2005 K Murota (1625_CR30) 1999; 19 AWM Dress (1625_CR5) 1990; 3 K Murota (1625_CR26) 1996; 124 R Hassin (1625_CR13) 1982; 12 A Frank (1625_CR9) 1981; 2 H Ackermann (1625_CR1) 2008; 55 K Murota (1625_CR27) 1996; 9 D Monderer (1625_CR25) 1996; 14 RW Rosenthal (1625_CR37) 1973; 2 S Lendl (1625_CR23) 2019; 33 M Hradovich (1625_CR14) 2017; 34 1625_CR24 A Schrijver (1625_CR38) 2003 C Büsing (1625_CR3) 2011 S Iwata (1625_CR17) 2005; 103 K Murota (1625_CR33) 2009 J Edmonds (1625_CR8) 1977; 1 K Murota (1625_CR32) 2003 1625_CR40 EL Lawler (1625_CR20) 1975; 9 M Iri (1625_CR16) 1976; 19 |
| References_xml | – volume: 13 start-page: 204 issue: 1 year: 2003 end-page: 211 ident: CR18 article-title: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization publication-title: SIAM J. Optim. doi: 10.1137/S1052623499352012 – volume: 11 start-page: 17 issue: 1 year: 2017 end-page: 30 ident: CR15 article-title: The recoverable robust spanning tree problem with interval costs is polynomially solvable publication-title: Optim. Lett. doi: 10.1007/s11590-016-1057-x – volume: 19 start-page: 32 issue: 1 year: 1976 end-page: 57 ident: CR16 article-title: An algorithm for finding an optimal independent assignment publication-title: J. Op. Res. Soc. Jpn. – start-page: 69 year: 1970 end-page: 87 ident: CR7 article-title: Submodular functions, matroids, and certain polyhedra publication-title: Combinatorial Structures and Their Applications – volume: 1 start-page: 185 year: 1977 end-page: 204 ident: CR8 article-title: A min–max relation for submodular functions on graphs publication-title: Ann. Discrete Math. doi: 10.1016/S0167-5060(08)70734-9 – year: 2005 ident: CR11 publication-title: Submodular Functions and Optimization – volume: 7 start-page: 334 issue: 3 year: 1982 end-page: 347 ident: CR21 article-title: Computing maximal polymatroidal network flows publication-title: Math. Oper. Res. doi: 10.1287/moor.7.3.334 – ident: CR4 – volume: 16 start-page: 189 year: 1982 end-page: 200 ident: CR22 article-title: Flow network formulations of polymatroid optimization problems publication-title: Ann. Disc. Math. – volume: 124 start-page: 272 year: 1996 end-page: 311 ident: CR26 article-title: Convexity and Steinitz’s exchange property publication-title: Adv. Math. doi: 10.1006/aima.1996.0084 – year: 2000 ident: CR31 publication-title: Matrices and Matroids for Systems Analysis – volume: 2 start-page: 328 year: 1981 end-page: 336 ident: CR9 article-title: A weighted matroid intersection algorithm publication-title: J. Algorithms doi: 10.1016/0196-6774(81)90032-8 – volume: 19 start-page: 87 year: 1999 end-page: 109 ident: CR30 article-title: Submodular flow problem with a nonseparable cost function publication-title: Combinatorica doi: 10.1007/s004930050047 – volume: 5 start-page: 11 year: 2000 ident: CR41 article-title: Finding minimum congestion spanning trees publication-title: ACM J. Exp. Algorithmics doi: 10.1145/351827.384253 – volume: 12 start-page: 1 issue: 1 year: 1982 end-page: 21 ident: CR13 article-title: Minimum cost flow with set-constraints publication-title: Networks doi: 10.1002/net.3230120102 – start-page: 219 year: 2009 end-page: 260 ident: CR33 article-title: Recent developments in discrete convex analysis publication-title: Research Trends in Combinatorial Optimization, Chapter 11 doi: 10.1007/978-3-540-76796-1_11 – volume: 24 start-page: 95 issue: 1 year: 1999 end-page: 105 ident: CR35 article-title: M-convex function on generalized polymatroid publication-title: Math. Oper. Res. doi: 10.1287/moor.24.1.95 – year: 2011 ident: CR3 publication-title: Recoverable Robustness in Combinatorial Optimization – volume: 1 start-page: 151 issue: 1 year: 2016 end-page: 273 ident: CR34 article-title: Discrete convex analysis: a tool for economics and game theory publication-title: J. Mech. Instit. Des. – volume: 3 start-page: 33 issue: 2 year: 1990 end-page: 35 ident: CR5 article-title: Valuated matroids: a new look at the greedy algorithm publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(90)90009-Z – ident: CR40 – year: 2003 ident: CR38 publication-title: Combinatorial Optimization: Polyhedra and Efficiency – volume: 55 start-page: 25:1 issue: 6 year: 2008 end-page: 25:22 ident: CR1 article-title: On the impact of combinatorial structure on congestion games publication-title: J. ACM doi: 10.1145/1455248.1455249 – volume: 28 start-page: 2222 year: 2018 end-page: 2245 ident: CR12 article-title: Sensitivity analysis for convex separable optimization over integral polymatroids publication-title: SIAM J. Optim. doi: 10.1137/16M1107450 – volume: 2012 start-page: 147 year: 2014 end-page: 153 ident: CR19 article-title: Recoverable robust combinatorial optimization problems publication-title: Oper. Res. Proceed. doi: 10.1007/978-3-319-00795-3_22 – volume: 93 start-page: 214 year: 1992 end-page: 250 ident: CR6 article-title: Valuated matroids publication-title: Adv. Math. doi: 10.1016/0001-8708(92)90028-J – volume: 163 start-page: 1 year: 2017 end-page: 23 ident: CR2 article-title: Min-max-min robust combinatorial optimization publication-title: Math. Program. A doi: 10.1007/s10107-016-1053-z – volume: 34 start-page: 554 issue: 2 year: 2017 end-page: 573 ident: CR14 article-title: Recoverable robust spanning tree problem under interval uncertainty representations publication-title: J. Combin. Optim. doi: 10.1007/s10878-016-0089-6 – volume: 83 start-page: 313 year: 1998 end-page: 371 ident: CR29 article-title: Discrete convex analysis publication-title: Math. Program. – volume: 34 start-page: 596 year: 1987 end-page: 615 ident: CR10 article-title: Fibonacci heaps and their uses in improved network optimization algorithms publication-title: J. Assoc. Comput. Mach. doi: 10.1145/28869.28874 – volume: 103 start-page: 181 year: 2005 end-page: 202 ident: CR17 article-title: A capacity scaling algorithm for M-convex submodular flow publication-title: Math. Program. A doi: 10.1007/s10107-004-0562-3 – volume: 9 start-page: 562 year: 1996 end-page: 576 ident: CR28 article-title: Valuated matroid intersection, II: algorithms publication-title: SIAM J. Disc. Math. doi: 10.1137/S0895480195280009 – year: 2011 ident: CR36 publication-title: Matroid Theory doi: 10.1093/acprof:oso/9780198566946.001.0001 – volume: 2 start-page: 65 year: 1973 end-page: 67 ident: CR37 article-title: A class of games possessing pure-strategy Nash equilibria publication-title: Int. J. Game Theory doi: 10.1007/BF01737559 – volume: 33 start-page: 101 year: 2019 end-page: 117 ident: CR23 article-title: Combinatorial optimization with interaction costs: complexity and solvable cases publication-title: Disc. Optim. doi: 10.1016/j.disopt.2019.03.004 – volume: 9 start-page: 31 year: 1975 end-page: 56 ident: CR20 article-title: Matroid intersection algorithms publication-title: Math. Program. doi: 10.1007/BF01681329 – volume: 14 start-page: 124 year: 1996 end-page: 143 ident: CR25 article-title: Potential games publication-title: Games Econ. Behav. doi: 10.1006/game.1996.0044 – year: 2003 ident: CR32 publication-title: Discrete Convex Analysis doi: 10.1137/1.9780898718508 – volume: 38 start-page: 1043 year: 2019 end-page: 1065 ident: CR39 article-title: Generalizations of weighted matroid congestion games: pure Nash equilibrium, sensitivity analysis, and discrete convex function publication-title: J. Combin. Optim. doi: 10.1007/s10878-019-00435-9 – ident: CR24 – volume: 9 start-page: 545 year: 1996 end-page: 561 ident: CR27 article-title: Valuated matroid intersection, I: optimality criteria publication-title: SIAM J. Disc. Math. doi: 10.1137/S0895480195279994 – volume: 38 start-page: 1043 year: 2019 ident: 1625_CR39 publication-title: J. Combin. Optim. doi: 10.1007/s10878-019-00435-9 – volume-title: Discrete Convex Analysis year: 2003 ident: 1625_CR32 doi: 10.1137/1.9780898718508 – volume: 124 start-page: 272 year: 1996 ident: 1625_CR26 publication-title: Adv. Math. doi: 10.1006/aima.1996.0084 – volume: 163 start-page: 1 year: 2017 ident: 1625_CR2 publication-title: Math. Program. A doi: 10.1007/s10107-016-1053-z – volume: 11 start-page: 17 issue: 1 year: 2017 ident: 1625_CR15 publication-title: Optim. Lett. doi: 10.1007/s11590-016-1057-x – volume: 103 start-page: 181 year: 2005 ident: 1625_CR17 publication-title: Math. Program. A doi: 10.1007/s10107-004-0562-3 – ident: 1625_CR24 – start-page: 219 volume-title: Research Trends in Combinatorial Optimization, Chapter 11 year: 2009 ident: 1625_CR33 doi: 10.1007/978-3-540-76796-1_11 – volume: 3 start-page: 33 issue: 2 year: 1990 ident: 1625_CR5 publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(90)90009-Z – volume: 34 start-page: 554 issue: 2 year: 2017 ident: 1625_CR14 publication-title: J. Combin. Optim. doi: 10.1007/s10878-016-0089-6 – volume-title: Combinatorial Optimization: Polyhedra and Efficiency year: 2003 ident: 1625_CR38 – volume: 16 start-page: 189 year: 1982 ident: 1625_CR22 publication-title: Ann. Disc. Math. – volume-title: Matrices and Matroids for Systems Analysis year: 2000 ident: 1625_CR31 – volume: 33 start-page: 101 year: 2019 ident: 1625_CR23 publication-title: Disc. Optim. doi: 10.1016/j.disopt.2019.03.004 – volume: 2 start-page: 65 year: 1973 ident: 1625_CR37 publication-title: Int. J. Game Theory doi: 10.1007/BF01737559 – volume: 55 start-page: 25:1 issue: 6 year: 2008 ident: 1625_CR1 publication-title: J. ACM doi: 10.1145/1455248.1455249 – volume: 19 start-page: 87 year: 1999 ident: 1625_CR30 publication-title: Combinatorica doi: 10.1007/s004930050047 – volume: 83 start-page: 313 year: 1998 ident: 1625_CR29 publication-title: Math. Program. – volume: 2 start-page: 328 year: 1981 ident: 1625_CR9 publication-title: J. Algorithms doi: 10.1016/0196-6774(81)90032-8 – volume-title: Submodular Functions and Optimization year: 2005 ident: 1625_CR11 – volume: 9 start-page: 31 year: 1975 ident: 1625_CR20 publication-title: Math. Program. doi: 10.1007/BF01681329 – volume: 1 start-page: 151 issue: 1 year: 2016 ident: 1625_CR34 publication-title: J. Mech. Instit. Des. – volume: 9 start-page: 545 year: 1996 ident: 1625_CR27 publication-title: SIAM J. Disc. Math. doi: 10.1137/S0895480195279994 – volume: 5 start-page: 11 year: 2000 ident: 1625_CR41 publication-title: ACM J. Exp. Algorithmics doi: 10.1145/351827.384253 – volume: 13 start-page: 204 issue: 1 year: 2003 ident: 1625_CR18 publication-title: SIAM J. Optim. doi: 10.1137/S1052623499352012 – volume: 12 start-page: 1 issue: 1 year: 1982 ident: 1625_CR13 publication-title: Networks doi: 10.1002/net.3230120102 – ident: 1625_CR40 – volume: 28 start-page: 2222 year: 2018 ident: 1625_CR12 publication-title: SIAM J. Optim. doi: 10.1137/16M1107450 – volume: 2012 start-page: 147 year: 2014 ident: 1625_CR19 publication-title: Oper. Res. Proceed. doi: 10.1007/978-3-319-00795-3_22 – volume: 24 start-page: 95 issue: 1 year: 1999 ident: 1625_CR35 publication-title: Math. Oper. Res. doi: 10.1287/moor.24.1.95 – volume: 93 start-page: 214 year: 1992 ident: 1625_CR6 publication-title: Adv. Math. doi: 10.1016/0001-8708(92)90028-J – volume: 1 start-page: 185 year: 1977 ident: 1625_CR8 publication-title: Ann. Discrete Math. doi: 10.1016/S0167-5060(08)70734-9 – volume: 19 start-page: 32 issue: 1 year: 1976 ident: 1625_CR16 publication-title: J. Op. Res. Soc. Jpn. – volume: 34 start-page: 596 year: 1987 ident: 1625_CR10 publication-title: J. Assoc. Comput. Mach. doi: 10.1145/28869.28874 – volume-title: Recoverable Robustness in Combinatorial Optimization year: 2011 ident: 1625_CR3 – ident: 1625_CR4 – volume: 14 start-page: 124 year: 1996 ident: 1625_CR25 publication-title: Games Econ. Behav. doi: 10.1006/game.1996.0044 – volume: 7 start-page: 334 issue: 3 year: 1982 ident: 1625_CR21 publication-title: Math. Oper. Res. doi: 10.1287/moor.7.3.334 – start-page: 69 volume-title: Combinatorial Structures and Their Applications year: 1970 ident: 1625_CR7 – volume-title: Matroid Theory year: 2011 ident: 1625_CR36 doi: 10.1093/acprof:oso/9780198566946.001.0001 – volume: 9 start-page: 562 year: 1996 ident: 1625_CR28 publication-title: SIAM J. Disc. Math. doi: 10.1137/S0895480195280009 |
| SSID | ssj0001388 |
| Score | 2.3597398 |
| Snippet | For two matroids
M
1
and
M
2
with the same ground set
V
and two cost functions
w
1
and
w
2
on
2
V
, we consider the problem of finding bases
X
1
of
M
1
and
X
2... For two matroids [Formula omitted] and [Formula omitted] with the same ground set V and two cost functions [Formula omitted] and [Formula omitted] on [Formula... For two matroids M1 and M2 with the same ground set V and two cost functions w1 and w2 on 2V, we consider the problem of finding bases X1 of M1 and X2 of M2... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 229 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorial analysis Combinatorics Convex analysis Cost function Full Length Paper Intersections Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Theoretical |
| Title | Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications |
| URI | https://link.springer.com/article/10.1007/s10107-021-01625-2 https://www.proquest.com/docview/2681495763 |
| Volume | 194 |
| WOSCitedRecordID | wos000619886400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW1xf5CB4cAObbJum3kQULz7whbeQ5gGCW2W7ij_fmWy7rk_QY9ukTTPJPDIz3xCy41TORaEcS62XDOwNw0xhBMutDLk0wmVexWIT2dmZurvLL-qksKqJdm9ckpFTjyW7cTxWE2j-gtbOgPFOgbhTuB0vr25H_Jd3lWoKtaJ2UKfKfP-OD-LoM1P-4h2NQud4_n_DXSBztZJJD4arYpFM-HKJzI5BD8LV6QivtVom_XPgHD3o0sOj8XtHUbhVFA9pKQJK9KsYsVVSi-okVpUYVPt0CBTuXdOratNTFsPYXynKy7ik29SUjkZ_BB33lq-Qm-Oj68MTVldjYLabqgGTuQJRL0MwYFSY4EOnSLhPhM94ECGxBXfSJwFuZgVPrJPcCVkAzXNlZUeY7iqZLB9Lv0ZoLn0WUpmBNgcaghPAcIuOTzvSi1w6J1uEN0TRtoYqx3970O8gyzi7GmZXx9nVokX2Rn2ehkAdv7beRVpr3MXwZmvqZAQYH-Jh6YMM6wyIJE1aZLNZDrre3pUWUqFlCby5RdoN-d8f__zd9b813yAzAtMtYnjwJpkc9J_9Fpm2L4P7qr8dl_0bI6b7qQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-hgcT2AIxtWkdhfkDiYbVUu4nj8FYhpiHWgmCb9mY5_pAmsYCagvjzd-cmXYExaXtMYieOz74P393vAF57XQpZac9zFxRHe8NyW1nJS6diqaz0RdCp2EQxnerz8_JzmxTWdNHunUsyceqVZDdBx2qSzF_U2jky3ocZSiwK5Pvy9WzJf8VI665QK2kHbarMze_4Qxz9zZT_8Y4moXP49H7DfQZPWiWTjRerYhMehPo5bKxAD-LVZInX2mzB7BNyjkvscklH4xeekXBrGB3SMgKUmDUpYqtmjtRJqioxb96yBVB48F2vZsAmPIWx_2YkL9OSHjBbe5b8EWzVW74Np4fvT94d8bYaA3ejXM-5KjWKehWjRaPCxhCHVSZCJkMhooyZq4RXIYt4s6hE5rwSXqoKaV5qp4bSjnZgrf5eh11gpQpFzFWB2hxqCF4iw62GIR-qIEvlveqB6IhiXAtVTv_2zVyDLNPsGpxdk2bXyB4cLPv8WAB13Nr6DdHa0C7GNzvbJiPg-AgPy4wLqjMgszzrQb9bDqbd3o2RSpNliby5B4OO_NeP___dvbs134fHRyeTY3P8YfrxBaxLSr1IocJ9WJvPfoaX8Mj9ml80s1dpC1wB9jr-jQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hglA58GorFgr4gMSha3XtTRyHWwWsQNClUmnVm-X4Ia3UhmoTED-fGW-yXUqLVPWYxE4cezwPz8w3AG-8LoWstOe5C4qjvWG5razkpVOxVFb6IuhUbKKYTvXJSXmwksWfot17l-Qip4FQmup299zH3ZXEN0FHbJJMYdTgOTLhuxkVDSJ7_fB4yYvFWOu-aCtpCl3azNXv-Es0XWbQ_3hKkwCaPLr90B_Dw075ZHsLankCd0L9FB6sQBLi1f4Sx7XZgPk35Chn2OWMjsxnnpHQaxgd3jICmpg3KZKrZo7UTKo20Tbv2AJAPPi-VzNk-zyFt_9mJEcTqQ-ZrT1Lfgq26kXfhKPJx-_vP_GuSgN341y3XJUaVQAVo0Vjw8YQR1UmQiZDIaKMmauEVyGLeLOoROa8El6qCmmh1E6NpB1vwVr9ow7PgJUqFDFXBWp5qDl4iYy4GoV8pIIslfdqAKJfIOM6CHP6t1NzAb5Ms2twdk2aXSMHsLPsc74A8Phv67e07oZ2N77Z2S5JAcdHOFlmr6D6AzLLswFs96Rhum3fGKk0WZzIswcw7Enh4vH1331-s-av4f7Bh4n5-nn65QWsS8rISBHE27DWzn-Gl3DP_WpnzfxV2g1_AJEBB4A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+matroid+bases+with+intersection+constraints%3A+valuated+matroids%2C+M-convex+functions%2C+and+their+applications&rft.jtitle=Mathematical+programming&rft.au=Iwamasa+Yuni&rft.au=Takazawa+Kenjiro&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=194&rft.issue=1-2&rft.spage=229&rft.epage=256&rft_id=info:doi/10.1007%2Fs10107-021-01625-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |