Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications

For two matroids M 1 and M 2 with the same ground set V and two cost functions w 1 and w 2 on 2 V , we consider the problem of finding bases X 1 of M 1 and X 2 of M 2 minimizing w 1 ( X 1 ) + w 2 ( X 2 ) subject to a certain cardinality constraint on their intersection X 1 ∩ X 2 . For this problem,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 194; H. 1-2; S. 229 - 256
Hauptverfasser: Iwamasa, Yuni, Takazawa, Kenjiro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For two matroids M 1 and M 2 with the same ground set V and two cost functions w 1 and w 2 on 2 V , we consider the problem of finding bases X 1 of M 1 and X 2 of M 2 minimizing w 1 ( X 1 ) + w 2 ( X 2 ) subject to a certain cardinality constraint on their intersection X 1 ∩ X 2 . For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection, arXiv:1907.04741v2 , 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is | X 1 ∩ X 2 | ≤ k or | X 1 ∩ X 2 | ≥ k ; and designed a new primal-dual algorithm for the case where the constraint is | X 1 ∩ X 2 | = k . The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or M -convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games.
AbstractList For two matroids M 1 and M 2 with the same ground set V and two cost functions w 1 and w 2 on 2 V , we consider the problem of finding bases X 1 of M 1 and X 2 of M 2 minimizing w 1 ( X 1 ) + w 2 ( X 2 ) subject to a certain cardinality constraint on their intersection X 1 ∩ X 2 . For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection, arXiv:1907.04741v2 , 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is | X 1 ∩ X 2 | ≤ k or | X 1 ∩ X 2 | ≥ k ; and designed a new primal-dual algorithm for the case where the constraint is | X 1 ∩ X 2 | = k . The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or M -convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games.
For two matroids M1 and M2 with the same ground set V and two cost functions w1 and w2 on 2V, we consider the problem of finding bases X1 of M1 and X2 of M2 minimizing w1(X1)+w2(X2) subject to a certain cardinality constraint on their intersection X1∩X2. For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection, arXiv:1907.04741v2, 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is |X1∩X2|≤k or |X1∩X2|≥k; and designed a new primal-dual algorithm for the case where the constraint is |X1∩X2|=k. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or M-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games.
For two matroids [Formula omitted] and [Formula omitted] with the same ground set V and two cost functions [Formula omitted] and [Formula omitted] on [Formula omitted], we consider the problem of finding bases [Formula omitted] of [Formula omitted] and [Formula omitted] of [Formula omitted] minimizing [Formula omitted] subject to a certain cardinality constraint on their intersection [Formula omitted]. For this problem, Lendl et al. (Matroid bases with cardinality constraints on the intersection, arXiv:1907.04741v2, 2019) discussed modular cost functions: they reduced the problem to weighted matroid intersection for the case where the cardinality constraint is [Formula omitted] or [Formula omitted]; and designed a new primal-dual algorithm for the case where the constraint is [Formula omitted]. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or [Formula omitted]-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in the recoverable robust matroid basis problem, combinatorial optimization problems with interaction costs, and matroid congestion games.
Audience Academic
Author Iwamasa, Yuni
Takazawa, Kenjiro
Author_xml – sequence: 1
  givenname: Yuni
  orcidid: 0000-0002-6794-3543
  surname: Iwamasa
  fullname: Iwamasa, Yuni
  email: iwamasa@i.kyoto-u.ac.jp
  organization: Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University
– sequence: 2
  givenname: Kenjiro
  orcidid: 0000-0002-7662-7374
  surname: Takazawa
  fullname: Takazawa, Kenjiro
  organization: Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University
BookMark eNp9kUFP3DAQhS0EUhfoH-jJUq-Ejh3HyXJDqNBKIC70bDnOGIyyTmp7Kfx7hk1RpR6QDyM9vc-jN--Q7ccpImNfBJwKgPZbFiCgrUCKCoSWTSX32EqoWldKK73PVgAkNlrAJ3aY8yMAiLrrVizdziVs7Mg3tqQpDLy3GTP_E8oDD7FgyuhKmCJ3U8wlWdLyGX-y49YWHN6pfMJvKnI84TP327gjSLNx4OUBQ-J2nsfg7E4_Zgfejhk__51H7Nfl97uLH9X17dXPi_PrytVNVyq97hoptPcW1Np69NArgUpiK7z0yvVi0Kg8iW0vlBu0GKTu1444p0Ha-oh9Xf6d0_R7i7mYx2mbIq00UndCrZtW1-Q6XVz3dkQTop8opaM34CZQJPSB9PMWOtVJ1SgC5AK4NOWc0Js50QXTixFg3sowSxmGyjC7MowkqPsPcqHszvF20_FjtF7QTHviPaZ_MT6gXgFdR6IR
CitedBy_id crossref_primary_10_1007_s10107_021_01642_1
Cites_doi 10.1137/S1052623499352012
10.1007/s11590-016-1057-x
10.1016/S0167-5060(08)70734-9
10.1287/moor.7.3.334
10.1006/aima.1996.0084
10.1016/0196-6774(81)90032-8
10.1007/s004930050047
10.1145/351827.384253
10.1002/net.3230120102
10.1007/978-3-540-76796-1_11
10.1287/moor.24.1.95
10.1016/0893-9659(90)90009-Z
10.1145/1455248.1455249
10.1137/16M1107450
10.1007/978-3-319-00795-3_22
10.1016/0001-8708(92)90028-J
10.1007/s10107-016-1053-z
10.1007/s10878-016-0089-6
10.1145/28869.28874
10.1007/s10107-004-0562-3
10.1137/S0895480195280009
10.1093/acprof:oso/9780198566946.001.0001
10.1007/BF01737559
10.1016/j.disopt.2019.03.004
10.1007/BF01681329
10.1006/game.1996.0044
10.1137/1.9780898718508
10.1007/s10878-019-00435-9
10.1137/S0895480195279994
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01625-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 256
ExternalDocumentID A708482454
10_1007_s10107_021_01625_2
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP17K00029; 20K23323
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP19J01302; JP16K16012
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP26280004
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: 20H05795
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP20K11699
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-6985216ffa049afef0b41e42e71f2f4cb1d6e4fb417b14cd61d26b9c698c602a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619886400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:41:15 EDT 2025
Sat Nov 29 10:25:23 EST 2025
Sat Nov 29 03:34:02 EST 2025
Tue Nov 18 20:55:01 EST 2025
Fri Feb 21 02:46:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C27 (Mathematical programming: Combinatorial optimization
Combinatorial optimization problem with interaction costs
Congestion game
Valuated independent assignment
68Q25 (Theory of computing: Analysis of algorithms and problem complexity)
M-convex submodular flow
Recoverable robust matroid basis problem
Valuated matroid intersection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-6985216ffa049afef0b41e42e71f2f4cb1d6e4fb417b14cd61d26b9c698c602a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7662-7374
0000-0002-6794-3543
PQID 2681495763
PQPubID 25307
PageCount 28
ParticipantIDs proquest_journals_2681495763
gale_infotracacademiconefile_A708482454
crossref_primary_10_1007_s10107_021_01625_2
crossref_citationtrail_10_1007_s10107_021_01625_2
springer_journals_10_1007_s10107_021_01625_2
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Kasperski, Kurpisz, Zieliíski (CR19) 2014; 2012
Fredman, Tarjan (CR10) 1987; 34
Hassin (CR13) 1982; 12
Murota, Cook, Lovász, Vygen (CR33) 2009
Lawler, Martel (CR22) 1982; 16
Iwata, Shigeno (CR18) 2003; 13
Murota (CR31) 2000
Büsing (CR3) 2011
Hradovich, Kasperski, Zieliński (CR15) 2017; 11
Frank (CR9) 1981; 2
Schrijver (CR38) 2003
Monderer, Shapley (CR25) 1996; 14
Ackermann, Röglin, Vöcking (CR1) 2008; 55
Murota (CR34) 2016; 1
Hradovich, Kasperski, Zielínski (CR14) 2017; 34
Murota (CR32) 2003
Lawler, Martel (CR21) 1982; 7
Murota (CR30) 1999; 19
Rosenthal (CR37) 1973; 2
Dress, Wenzel (CR6) 1992; 93
Oxley (CR36) 2011
Murota (CR29) 1998; 83
Buchheim, Kurtz (CR2) 2017; 163
CR4
Edmonds, Giles (CR8) 1977; 1
Harks, Klimm, Peis (CR12) 2018; 28
CR24
Fujishige (CR11) 2005
Murota (CR28) 1996; 9
Iri, Tomizawa (CR16) 1976; 19
Lawler (CR20) 1975; 9
Werneck, Setubal (CR41) 2000; 5
Lendl, Ćustić, Punnen (CR23) 2019; 33
Murota, Shioura (CR35) 1999; 24
CR40
Iwata, Moriguchi, Murota (CR17) 2005; 103
Murota (CR27) 1996; 9
Takazawa (CR39) 2019; 38
Edmonds, Guy, Hanani, Sauer, Schönheim (CR7) 1970
Dress, Wenzel (CR5) 1990; 3
Murota (CR26) 1996; 124
EL Lawler (1625_CR21) 1982; 7
K Murota (1625_CR34) 2016; 1
K Takazawa (1625_CR39) 2019; 38
K Murota (1625_CR28) 1996; 9
K Murota (1625_CR35) 1999; 24
J Oxley (1625_CR36) 2011
EL Lawler (1625_CR22) 1982; 16
AWM Dress (1625_CR6) 1992; 93
S Iwata (1625_CR18) 2003; 13
A Kasperski (1625_CR19) 2014; 2012
K Murota (1625_CR29) 1998; 83
M Hradovich (1625_CR15) 2017; 11
K Murota (1625_CR31) 2000
ML Fredman (1625_CR10) 1987; 34
C Buchheim (1625_CR2) 2017; 163
1625_CR4
J Edmonds (1625_CR7) 1970
T Harks (1625_CR12) 2018; 28
RF Werneck (1625_CR41) 2000; 5
S Fujishige (1625_CR11) 2005
K Murota (1625_CR30) 1999; 19
AWM Dress (1625_CR5) 1990; 3
K Murota (1625_CR26) 1996; 124
R Hassin (1625_CR13) 1982; 12
A Frank (1625_CR9) 1981; 2
H Ackermann (1625_CR1) 2008; 55
K Murota (1625_CR27) 1996; 9
D Monderer (1625_CR25) 1996; 14
RW Rosenthal (1625_CR37) 1973; 2
S Lendl (1625_CR23) 2019; 33
M Hradovich (1625_CR14) 2017; 34
1625_CR24
A Schrijver (1625_CR38) 2003
C Büsing (1625_CR3) 2011
S Iwata (1625_CR17) 2005; 103
K Murota (1625_CR33) 2009
J Edmonds (1625_CR8) 1977; 1
K Murota (1625_CR32) 2003
1625_CR40
EL Lawler (1625_CR20) 1975; 9
M Iri (1625_CR16) 1976; 19
References_xml – volume: 13
  start-page: 204
  issue: 1
  year: 2003
  end-page: 211
  ident: CR18
  article-title: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499352012
– volume: 11
  start-page: 17
  issue: 1
  year: 2017
  end-page: 30
  ident: CR15
  article-title: The recoverable robust spanning tree problem with interval costs is polynomially solvable
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1057-x
– volume: 19
  start-page: 32
  issue: 1
  year: 1976
  end-page: 57
  ident: CR16
  article-title: An algorithm for finding an optimal independent assignment
  publication-title: J. Op. Res. Soc. Jpn.
– start-page: 69
  year: 1970
  end-page: 87
  ident: CR7
  article-title: Submodular functions, matroids, and certain polyhedra
  publication-title: Combinatorial Structures and Their Applications
– volume: 1
  start-page: 185
  year: 1977
  end-page: 204
  ident: CR8
  article-title: A min–max relation for submodular functions on graphs
  publication-title: Ann. Discrete Math.
  doi: 10.1016/S0167-5060(08)70734-9
– year: 2005
  ident: CR11
  publication-title: Submodular Functions and Optimization
– volume: 7
  start-page: 334
  issue: 3
  year: 1982
  end-page: 347
  ident: CR21
  article-title: Computing maximal polymatroidal network flows
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.7.3.334
– ident: CR4
– volume: 16
  start-page: 189
  year: 1982
  end-page: 200
  ident: CR22
  article-title: Flow network formulations of polymatroid optimization problems
  publication-title: Ann. Disc. Math.
– volume: 124
  start-page: 272
  year: 1996
  end-page: 311
  ident: CR26
  article-title: Convexity and Steinitz’s exchange property
  publication-title: Adv. Math.
  doi: 10.1006/aima.1996.0084
– year: 2000
  ident: CR31
  publication-title: Matrices and Matroids for Systems Analysis
– volume: 2
  start-page: 328
  year: 1981
  end-page: 336
  ident: CR9
  article-title: A weighted matroid intersection algorithm
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(81)90032-8
– volume: 19
  start-page: 87
  year: 1999
  end-page: 109
  ident: CR30
  article-title: Submodular flow problem with a nonseparable cost function
  publication-title: Combinatorica
  doi: 10.1007/s004930050047
– volume: 5
  start-page: 11
  year: 2000
  ident: CR41
  article-title: Finding minimum congestion spanning trees
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/351827.384253
– volume: 12
  start-page: 1
  issue: 1
  year: 1982
  end-page: 21
  ident: CR13
  article-title: Minimum cost flow with set-constraints
  publication-title: Networks
  doi: 10.1002/net.3230120102
– start-page: 219
  year: 2009
  end-page: 260
  ident: CR33
  article-title: Recent developments in discrete convex analysis
  publication-title: Research Trends in Combinatorial Optimization, Chapter 11
  doi: 10.1007/978-3-540-76796-1_11
– volume: 24
  start-page: 95
  issue: 1
  year: 1999
  end-page: 105
  ident: CR35
  article-title: M-convex function on generalized polymatroid
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.24.1.95
– year: 2011
  ident: CR3
  publication-title: Recoverable Robustness in Combinatorial Optimization
– volume: 1
  start-page: 151
  issue: 1
  year: 2016
  end-page: 273
  ident: CR34
  article-title: Discrete convex analysis: a tool for economics and game theory
  publication-title: J. Mech. Instit. Des.
– volume: 3
  start-page: 33
  issue: 2
  year: 1990
  end-page: 35
  ident: CR5
  article-title: Valuated matroids: a new look at the greedy algorithm
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(90)90009-Z
– ident: CR40
– year: 2003
  ident: CR38
  publication-title: Combinatorial Optimization: Polyhedra and Efficiency
– volume: 55
  start-page: 25:1
  issue: 6
  year: 2008
  end-page: 25:22
  ident: CR1
  article-title: On the impact of combinatorial structure on congestion games
  publication-title: J. ACM
  doi: 10.1145/1455248.1455249
– volume: 28
  start-page: 2222
  year: 2018
  end-page: 2245
  ident: CR12
  article-title: Sensitivity analysis for convex separable optimization over integral polymatroids
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1107450
– volume: 2012
  start-page: 147
  year: 2014
  end-page: 153
  ident: CR19
  article-title: Recoverable robust combinatorial optimization problems
  publication-title: Oper. Res. Proceed.
  doi: 10.1007/978-3-319-00795-3_22
– volume: 93
  start-page: 214
  year: 1992
  end-page: 250
  ident: CR6
  article-title: Valuated matroids
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(92)90028-J
– volume: 163
  start-page: 1
  year: 2017
  end-page: 23
  ident: CR2
  article-title: Min-max-min robust combinatorial optimization
  publication-title: Math. Program. A
  doi: 10.1007/s10107-016-1053-z
– volume: 34
  start-page: 554
  issue: 2
  year: 2017
  end-page: 573
  ident: CR14
  article-title: Recoverable robust spanning tree problem under interval uncertainty representations
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-016-0089-6
– volume: 83
  start-page: 313
  year: 1998
  end-page: 371
  ident: CR29
  article-title: Discrete convex analysis
  publication-title: Math. Program.
– volume: 34
  start-page: 596
  year: 1987
  end-page: 615
  ident: CR10
  article-title: Fibonacci heaps and their uses in improved network optimization algorithms
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/28869.28874
– volume: 103
  start-page: 181
  year: 2005
  end-page: 202
  ident: CR17
  article-title: A capacity scaling algorithm for M-convex submodular flow
  publication-title: Math. Program. A
  doi: 10.1007/s10107-004-0562-3
– volume: 9
  start-page: 562
  year: 1996
  end-page: 576
  ident: CR28
  article-title: Valuated matroid intersection, II: algorithms
  publication-title: SIAM J. Disc. Math.
  doi: 10.1137/S0895480195280009
– year: 2011
  ident: CR36
  publication-title: Matroid Theory
  doi: 10.1093/acprof:oso/9780198566946.001.0001
– volume: 2
  start-page: 65
  year: 1973
  end-page: 67
  ident: CR37
  article-title: A class of games possessing pure-strategy Nash equilibria
  publication-title: Int. J. Game Theory
  doi: 10.1007/BF01737559
– volume: 33
  start-page: 101
  year: 2019
  end-page: 117
  ident: CR23
  article-title: Combinatorial optimization with interaction costs: complexity and solvable cases
  publication-title: Disc. Optim.
  doi: 10.1016/j.disopt.2019.03.004
– volume: 9
  start-page: 31
  year: 1975
  end-page: 56
  ident: CR20
  article-title: Matroid intersection algorithms
  publication-title: Math. Program.
  doi: 10.1007/BF01681329
– volume: 14
  start-page: 124
  year: 1996
  end-page: 143
  ident: CR25
  article-title: Potential games
  publication-title: Games Econ. Behav.
  doi: 10.1006/game.1996.0044
– year: 2003
  ident: CR32
  publication-title: Discrete Convex Analysis
  doi: 10.1137/1.9780898718508
– volume: 38
  start-page: 1043
  year: 2019
  end-page: 1065
  ident: CR39
  article-title: Generalizations of weighted matroid congestion games: pure Nash equilibrium, sensitivity analysis, and discrete convex function
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-019-00435-9
– ident: CR24
– volume: 9
  start-page: 545
  year: 1996
  end-page: 561
  ident: CR27
  article-title: Valuated matroid intersection, I: optimality criteria
  publication-title: SIAM J. Disc. Math.
  doi: 10.1137/S0895480195279994
– volume: 38
  start-page: 1043
  year: 2019
  ident: 1625_CR39
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-019-00435-9
– volume-title: Discrete Convex Analysis
  year: 2003
  ident: 1625_CR32
  doi: 10.1137/1.9780898718508
– volume: 124
  start-page: 272
  year: 1996
  ident: 1625_CR26
  publication-title: Adv. Math.
  doi: 10.1006/aima.1996.0084
– volume: 163
  start-page: 1
  year: 2017
  ident: 1625_CR2
  publication-title: Math. Program. A
  doi: 10.1007/s10107-016-1053-z
– volume: 11
  start-page: 17
  issue: 1
  year: 2017
  ident: 1625_CR15
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1057-x
– volume: 103
  start-page: 181
  year: 2005
  ident: 1625_CR17
  publication-title: Math. Program. A
  doi: 10.1007/s10107-004-0562-3
– ident: 1625_CR24
– start-page: 219
  volume-title: Research Trends in Combinatorial Optimization, Chapter 11
  year: 2009
  ident: 1625_CR33
  doi: 10.1007/978-3-540-76796-1_11
– volume: 3
  start-page: 33
  issue: 2
  year: 1990
  ident: 1625_CR5
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(90)90009-Z
– volume: 34
  start-page: 554
  issue: 2
  year: 2017
  ident: 1625_CR14
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-016-0089-6
– volume-title: Combinatorial Optimization: Polyhedra and Efficiency
  year: 2003
  ident: 1625_CR38
– volume: 16
  start-page: 189
  year: 1982
  ident: 1625_CR22
  publication-title: Ann. Disc. Math.
– volume-title: Matrices and Matroids for Systems Analysis
  year: 2000
  ident: 1625_CR31
– volume: 33
  start-page: 101
  year: 2019
  ident: 1625_CR23
  publication-title: Disc. Optim.
  doi: 10.1016/j.disopt.2019.03.004
– volume: 2
  start-page: 65
  year: 1973
  ident: 1625_CR37
  publication-title: Int. J. Game Theory
  doi: 10.1007/BF01737559
– volume: 55
  start-page: 25:1
  issue: 6
  year: 2008
  ident: 1625_CR1
  publication-title: J. ACM
  doi: 10.1145/1455248.1455249
– volume: 19
  start-page: 87
  year: 1999
  ident: 1625_CR30
  publication-title: Combinatorica
  doi: 10.1007/s004930050047
– volume: 83
  start-page: 313
  year: 1998
  ident: 1625_CR29
  publication-title: Math. Program.
– volume: 2
  start-page: 328
  year: 1981
  ident: 1625_CR9
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(81)90032-8
– volume-title: Submodular Functions and Optimization
  year: 2005
  ident: 1625_CR11
– volume: 9
  start-page: 31
  year: 1975
  ident: 1625_CR20
  publication-title: Math. Program.
  doi: 10.1007/BF01681329
– volume: 1
  start-page: 151
  issue: 1
  year: 2016
  ident: 1625_CR34
  publication-title: J. Mech. Instit. Des.
– volume: 9
  start-page: 545
  year: 1996
  ident: 1625_CR27
  publication-title: SIAM J. Disc. Math.
  doi: 10.1137/S0895480195279994
– volume: 5
  start-page: 11
  year: 2000
  ident: 1625_CR41
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/351827.384253
– volume: 13
  start-page: 204
  issue: 1
  year: 2003
  ident: 1625_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499352012
– volume: 12
  start-page: 1
  issue: 1
  year: 1982
  ident: 1625_CR13
  publication-title: Networks
  doi: 10.1002/net.3230120102
– ident: 1625_CR40
– volume: 28
  start-page: 2222
  year: 2018
  ident: 1625_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1107450
– volume: 2012
  start-page: 147
  year: 2014
  ident: 1625_CR19
  publication-title: Oper. Res. Proceed.
  doi: 10.1007/978-3-319-00795-3_22
– volume: 24
  start-page: 95
  issue: 1
  year: 1999
  ident: 1625_CR35
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.24.1.95
– volume: 93
  start-page: 214
  year: 1992
  ident: 1625_CR6
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(92)90028-J
– volume: 1
  start-page: 185
  year: 1977
  ident: 1625_CR8
  publication-title: Ann. Discrete Math.
  doi: 10.1016/S0167-5060(08)70734-9
– volume: 19
  start-page: 32
  issue: 1
  year: 1976
  ident: 1625_CR16
  publication-title: J. Op. Res. Soc. Jpn.
– volume: 34
  start-page: 596
  year: 1987
  ident: 1625_CR10
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/28869.28874
– volume-title: Recoverable Robustness in Combinatorial Optimization
  year: 2011
  ident: 1625_CR3
– ident: 1625_CR4
– volume: 14
  start-page: 124
  year: 1996
  ident: 1625_CR25
  publication-title: Games Econ. Behav.
  doi: 10.1006/game.1996.0044
– volume: 7
  start-page: 334
  issue: 3
  year: 1982
  ident: 1625_CR21
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.7.3.334
– start-page: 69
  volume-title: Combinatorial Structures and Their Applications
  year: 1970
  ident: 1625_CR7
– volume-title: Matroid Theory
  year: 2011
  ident: 1625_CR36
  doi: 10.1093/acprof:oso/9780198566946.001.0001
– volume: 9
  start-page: 562
  year: 1996
  ident: 1625_CR28
  publication-title: SIAM J. Disc. Math.
  doi: 10.1137/S0895480195280009
SSID ssj0001388
Score 2.3597398
Snippet For two matroids M 1 and M 2 with the same ground set V and two cost functions w 1 and w 2 on 2 V , we consider the problem of finding bases X 1 of M 1 and X 2...
For two matroids [Formula omitted] and [Formula omitted] with the same ground set V and two cost functions [Formula omitted] and [Formula omitted] on [Formula...
For two matroids M1 and M2 with the same ground set V and two cost functions w1 and w2 on 2V, we consider the problem of finding bases X1 of M1 and X2 of M2...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 229
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorial analysis
Combinatorics
Convex analysis
Cost function
Full Length Paper
Intersections
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Theoretical
Title Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications
URI https://link.springer.com/article/10.1007/s10107-021-01625-2
https://www.proquest.com/docview/2681495763
Volume 194
WOSCitedRecordID wos000619886400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iHvTgLtaNHAQPTsGmaZp6E3Hw4IYbcwtpmsCAU2U6ij_f9zLtzLiCHru8NM1bk5f3hZA9wfNcCGZAxXMe8lSzMDNFEWKGSzOTS859ofB5enkpO53sui4Kq5rd7k1K0lvqiWK3CJfVGE5_IWoPwfDOgLuTqI43tw8j-xvFUjYHtWJ0UJfKfN_GB3f02Sh_yY56p9Ne_F93l8hCHWTS46FULJMpW66Q-QnoQbi6GOG1VqukfwWWowckPVwa7xYUnVtFcZGWIqBEv_I7tkpqMJzEUyUG1REdAoXboqGqWvQi9NvY3yj6Sy_SLarLgvp8BJ3Mlq-R-_bp3clZWJ_GEJo4kYNQZBJcvXBOw6RCO-uAuZHlzKaRY46bPCqE5Q5upnnETSGigok8M0BnxCHT8TqZLp9Ku0FojBjy1iUaG0iSXMcgEZlgLoHWpTUBiRqmKFNDleO_PaoxyDKOroLRVX50FQvIwYjmeQjU8evb-8hrhVoMLRtdFyNA_xAPSx2neM4A4wkPyHYjDqpW70oxIXFmCbY5IK2G_ePHP39382-vb5E5huUWfnvwNpke9F_sDpk1r4Nu1d_1Yv8Orzb8Hg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-hgjT2AGOAKJTND5P2sEYijuMkvFWIqmhtmbYO9c1yHFuqRMOUFMSfz52btN0YSPCYj3Mc3_nu7Lv7GeBEijyXkhuc4rkIRKJ5kJmiCCjCpbnJUyF8ofA4mU7T-Ty7aIrC6jbbvQ1Jek29U-wW0rYap-Uveu0BKt6HAi0WJfJdXn3Z6N8wStP2oFbyDppSmfvbuGWO7irl36Kj3ugMn_5fdw_gSeNkssFaKp7BA1sewv4O9CBeTTZ4rfVzqD6j5lgiyZK2xhcFI-NWM9qkZQQoUdU-Y6tkhtxJOlViVb9na6BwW7RUdZ9NAp_G_pORvfQi3We6LJiPR7DdaPkLuB5-nH0YBc1pDIGJ4nQVyCxFUy-d07io0M46ZG5oBbdJ6LgTJg8LaYXDm0keClPIsOAyzwzSGfmO6-gldMpvpX0FLCIMeetiTQ3Eca4jlIhMchdj66k1XQhbpijTQJXTv31VW5BlGl2Fo6v86CrehbMNzc0aqOOvb58SrxXNYmzZ6KYYAftHeFhqkNA5A1zEogu9VhxUM71rxWVKK0vUzV3ot-zfPv7zd1__2-vHsDeaTcZq_Gl6_gYecyq98KnCPeisqu_2LTwyP1aLujryU-AXh1X_Ag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hQKgcgL7E8qoPSD10IxrHcRJuCFhRFRak0oqb5fghIUFAm4D4-cx4k2UpLVLVYx7jOPbMeMbj-QZgW4qylJIbFPFSRCLTPCqMtRFFuDQ3ZS5ESBQ-zobD_OKiOJvK4g-n3buQ5DingVCaqmbn1vqdqcS3mLbYOLnCaMFHqITnBBUNIn_9x6-JLo6TPO-KtpKl0KbN_LmNZ0vT7wr6RaQ0LECD5f_v-gostcYn2xtzy1uYcdU7WJyCJMSrkwmOa_0eRqeoUa6R5Jq2zC8to0WvZrR5ywhoYlSHk1wVM2RmUrWJpt5lYwBxZzuqus9OonC8_YHROhpYvc90ZVmIU7DpKPoH-Dk4PN8_itoqDZFJ0ryJZJGjCSC91-hsaO88TnrsBHdZ7LkXpoytdMLjzayMhbEytlyWhUE6I79ynXyE2eqmcqvAEsKWdz7V1ECaljpBTikk9ym2njvTg7ibIGVaCHP6tyv1BL5Mo6twdFUYXcV78GVCczsG8Hj17c8074qkG1s2uk1SwP4RTpbay6j-ABep6MFGxxqqFftacZmTx4k6uwf9jhWeHv_9u2v_9vonWDg7GKjjb8Pv6_CGU0ZGOEG8AbPN6M5twry5by7r0VaQhkcWZwf1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+matroid+bases+with+intersection+constraints%3A+valuated+matroids%2C+M-convex+functions%2C+and+their+applications&rft.jtitle=Mathematical+programming&rft.au=Iwamasa+Yuni&rft.au=Takazawa+Kenjiro&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=194&rft.issue=1-2&rft.spage=229&rft.epage=256&rft_id=info:doi/10.1007%2Fs10107-021-01625-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon