Perfect codes in the discrete simplex

We study the problem of existence of (nontrivial) perfect codes in the discrete n -simplex Δ ℓ n : = x 0 , … , x n : x i ∈ Z + , ∑ i x i = ℓ under ℓ 1 metric. The problem is motivated by the so-called multiset codes, which have recently been introduced by the authors as appropriate constructs for er...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 75; číslo 1; s. 81 - 95
Hlavní autoři: Kovačević, Mladen, Vukobratović, Dejan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2015
Témata:
ISSN:0925-1022, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the problem of existence of (nontrivial) perfect codes in the discrete n -simplex Δ ℓ n : = x 0 , … , x n : x i ∈ Z + , ∑ i x i = ℓ under ℓ 1 metric. The problem is motivated by the so-called multiset codes, which have recently been introduced by the authors as appropriate constructs for error correction in the permutation channels. It is shown that e -perfect codes in the 1-simplex Δ ℓ 1 exist for any ℓ ≥ 2 e + 1 , the 2-simplex Δ ℓ 2 admits an e -perfect code if and only if ℓ = 3 e + 1 , while there are no perfect codes in higher-dimensional simplices. In other words, perfect multiset codes exist only over binary and ternary alphabets.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-013-9893-5