Perfect codes in the discrete simplex

We study the problem of existence of (nontrivial) perfect codes in the discrete n -simplex Δ ℓ n : = x 0 , … , x n : x i ∈ Z + , ∑ i x i = ℓ under ℓ 1 metric. The problem is motivated by the so-called multiset codes, which have recently been introduced by the authors as appropriate constructs for er...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 75; číslo 1; s. 81 - 95
Hlavní autori: Kovačević, Mladen, Vukobratović, Dejan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.04.2015
Predmet:
ISSN:0925-1022, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the problem of existence of (nontrivial) perfect codes in the discrete n -simplex Δ ℓ n : = x 0 , … , x n : x i ∈ Z + , ∑ i x i = ℓ under ℓ 1 metric. The problem is motivated by the so-called multiset codes, which have recently been introduced by the authors as appropriate constructs for error correction in the permutation channels. It is shown that e -perfect codes in the 1-simplex Δ ℓ 1 exist for any ℓ ≥ 2 e + 1 , the 2-simplex Δ ℓ 2 admits an e -perfect code if and only if ℓ = 3 e + 1 , while there are no perfect codes in higher-dimensional simplices. In other words, perfect multiset codes exist only over binary and ternary alphabets.
AbstractList We study the problem of existence of (nontrivial) perfect codes in the discrete n -simplex Δ ℓ n : = x 0 , … , x n : x i ∈ Z + , ∑ i x i = ℓ under ℓ 1 metric. The problem is motivated by the so-called multiset codes, which have recently been introduced by the authors as appropriate constructs for error correction in the permutation channels. It is shown that e -perfect codes in the 1-simplex Δ ℓ 1 exist for any ℓ ≥ 2 e + 1 , the 2-simplex Δ ℓ 2 admits an e -perfect code if and only if ℓ = 3 e + 1 , while there are no perfect codes in higher-dimensional simplices. In other words, perfect multiset codes exist only over binary and ternary alphabets.
Author Vukobratović, Dejan
Kovačević, Mladen
Author_xml – sequence: 1
  givenname: Mladen
  surname: Kovačević
  fullname: Kovačević, Mladen
  email: kmladen@uns.ac.rs
  organization: Department of Electrical Engineering, University of Novi Sad
– sequence: 2
  givenname: Dejan
  surname: Vukobratović
  fullname: Vukobratović, Dejan
  organization: Department of Electrical Engineering, University of Novi Sad
BookMark eNp9j7tOAzEQRS0UJJLAB9BtQ2kY2_F6XaIICFIkKKC2_BiDo2Q3so0Ef89GoaJINc09986ZkUk_9EjINYNbBqDuCoOWCwpMUN1pQeUZmTKpBFWyaydkCppLyoDzCzIrZQMwJoFPyc0r5oi-Nn4IWJrUN_UTm5CKz1ixKWm33-L3JTmPdlvw6u_Oyfvjw9tyRdcvT8_L-zX1QnaVtq1SHYJWIeguLqwKAhV4G6ReoAtO-U7oAMG52IrYoRISlYt2waV2rgUxJ-zY6_NQSsZo9jntbP4xDMzB0xw9zfi9OXgaOTLqH-NTtTUNfc02bU-S_EiWcaX_wGw2w1fuR8ET0C9kI2jN
CitedBy_id crossref_primary_10_1109_TIT_2020_3009468
crossref_primary_10_1109_TIT_2021_3063709
crossref_primary_10_1109_TIT_2025_3582862
crossref_primary_10_1109_TIT_2024_3350436
crossref_primary_10_1109_TIT_2021_3105688
crossref_primary_10_1109_TIT_2024_3483303
crossref_primary_10_1109_TIT_2017_2789292
crossref_primary_10_1109_TIT_2023_3247812
crossref_primary_10_1109_MBITS_2023_3318516
Cites_doi 10.1007/BF01390767
10.1007/s10623-009-9273-3
10.1007/978-1-4615-6666-3
10.1016/S0019-9958(75)80005-2
10.1007/BF01390772
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
DOI 10.1007/s10623-013-9893-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1573-7586
EndPage 95
ExternalDocumentID 10_1007_s10623_013_9893_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c358t-66778e097dd98f4a7d3e70cad594ebdb7c839d0dbbf63f8e735e7bfa4259bb603
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351158100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-1022
IngestDate Tue Nov 18 22:23:17 EST 2025
Sat Nov 29 02:35:50 EST 2025
Fri Feb 21 02:34:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Integer codes
94B25
05C12
68R99
Discrete simplex
05B40
Sphere packing
Multiset codes
Manhattan metric
52C17
Permutation channel
Perfect codes
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-66778e097dd98f4a7d3e70cad594ebdb7c839d0dbbf63f8e735e7bfa4259bb603
PageCount 15
ParticipantIDs crossref_primary_10_1007_s10623_013_9893_5
crossref_citationtrail_10_1007_s10623_013_9893_5
springer_journals_10_1007_s10623_013_9893_5
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle An International Journal
PublicationTitle Designs, codes, and cryptography
PublicationTitleAbbrev Des. Codes Cryptogr
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. Elsevier, Amsterdam (1997).
Gadouleau M., Goupil A.: Binary codes for packet error and packet loss correction in store and forward. In: Proceedings of the International ITG Conference on Source and Channel Coding, Siegen, Germany (2010)
KötterR.KschischangF.R.Coding for errors and erasures in random network codingIEEE Trans. Inf. Theory200854835793591
GordonD.M.Perfect single error-correcting codes in the Johnson schemeIEEE Trans. Inf. Theory2006521046704672
HorakP.Tilings in Lee metricEur. J. Comb.2009302480489
ChiharaL.On the zeros of the Askey–Wilson polynomials, with applications to coding theorySIAM J. Math. Anal.1987181191207
ZinovievV.A.LeontievV.K.The nonexistence of perfect codes over Galois fieldsProbl. Control Inf. Theory19732123132
EtzionT.VardyA.Perfect binary codes: constructions, properties, and enumerationIEEE Trans. Inf. Theory1994403754763
Kovačević M., Vukobratović D.: Multiset codes for permutation channels. Available online at: arXiv:1301.7564.
Bange D.W., Barkauskas A.E., Slater P.J.: Efficient dominating sets in graphs. In: Ringeisen R.D., Roberts F.S. (eds.) Applications of Discrete Mathematics, pp. 189–199. SIAM, Philadelphia (1988).
EtzionT.Configuration distribution and designs of codes in the Johnson schemeJ. Comb. Des.20071511534
RoosC.A note on the existence of perfect constant weight codesDiscret. Math.198347121123
AlBdaiwiB.HorakP.MilazzoL.Enumerating and decoding perfect linear Lee codesDes. Codes Cryptogr.2009522155162
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
PostK.A.Nonexistence theorem on perfect Lee codes over large alphabetsInf. Control1975294369380
EtzionT.Product constructions for perfect Lee codesIEEE Trans. Inf. Theory2011571174737481
ŠpacapanS.Non-existence of face-to-face four dimensional tiling in the Lee metricEur. J. Comb.2007281127133
Aigner M.: Combinatorial Theory. Springer, New York (1979).
MartinW.J.ZhuX.J.Anticodes for the Grassmann and bilinear forms graphsDes. Codes Cryptogr.1995617379
LevenshteinV.I.On perfect codes in deletion and insertion metricDiscret. Math. Appl.199223241258
Bertsekas D.P., Gallager R.: Data Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1992).
GolombS.W.WelchL.R.Perfect codes in the Lee metric and the packing of polyominoesSIAM J. Appl. Math.1970182302317
van Lint J. H.: Nonexistence theorems for perfect error-correcting codes. In: Computers in Algebra and Number Theory, vol. IV, SIAM-AMS Proceedings (1971).
EtzionT.On the nonexistence of perfect codes in the Johnson schemeSIAM J. Discret. Math.199692201209
KovačevićM.VukobratovićD.Subset codes for packet networksIEEE Commun. Lett.2013174729732
BoursP.A.H.On the construction of perfect deletion-correcting codes using design theoryDes. Codes Cryptogr.199561520
EtzionT.VardyA.Error-correcting codes in projective spaceIEEE Trans. Inf. Theory201157211651173
BestM.R.Perfect codes hardly existIEEE Trans. Inf. Theory1983293349351
BiggsN.Perfect codes in graphsJ. Comb. Theory B1973153289296
TietäväinenA.On the nonexistence of perfect codes over finite fieldsSIAM J. Appl. Math.19732418896
HorakP.On perfect Lee codesDiscret. Math.20093091855515561
DelsarteP.An algebraic approach to association schemes and coding theoryPhilips J. Res.197310197
GadouleauM.GoupilA.A matroid framework for noncoherent random network communicationsIEEE Trans. Inf. Theory201157210311045
AstolaJ.On perfect Lee codes over small alphabets of odd cardinalityDiscret. Appl. Math.19824227228
ShimabukuroO.On the nonexistence of perfect codes in $$ J(2w + p2, w)$$ J ( 2 w + p 2 , w )Ars Comb.200575129134
EtzionT.SchwartzM.Perfect constant-weight codesIEEE Trans. Inf. Theory200450921562165
9893_CR20
9893_CR24
9893_CR23
9893_CR22
9893_CR21
9893_CR28
9893_CR27
9893_CR26
9893_CR9
9893_CR25
9893_CR8
9893_CR7
9893_CR6
9893_CR5
9893_CR29
9893_CR4
9893_CR3
9893_CR2
9893_CR1
9893_CR31
9893_CR30
9893_CR13
9893_CR35
9893_CR12
9893_CR34
9893_CR11
9893_CR33
9893_CR10
9893_CR32
9893_CR17
9893_CR16
9893_CR15
9893_CR14
9893_CR36
9893_CR19
9893_CR18
References_xml – reference: AlBdaiwiB.HorakP.MilazzoL.Enumerating and decoding perfect linear Lee codesDes. Codes Cryptogr.2009522155162
– reference: EtzionT.VardyA.Perfect binary codes: constructions, properties, and enumerationIEEE Trans. Inf. Theory1994403754763
– reference: EtzionT.Product constructions for perfect Lee codesIEEE Trans. Inf. Theory2011571174737481
– reference: EtzionT.SchwartzM.Perfect constant-weight codesIEEE Trans. Inf. Theory200450921562165
– reference: ChiharaL.On the zeros of the Askey–Wilson polynomials, with applications to coding theorySIAM J. Math. Anal.1987181191207
– reference: KötterR.KschischangF.R.Coding for errors and erasures in random network codingIEEE Trans. Inf. Theory200854835793591
– reference: GordonD.M.Perfect single error-correcting codes in the Johnson schemeIEEE Trans. Inf. Theory2006521046704672
– reference: RoosC.A note on the existence of perfect constant weight codesDiscret. Math.198347121123
– reference: Gadouleau M., Goupil A.: Binary codes for packet error and packet loss correction in store and forward. In: Proceedings of the International ITG Conference on Source and Channel Coding, Siegen, Germany (2010)
– reference: GadouleauM.GoupilA.A matroid framework for noncoherent random network communicationsIEEE Trans. Inf. Theory201157210311045
– reference: BestM.R.Perfect codes hardly existIEEE Trans. Inf. Theory1983293349351
– reference: BiggsN.Perfect codes in graphsJ. Comb. Theory B1973153289296
– reference: EtzionT.Configuration distribution and designs of codes in the Johnson schemeJ. Comb. Des.20071511534
– reference: Aigner M.: Combinatorial Theory. Springer, New York (1979).
– reference: DelsarteP.An algebraic approach to association schemes and coding theoryPhilips J. Res.197310197
– reference: MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
– reference: ShimabukuroO.On the nonexistence of perfect codes in $$ J(2w + p2, w)$$ J ( 2 w + p 2 , w )Ars Comb.200575129134
– reference: TietäväinenA.On the nonexistence of perfect codes over finite fieldsSIAM J. Appl. Math.19732418896
– reference: ŠpacapanS.Non-existence of face-to-face four dimensional tiling in the Lee metricEur. J. Comb.2007281127133
– reference: BoursP.A.H.On the construction of perfect deletion-correcting codes using design theoryDes. Codes Cryptogr.199561520
– reference: Bertsekas D.P., Gallager R.: Data Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1992).
– reference: Kovačević M., Vukobratović D.: Multiset codes for permutation channels. Available online at: arXiv:1301.7564.
– reference: KovačevićM.VukobratovićD.Subset codes for packet networksIEEE Commun. Lett.2013174729732
– reference: HorakP.Tilings in Lee metricEur. J. Comb.2009302480489
– reference: HorakP.On perfect Lee codesDiscret. Math.20093091855515561
– reference: GolombS.W.WelchL.R.Perfect codes in the Lee metric and the packing of polyominoesSIAM J. Appl. Math.1970182302317
– reference: ZinovievV.A.LeontievV.K.The nonexistence of perfect codes over Galois fieldsProbl. Control Inf. Theory19732123132
– reference: van Lint J. H.: Nonexistence theorems for perfect error-correcting codes. In: Computers in Algebra and Number Theory, vol. IV, SIAM-AMS Proceedings (1971).
– reference: AstolaJ.On perfect Lee codes over small alphabets of odd cardinalityDiscret. Appl. Math.19824227228
– reference: Bange D.W., Barkauskas A.E., Slater P.J.: Efficient dominating sets in graphs. In: Ringeisen R.D., Roberts F.S. (eds.) Applications of Discrete Mathematics, pp. 189–199. SIAM, Philadelphia (1988).
– reference: MartinW.J.ZhuX.J.Anticodes for the Grassmann and bilinear forms graphsDes. Codes Cryptogr.1995617379
– reference: EtzionT.On the nonexistence of perfect codes in the Johnson schemeSIAM J. Discret. Math.199692201209
– reference: EtzionT.VardyA.Error-correcting codes in projective spaceIEEE Trans. Inf. Theory201157211651173
– reference: LevenshteinV.I.On perfect codes in deletion and insertion metricDiscret. Math. Appl.199223241258
– reference: Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. Elsevier, Amsterdam (1997).
– reference: PostK.A.Nonexistence theorem on perfect Lee codes over large alphabetsInf. Control1975294369380
– ident: 9893_CR12
– ident: 9893_CR14
– ident: 9893_CR35
– ident: 9893_CR8
  doi: 10.1007/BF01390767
– ident: 9893_CR2
  doi: 10.1007/s10623-009-9273-3
– ident: 9893_CR20
– ident: 9893_CR7
– ident: 9893_CR9
– ident: 9893_CR22
– ident: 9893_CR5
– ident: 9893_CR23
– ident: 9893_CR25
– ident: 9893_CR27
– ident: 9893_CR1
  doi: 10.1007/978-1-4615-6666-3
– ident: 9893_CR19
– ident: 9893_CR17
– ident: 9893_CR30
  doi: 10.1016/S0019-9958(75)80005-2
– ident: 9893_CR32
– ident: 9893_CR11
– ident: 9893_CR13
– ident: 9893_CR36
– ident: 9893_CR15
– ident: 9893_CR34
– ident: 9893_CR29
  doi: 10.1007/BF01390772
– ident: 9893_CR6
– ident: 9893_CR21
– ident: 9893_CR4
– ident: 9893_CR3
– ident: 9893_CR26
– ident: 9893_CR24
– ident: 9893_CR28
– ident: 9893_CR18
– ident: 9893_CR31
– ident: 9893_CR16
– ident: 9893_CR33
– ident: 9893_CR10
SSID ssj0001302
Score 2.1212666
Snippet We study the problem of existence of (nontrivial) perfect codes in the discrete n -simplex Δ ℓ n : = x 0 , … , x n : x i ∈ Z + , ∑ i x i = ℓ under ℓ 1 metric....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Circuits
Coding and Information Theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
Title Perfect codes in the discrete simplex
URI https://link.springer.com/article/10.1007/s10623-013-9893-5
Volume 75
WOSCitedRecordID wos000351158100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD1apYX-xBL8pCms1md48iFg9aio_SW9jN7kJBUkmq-PPdzaO2oIIeQyYhDDvzTZj5vgE4U0rHkmqGTUQIjiLJMdfS_fMIygIre7wi0o7u2GDAx2MxrHncRTPt3rQky0y9QHZzUI39NgLhQBbTVVhzaMf9voaHx9E8_fpOXCmwF3qJzTBsWpnfvWIZjJY7oSXA9Nv_-rRt2KrrSXRVHYAdWDFZB9rNrgZUh24HNheEB93V_VyttdiF86HJ_VQH8vz2Ak0y5G4iz9fNXUmNiolXEP7Yg-f-zdP1La7XJ-CUUD7DsdeGM4FgWgtuI8k0MSxIpaYiMkorlrriSAdaKRsTyw0j1DBlpYtioVQckH1oZdPMHAAiWsYuK2opSRoRZqXVMQ25pDR1aMZ7XQgaPyZprS3uV1y8JF-qyN5FiXNR4l2U0C5czB95rYQ1fjO-bByf1DFW_Gx9-CfrI9hwRRCtpnGOoTXL38wJrKfvs0mRn5Zn6xNJ9Ma5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f-ZBX5RA1zRN-ijimLiNoXPsrSRNCoNRpZ3in2_SH3MDFfSx9FrKkbvvyt33HcCFlMoXVDGsPUKw5wmOuRLmnyegzIlFixdE2lGX9ft8PA4GJY87q6bdq5ZknqkXyG4GqrHdRhAYkMV0FdY8A1hWMP_xaTRPv7YTlwvsuVZi03WrVuZ3r1gGo-VOaA4w7fq_Pm0Htst6Et0UB2AXVnTSgHq1qwGVoduArQXhQXPVm6u1ZntwOdCpnepAlt-eoUmCzE1k-bqpKalRNrEKwh_78Ny-G952cLk-AUeE8hn2rTacdgKmVMBjTzBFNHMioWjgaakki0xxpBwlZeyTmGtGqGYyFiaKAyl9hxxALXlJ9CEgooRvsqISgkQeYbGIlU9dLiiNDJrxVhOcyo9hVGqL2xUX0_BLFdm6KDQuCq2LQtqEq_kjr4Wwxm_G15XjwzLGsp-tj_5kfQ4bnWGvG3bv-w_HsGkKIlpM5pxAbZa-6VNYj95nkyw9y8_ZJ6TYyZ0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bi_JkHfVHCuqVp0kdRh-IcA3XsrSRNAgOpo63in2-ytnMDFcTH0msp11y-C3ffdwCnUqpAUMWw9gnBvi845krYM09ImWdEixdE2kGX9Xp8OAz75ZzTrOp2r0qSBafBqTQleXOsTHOG-GZhG7vJBKEFXEwXYcl3ffTuuP44mG7Frio3EdtrO7nNdrsqa373inlgmq-KTsCms_Hvz9yE9TLPRJfFwtiCBZ3UYaOa4YDKkK7D2owgob16mKq4Zttw1tep6_ZAjveeoVGC7E3keLypTbVRNnLKwh878Ny5ebq6xeVYBRwTynMcOM047YVMqZAbXzBFNPNioWjoa6kki23SpDwlpQmI4ZoRqpk0wkZ3KGXgkV2oJa-J3gNElAjsbqmEILFPmBFGBbTNBaWxRTneaoBX-TSKS81xN_riJfpSS3YuiqyLIueiiDbgfPrIuBDc-M34ovoJURl72c_W-3-yPoGV_nUn6t717g9g1eZJtGjYOYRanr7pI1iO3_NRlh5Pltwn3K7SgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfect+codes+in+the+discrete+simplex&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Kova%C4%8Devi%C4%87%2C+Mladen&rft.au=Vukobratovi%C4%87%2C+Dejan&rft.date=2015-04-01&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=75&rft.issue=1&rft.spage=81&rft.epage=95&rft_id=info:doi/10.1007%2Fs10623-013-9893-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10623_013_9893_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon