Comprehensive survey on hierarchical clustering algorithms and the recent developments

Data clustering is a commonly used data processing technique in many fields, which divides objects into different clusters in terms of some similarity measure between data points. Comparing to partitioning clustering methods which give a flat partition of the data, hierarchical clustering methods ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review Jg. 56; H. 8; S. 8219 - 8264
Hauptverfasser: Ran, Xingcheng, Xi, Yue, Lu, Yonggang, Wang, Xiangwen, Lu, Zhenyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.08.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:0269-2821, 1573-7462
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data clustering is a commonly used data processing technique in many fields, which divides objects into different clusters in terms of some similarity measure between data points. Comparing to partitioning clustering methods which give a flat partition of the data, hierarchical clustering methods can give multiple consistent partitions of the data at different levels for the same data without rerunning clustering, it can be used to better analyze the complex structure of the data. There are usually two kinds of hierarchical clustering methods: divisive and agglomerative. For the divisive clustering, the key issue is how to select a cluster for the next splitting procedure according to dissimilarity and how to divide the selected cluster. For agglomerative hierarchical clustering, the key issue is the similarity measure that is used to select the two most similar clusters for the next merge. Although both types of the methods produce the dendrogram of the data as output, the clustering results may be very different depending on the dissimilarity or similarity measure used in the clustering, and different types of methods should be selected according to different types of the data and different application scenarios. So, we have reviewed various hierarchical clustering methods comprehensively, especially the most recently developed methods, in this work. The similarity measure plays a crucial role during hierarchical clustering process, we have reviewed different types of the similarity measure along with the hierarchical clustering. More specifically, different types of hierarchical clustering methods are comprehensively reviewed from six aspects, and their advantages and drawbacks are analyzed. The application of some methods in real life is also discussed. Furthermore, we have also included some recent works in combining deep learning techniques and hierarchical clustering, which is worth serious attention and may improve the hierarchical clustering significantly in the future.
AbstractList Data clustering is a commonly used data processing technique in many fields, which divides objects into different clusters in terms of some similarity measure between data points. Comparing to partitioning clustering methods which give a flat partition of the data, hierarchical clustering methods can give multiple consistent partitions of the data at different levels for the same data without rerunning clustering, it can be used to better analyze the complex structure of the data. There are usually two kinds of hierarchical clustering methods: divisive and agglomerative. For the divisive clustering, the key issue is how to select a cluster for the next splitting procedure according to dissimilarity and how to divide the selected cluster. For agglomerative hierarchical clustering, the key issue is the similarity measure that is used to select the two most similar clusters for the next merge. Although both types of the methods produce the dendrogram of the data as output, the clustering results may be very different depending on the dissimilarity or similarity measure used in the clustering, and different types of methods should be selected according to different types of the data and different application scenarios. So, we have reviewed various hierarchical clustering methods comprehensively, especially the most recently developed methods, in this work. The similarity measure plays a crucial role during hierarchical clustering process, we have reviewed different types of the similarity measure along with the hierarchical clustering. More specifically, different types of hierarchical clustering methods are comprehensively reviewed from six aspects, and their advantages and drawbacks are analyzed. The application of some methods in real life is also discussed. Furthermore, we have also included some recent works in combining deep learning techniques and hierarchical clustering, which is worth serious attention and may improve the hierarchical clustering significantly in the future.
Audience Academic
Author Xi, Yue
Lu, Yonggang
Wang, Xiangwen
Ran, Xingcheng
Lu, Zhenyu
Author_xml – sequence: 1
  givenname: Xingcheng
  orcidid: 0000-0003-4097-0709
  surname: Ran
  fullname: Ran, Xingcheng
  organization: School of Information Science and Engineering, Lanzhou University, Center of Information Technology, Hexi University
– sequence: 2
  givenname: Yue
  surname: Xi
  fullname: Xi, Yue
  organization: School of Information Science and Engineering, Lanzhou University
– sequence: 3
  givenname: Yonggang
  orcidid: 0000-0001-8926-2039
  surname: Lu
  fullname: Lu, Yonggang
  email: ylu@lzu.edu.cn
  organization: School of Information Science and Engineering, Lanzhou University
– sequence: 4
  givenname: Xiangwen
  surname: Wang
  fullname: Wang, Xiangwen
  organization: School of Information Science and Engineering, Lanzhou University
– sequence: 5
  givenname: Zhenyu
  surname: Lu
  fullname: Lu, Zhenyu
  organization: School of Information Science and Engineering, Lanzhou University
BookMark eNp9kE1r3DAQhkXZQDZJ_0BOgp6d6sOS7eOytElhoZe2V6FI47UWW3IleWH_fbR1odBD0GHEMM-8zHOHNj54QOiRkidKSPM5UVJLVhHGKkq4lBX_gLZUNLxqSn-DtoTJrmIto7foLqUTIUSwmm_Rr32Y5ggD-OTOgNMSz3DBwePBQdTRDM7oEZtxSRmi80esx2OILg9TwtpbnAfAEQz4jC2cYQzzVP7pAd30ekzw8W-9Rz-_fvmxf6kO35-_7XeHynDR5kr0ltaEWdsRY2stjdBUCkZb2Xc90VZY6IF2DXAKdScFf9Xcku7VMm4kB8Lv0ad17xzD7wVSVqewRF8iVTm26xpZ102ZelqnjnoE5XwfctSmPAuTM8Vk70p_14iS0bT8CrAVMDGkFKFXc3STjhdFiboKV6twVYSrP8IVL1D7H2Rc1tkFX9Lc-D7KVzTNV8kQ_53xDvUGyHiYKw
CitedBy_id crossref_primary_10_1002_anie_202410881
crossref_primary_10_1016_j_chemosphere_2024_142597
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_1007_s11069_025_07663_9
crossref_primary_10_1007_s10618_025_01098_3
crossref_primary_10_1109_TP_2025_3527461
crossref_primary_10_1016_j_bdr_2023_100413
crossref_primary_10_1093_bib_bbaf292
crossref_primary_10_1016_j_socnet_2024_07_003
crossref_primary_10_1088_1742_6596_3078_1_012050
crossref_primary_10_1016_j_sasc_2025_200221
crossref_primary_10_1371_journal_pone_0321847
crossref_primary_10_3390_a18080532
crossref_primary_10_3390_a17120551
crossref_primary_10_1080_15623599_2024_2303884
crossref_primary_10_3390_ijgi14090331
crossref_primary_10_1142_S0219519425400639
crossref_primary_10_24857_rgsa_v19n2_067
crossref_primary_10_3390_w17152242
crossref_primary_10_1038_s40494_025_01967_6
crossref_primary_10_3390_ma18102307
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1177_03611981241299744
crossref_primary_10_1109_ACCESS_2025_3588502
crossref_primary_10_1007_s40747_024_01460_w
crossref_primary_10_1016_j_aei_2025_103182
crossref_primary_10_1016_j_inffus_2025_103434
crossref_primary_10_1016_j_ijar_2025_109422
crossref_primary_10_3390_jcm14165802
crossref_primary_10_1007_s10518_025_02190_1
crossref_primary_10_1016_j_engappai_2025_111042
crossref_primary_10_3390_machines13070559
crossref_primary_10_3390_app15010043
crossref_primary_10_1016_j_ins_2025_122414
crossref_primary_10_1016_j_tws_2024_112274
crossref_primary_10_3390_su16166887
crossref_primary_10_3390_informatics12020038
crossref_primary_10_3390_math13152414
crossref_primary_10_60084_jeml_v3i1_308
crossref_primary_10_3390_logistics9030108
crossref_primary_10_1109_LSP_2025_3582536
crossref_primary_10_1109_OJCSYS_2025_3585427
crossref_primary_10_3390_e26070579
crossref_primary_10_1108_MD_10_2022_1336
crossref_primary_10_1016_j_eswa_2023_122748
crossref_primary_10_1080_23311886_2025_2467226
crossref_primary_10_1108_EC_09_2024_0898
crossref_primary_10_1007_s00217_024_04645_2
crossref_primary_10_1038_s41598_024_59359_y
crossref_primary_10_1016_j_eswa_2025_128883
crossref_primary_10_1002_ange_202410881
crossref_primary_10_3390_app15063020
crossref_primary_10_1016_j_scitotenv_2024_170188
crossref_primary_10_3390_s25123609
crossref_primary_10_1007_s00216_023_04991_2
crossref_primary_10_1002_anse_202500052
crossref_primary_10_1016_j_diamond_2025_112352
crossref_primary_10_1007_s12065_025_01018_w
crossref_primary_10_1016_j_engappai_2024_109249
crossref_primary_10_1007_s10973_025_14200_0
crossref_primary_10_1109_TCE_2025_3541440
crossref_primary_10_1016_j_cities_2025_106300
crossref_primary_10_1016_j_inffus_2024_102736
crossref_primary_10_1016_j_forsciint_2024_112236
crossref_primary_10_1016_j_swevo_2025_101863
crossref_primary_10_1002_adfm_202508438
crossref_primary_10_1016_j_cej_2025_162154
crossref_primary_10_1007_s42044_025_00294_0
crossref_primary_10_1016_j_cis_2025_103671
crossref_primary_10_1016_j_fub_2025_100093
crossref_primary_10_1007_s10586_024_04664_4
crossref_primary_10_35848_1347_4065_addb54
crossref_primary_10_3390_app13084754
crossref_primary_10_1016_j_tourman_2025_105209
crossref_primary_10_1016_j_jfca_2025_107821
crossref_primary_10_61186_jgeri_2_2_79
crossref_primary_10_1038_s41598_025_13670_4
crossref_primary_10_1088_1742_6596_2706_1_012001
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1080_87559129_2025_2499645
crossref_primary_10_3390_biology14030283
crossref_primary_10_1016_j_cag_2025_104233
crossref_primary_10_1016_j_cities_2025_106295
crossref_primary_10_1007_s00357_025_09516_3
crossref_primary_10_3390_en18102465
crossref_primary_10_1007_s10115_024_02160_0
crossref_primary_10_1093_nar_gkae099
crossref_primary_10_1016_j_talanta_2024_125845
crossref_primary_10_1080_23307706_2025_2492648
crossref_primary_10_3390_microorganisms12122521
crossref_primary_10_1016_j_engappai_2024_108215
crossref_primary_10_3390_soc15030065
crossref_primary_10_1039_D4CS01293C
crossref_primary_10_3390_app14010380
crossref_primary_10_1016_j_asoc_2025_112789
crossref_primary_10_3390_app15063050
crossref_primary_10_1016_j_sbsr_2024_100697
crossref_primary_10_1108_EC_06_2024_0542
crossref_primary_10_1038_s41598_024_72504_x
crossref_primary_10_1016_j_foodchem_2025_145581
crossref_primary_10_1007_s10489_024_05913_0
crossref_primary_10_1007_s11227_024_06885_1
crossref_primary_10_3390_pr11113217
crossref_primary_10_3390_s25010073
crossref_primary_10_1016_j_rineng_2025_106498
crossref_primary_10_1007_s11042_024_19545_6
crossref_primary_10_1109_TMI_2024_3520602
crossref_primary_10_1016_j_tws_2025_113712
crossref_primary_10_1109_TMLCN_2025_3595125
crossref_primary_10_1016_j_cpb_2024_100432
crossref_primary_10_1007_s10018_024_00420_5
crossref_primary_10_1016_j_inffus_2024_102645
crossref_primary_10_1016_j_ins_2024_120663
crossref_primary_10_1016_j_inffus_2024_102889
crossref_primary_10_1016_j_tifs_2024_104396
crossref_primary_10_3390_rs17142526
crossref_primary_10_2478_amns_2025_0056
crossref_primary_10_3390_polym17111522
crossref_primary_10_1007_s10878_024_01243_6
crossref_primary_10_1080_10548408_2025_2502420
crossref_primary_10_1016_j_procs_2025_03_094
crossref_primary_10_1016_j_cstp_2025_101559
crossref_primary_10_1109_ACCESS_2024_3461798
crossref_primary_10_1007_s10462_025_11211_z
crossref_primary_10_1038_s41598_025_01064_5
crossref_primary_10_1088_1361_6501_ad14e2
crossref_primary_10_1186_s40001_025_02660_x
crossref_primary_10_1016_j_cherd_2025_03_018
crossref_primary_10_1088_1361_6501_add310
crossref_primary_10_3390_rs17050853
crossref_primary_10_3390_electronics12204218
crossref_primary_10_3390_app14209162
crossref_primary_10_1007_s44211_023_00403_8
crossref_primary_10_1177_14727978251337928
Cites_doi 10.1007/s13042-018-0836-3
10.1109/92.748202
10.1016/j.spasta.2016.07.003
10.1016/S0306-4379(00)00022-3
10.1016/B978-0-12-057650-0.50012-0
10.1016/j.spasta.2020.100407
10.1093/comjnl/9.4.373
10.1109/TKDE.2019.2903410
10.1007/BF02948829
10.1016/j.knosys.2020.106220
10.1007/s10618-005-0361-3
10.1016/j.patcog.2013.04.013
10.1109/TNNLS.2018.2853407
10.1109/TPAMI.2019.2924953
10.1007/s00357-005-0012-9
10.1007/s11222-007-9033-z
10.1016/j.asoc.2022.108584
10.1016/j.patcog.2012.11.017
10.1093/bioinformatics/btg288
10.1109/34.709614
10.1002/widm.1219
10.1109/TKDE.2019.2962412
10.1007/s00521-018-3641-8
10.1016/j.knosys.2014.04.008
10.1093/nar/gkr349
10.1109/TPAMI.2016.2615921
10.1093/bioinformatics/14.9.783
10.1016/j.neunet.2012.06.007
10.1007/3-540-28349-8_2
10.1093/comjnl/26.4.354
10.1109/TNSE.2018.2830822
10.1186/s12859-020-3453-6
10.1109/34.765656
10.1016/j.datak.2007.05.005
10.1002/j.1538-7305.1970.tb01770.x
10.1109/TPAMI.2006.227
10.1007/s00357-014-9161-z
10.1007/s10288-013-0228-1
10.1155/2018/2032461
10.1109/TPAMI.2014.2346173
10.1002/widm.53
10.1016/j.cageo.2018.11.003
10.1016/j.is.2021.101871
10.1109/TC.2018.2879332
10.1109/34.824819
10.1109/2.781637
10.3390/ijgi6010030
10.1007/s12652-021-03673-0
10.1023/A:1012801612483
10.1109/T-C.1971.223083
10.1109/TCYB.2014.2358564
10.1109/TCYB.2018.2794998
10.1007/BF00114265
10.1109/TPDS.2014.2355205
10.1109/TPAMI.2010.88
10.1007/978-3-642-56927-2
10.1016/j.neucom.2015.01.090
10.1016/j.procs.2020.04.004
10.1016/j.knosys.2014.03.013
10.1109/TNN.2005.845141
10.1016/j.spl.2020.108781
10.1002/9780470316801
10.1007/BF00058654
10.4018/IJSI.2020040101
10.1007/s00357-018-9259-9
10.1145/3299876
10.9781/ijimai.2020.03.001
10.1007/s10618-011-0221-2
10.1007/978-3-642-37456-2_14
10.1287/mnsc.31.6.647
10.1145/1102351.1102389
10.1007/978-3-030-44584-3_21
10.1109/CVPR42600.2020.01367
10.1007/3-540-36175-8_8
10.1609/aaai.v33i01.33018738
10.1109/NGCT.2015.7375113
10.1109/IMCEC46724.2019.8983946
10.1109/FUZZY.2004.1375399
10.1109/AIKE.2019.00041
10.1609/aaai.v35i10.17051
10.1109/SmartWorld.2018.00199
10.1109/ISIE.2019.8781307
10.1504/IJRAPIDM.2009.029382
10.1109/ICDM.2001.989504
10.1145/1183614.1183667
10.1007/978-3-642-33718-5_31
10.1109/CCOMS.2018.8463288
10.1145/3292500.3330929
10.1109/CSII.2018.00025
10.1145/3493700.3493727
10.1109/ISTEL.2010.5734151
10.1145/3447548.3467404
10.1145/584792.584877
10.1145/361219.361220
10.1007/s40745-015-0040-1
10.1007/BF02291173
10.1086/408956
10.1007/978-3-030-60796-8_37
10.3233/IDA-2007-11602
10.1109/COMPSAC.2018.00127
10.1109/CVPR.2005.89
10.1109/ICDE48307.2020.00184
10.1145/233269.233324
10.1007/BF01908075
10.1109/DEXA.2010.25
10.1109/CVPR.2005.50
10.1016/j.omega.2020.102370
10.1109/ICCV.2009.5459322
10.1109/LA-CCI47412.2019.9036754
10.1016/j.eswa.2019.03.031
10.1371/journal.pone.0141756
10.1109/ICMLC.2007.4370836
10.1109/FSKD.2009.205
10.1145/276304.276312
10.1007/BF02289588
10.1109/IJCNN48605.2020.9206722
10.1109/GrC.2012.6468689
10.1109/UPCON.2018.8596795
10.1073/pnas.122653799
10.1109/ICIP.2014.7025983
10.1109/RAICS.2011.6069433
10.1109/ICDM.2008.115
10.1137/1026034
10.1063/1.4908014
10.1007/BF01890115
10.1145/3534678.3539323
10.7551/mitpress/7503.003.0205
10.1109/IC4ME2.2018.8465616
10.1023/A:1009740529316
10.1038/2021034a0
10.1145/3195106.3195118
10.1109/ICDMW.2016.0123
10.1109/CSBW.2005.10
10.2307/2528688
10.1109/NoF50125.2020.9249194
10.1109/ICDM.2015.90
10.1109/GrC.2007.34
10.1016/j.eswa.2014.09.054
10.1109/WI-IAT.2012.9
10.1109/TASSP.1980.1163491
10.1109/CIBCB.2018.8404978
10.1016/0377-2217(86)90044-5
10.1109/CcS49175.2020.9231474
10.1016/j.epsr.2008.01.010
10.1109/WKDD.2010.123
10.1145/3097983.3098079
10.1007/978-3-319-63315-2_28
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright Springer Nature B.V. Aug 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
– notice: Copyright Springer Nature B.V. Aug 2023
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-022-10366-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 8264
ExternalDocumentID A754967837
10_1007_s10462_022_10366_3
GrantInformation_xml – fundername: Key Technologies Research and Development Program
  grantid: 2017YFE0111900; 2018YFB1003205
– fundername: Foundation for Innovation Groups of Basic Research in Gansu Province
  grantid: 20JR10RG304
  funderid: http://dx.doi.org/10.13039/501100012555
– fundername: Gansu Education Department
  grantid: 2020B-214
  funderid: http://dx.doi.org/10.13039/501100009590
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-5fd1402dd90cd4a6c5a1652186f9f0ad5defe197e31e49653ba3d09bd23c63e03
IEDL.DBID K7-
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903993600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Sat Nov 15 15:52:05 EST 2025
Sat Nov 29 10:30:10 EST 2025
Tue Nov 18 22:24:16 EST 2025
Sat Nov 29 02:43:27 EST 2025
Fri Feb 21 02:43:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Divisive
Agglomerative
Similarity
Hierarchical clustering
Dissimilarity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-5fd1402dd90cd4a6c5a1652186f9f0ad5defe197e31e49653ba3d09bd23c63e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4097-0709
0000-0001-8926-2039
PQID 2829976447
PQPubID 36790
PageCount 46
ParticipantIDs proquest_journals_2829976447
gale_infotracacademiconefile_A754967837
crossref_primary_10_1007_s10462_022_10366_3
crossref_citationtrail_10_1007_s10462_022_10366_3
springer_journals_10_1007_s10462_022_10366_3
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Li, Li, Qiu (CR92) 2017; 6
Zhou, Zhang, Feng (CR179) 2018
Yang, Grunsky, Cheng (CR164) 2019; 123
Bouguettaya, Yu, Liu (CR15) 2015; 42
Murtagh, Contreras (CR109) 2012; 2
Ros, Guillaume, Hajji (CR131) 2020; 204
Qin, Lewis, Noble (CR124) 2003; 19
Ishizaka, Lokman, Tasiou (CR68) 2020; 103
Zahn (CR167) 1971; 20
Johnson (CR75) 1967; 32
Lance, Williams (CR88) 1967; 9
CR163
CR39
Roux (CR132) 2018; 35
CR36
Narita, Hochin, Hayashi (CR114) 2020; 8
CR35
CR159
CR32
CR157
CR30
Li, Deng, Wang (CR91) 2014; 65
CR155
CR156
CR153
Brans, Vincke (CR16) 1985; 31
Lerato, Niesler (CR89) 2015; 10
Cai, Liu (CR19) 2020; 7
Kotsiantis, Pintelas (CR85) 2004; 1
Fisher (CR42) 1987; 2
Núñez-Valdéz, Solanki, Balakrishna (CR119) 2020; 6
Campello, Moulavi, Sander, Pei, Tseng, Cao (CR21) 2013
Abdi, Valentin (CR1) 2007; 2
CR173
CR174
Pang, Zhang, Zhang (CR121) 2019; 68
CR171
CR48
CR47
CR170
von Luxburg (CR99) 2007; 17
Forgy (CR43) 1965; 21
CR168
CR169
CR40
Halkidi, Batistakis, Vazirgiannis (CR58) 2001; 17
Sander, Qin, Lu, Whang, Jeon, Shim (CR137) 2003
CR165
Berkhin, Kogan, Nicholas, Teboulle (CR13) 2006
Alzate, Suykens (CR7) 2012; 35
Cheung, Zhang (CR31) 2019; 30
Jeon, Yoon (CR74) 2015; 26
Nikpour, Asadi (CR118) 2022; 13
Székely, Rizzo (CR145) 2005; 22
Jambu, Tan, Stern (CR72) 1989
Qin, Ma, Herawan (CR123) 2014; 67
Varshney, Muhuri, Lohani (CR154) 2022; 120
CR140
Yu, Hillebrand, Tewarie (CR166) 2015; 25
CR141
Redner, Walker (CR128) 1984; 26
Carpineto, Romano (CR23) 1996; 24
CR57
CR56
Parmar, Wu, Blackhurst (CR122) 2007; 63
CR54
CR138
CR135
Xiong, Wang, Mayers (CR160) 2012; 24
CR52
Lewis-Beck, Bryman, Liao (CR90) 2003
CR136
CR51
Frigui, Krishnapuram (CR46) 1999; 21
Tan, Steinbach, Karpatne (CR147) 2019
CR139
Wishart (CR158) 1969; 25
Chen, Song, Bai (CR26) 2011; 33
Lu, Wan (CR97) 2013; 46
Kaufman, Rousseeuw (CR80) 2009
Girvan, Newman (CR49) 2002; 99
He, Xu, Deng (CR62) 2002; 17
Kumar, Tripathy (CR86) 2009; 1
CR148
Murtagh, Contreras (CR110) 2017
Rocha, Dias (CR129) 2013; 11
CR149
Cheng, Zhu, Huang (CR28) 2019; 31
CR146
CR63
Sabarish, Karthi, Kumar (CR134) 2020; 171
CR144
CR60
CR143
Anderberg (CR8) 1973
Guha, Rastogi, Shim (CR55) 2000; 25
Everitt, Landau, Leese (CR41) 2001
Kaufman, Rousseeuw (CR79) 1990
Reddy, Vinzamuri, Aggarwal, Reddy (CR127) 2013
Hubert (CR65) 1973; 38
Neto, Sander, Campello (CR117) 2021; 33
Guan, Du (CR53) 1998; 14
Omran, Engelbrecht, Salman (CR120) 2007; 11
CR115
CR116
CR113
Karypis, Han, Kumar (CR78) 1999; 32
CR73
Cheng, Zhu, Huang (CR27) 2019; 10
CR71
Kohonen (CR84) 2001
CR2
Huang, Wang, Wu (CR64) 2020; 32
Tripathy, Ghosh (CR150) 2011; 2
Boley (CR14) 1998; 2
CR3
CR6
CR5
Zhu, Ting, Jin (CR180) 2022; 103
Myers, Rabiner, Rosenberg (CR112) 1980; 28
Chen, Cui, Wang (CR25) 2006; 12
CR126
CR87
CR125
Tripathy, Goyal, Chowdhury (CR151) 2017; 9
Barton, Bruna, Kordík (CR11) 2019; 13
CR83
CR81
Xu, Tian (CR161) 2015; 2
Hulot, Chiquet, Jaffrézic (CR67) 2020; 21
Agha (CR4) 1990
Brans, Vincke, Mareschal (CR17) 1986; 24
Ros, Guillaume (CR130) 2019; 128
He, Ray, Guan (CR61) 2019; 49
Zhao, Karypis, Fayyad (CR177) 2005; 10
Macnaughton-Smith, Williams, Dale (CR101) 1964; 202
Duran, Odell (CR37) 2013
Judd, McKinley, Jain (CR76) 1998; 20
CR12
Jain, Duin, Mao (CR70) 2000; 22
Zhang, Zhao, Wang (CR172) 2013; 46
Kernighan, Lin (CR82) 1970; 49
CR10
Jain, Dubes (CR69) 1988
CR96
CR94
CR178
CR93
CR175
Fränti, Virmajoki, Hautamäki (CR45) 2006; 28
CR176
Xu, Wunsch (CR162) 2005; 16
Golub, Loan (CR50) 1996
Day, Edelsbrunner (CR34) 1984; 1
Cai, Chen (CR18) 2015; 45
Lu, Hou, Chen (CR98) 2016; 173
Murtagh (CR108) 1983; 26
Averbuch-Elor, Bar, Cohen-Or (CR9) 2020; 42
Sisodia, Singh, Sisodia (CR142) 2012; 1
Hubert, Arabie (CR66) 1985; 2
Fouedjio (CR44) 2016; 18
Chakraborty, Paul, Das (CR24) 2020; 163
Karypis, Aggarwal, Kumar (CR77) 1999; 7
CR29
Murtagh, Legendre (CR111) 2014; 31
D’Urso, Vitale (CR38) 2020; 35
Tsekouras, Kotoulas, Tsirekis (CR152) 2008; 78
CR22
CR104
CR105
Han, Kamber, Pei (CR59) 2011; 5
CR102
CR103
CR100
Cai, Sun (CR20) 2011; 39
Liu, Latecki, Yan (CR95) 2015; 37
Courty, Flamary, Tuia (CR33) 2017; 39
CR106
CR107
D Sisodia (10366_CR142) 2012; 1
10366_CR40
D Chen (10366_CR25) 2006; 12
D Huang (10366_CR64) 2020; 32
M Jambu (10366_CR72) 1989
Y Lu (10366_CR98) 2016; 173
10366_CR135
10366_CR136
S Chakraborty (10366_CR24) 2020; 163
H Abdi (10366_CR1) 2007; 2
10366_CR138
10366_CR47
M Lewis-Beck (10366_CR90) 2003
10366_CR139
10366_CR48
G Karypis (10366_CR78) 1999; 32
10366_CR39
W Zhang (10366_CR172) 2013; 46
X Guan (10366_CR53) 1998; 14
M Roux (10366_CR132) 2018; 35
N Courty (10366_CR33) 2017; 39
JP Brans (10366_CR16) 1985; 31
F Murtagh (10366_CR108) 1983; 26
CT Zahn (10366_CR167) 1971; 20
JP Brans (10366_CR17) 1986; 24
K Narita (10366_CR114) 2020; 8
F Murtagh (10366_CR110) 2017
BS Duran (10366_CR37) 2013
10366_CR51
10366_CR52
10366_CR54
10366_CR125
10366_CR56
10366_CR126
10366_CR57
T Xiong (10366_CR160) 2012; 24
P Berkhin (10366_CR13) 2006
GA Agha (10366_CR4) 1990
C Carpineto (10366_CR23) 1996; 24
M Halkidi (10366_CR58) 2001; 17
B Tripathy (10366_CR150) 2011; 2
C Myers (10366_CR112) 1980; 28
J Yang (10366_CR164) 2019; 123
AK Jain (10366_CR69) 1988
H Liu (10366_CR95) 2015; 37
S Guha (10366_CR55) 2000; 25
S Nikpour (10366_CR118) 2022; 13
10366_CR153
10366_CR155
10366_CR156
B Tripathy (10366_CR151) 2017; 9
10366_CR157
10366_CR22
10366_CR159
Y Zhu (10366_CR180) 2022; 103
D Xu (10366_CR161) 2015; 2
Y Cheung (10366_CR31) 2019; 30
F Fouedjio (10366_CR44) 2016; 18
T Barton (10366_CR11) 2019; 13
W Chen (10366_CR26) 2011; 33
H Qin (10366_CR123) 2014; 67
D Cai (10366_CR18) 2015; 45
Y Cai (10366_CR20) 2011; 39
10366_CR140
10366_CR141
SC Johnson (10366_CR75) 1967; 32
C Rocha (10366_CR129) 2013; 11
10366_CR143
10366_CR30
10366_CR144
Q Cai (10366_CR19) 2020; 7
10366_CR32
10366_CR146
H Frigui (10366_CR46) 1999; 21
10366_CR148
10366_CR35
P Tan (10366_CR147) 2019
10366_CR149
10366_CR36
10366_CR29
J Sander (10366_CR137) 2003
Z He (10366_CR62) 2002; 17
B Everitt (10366_CR41) 2001
10366_CR170
D Boley (10366_CR14) 1998; 2
RA Redner (10366_CR128) 1984; 26
10366_CR171
10366_CR81
10366_CR173
10366_CR174
10366_CR83
CK Reddy (10366_CR127) 2013
10366_CR175
F Ros (10366_CR131) 2020; 204
10366_CR176
A Hulot (10366_CR67) 2020; 21
G Karypis (10366_CR77) 1999; 7
10366_CR178
S Kotsiantis (10366_CR85) 2004; 1
10366_CR87
P D’Urso (10366_CR38) 2020; 35
AK Jain (10366_CR70) 2000; 22
M Yu (10366_CR166) 2015; 25
MR Anderberg (10366_CR8) 1973
D Cheng (10366_CR28) 2019; 31
10366_CR93
10366_CR163
10366_CR94
10366_CR165
10366_CR96
R Xu (10366_CR162) 2005; 16
10366_CR10
10366_CR168
10366_CR169
10366_CR12
D Parmar (10366_CR122) 2007; 63
GJ Székely (10366_CR145) 2005; 22
G Tsekouras (10366_CR152) 2008; 78
L Hubert (10366_CR66) 1985; 2
M Li (10366_CR91) 2014; 65
M Girvan (10366_CR49) 2002; 99
J Han (10366_CR59) 2011; 5
P Macnaughton-Smith (10366_CR101) 1964; 202
R Zhou (10366_CR179) 2018
10366_CR60
F Murtagh (10366_CR109) 2012; 2
L Hubert (10366_CR65) 1973; 38
Y Lu (10366_CR97) 2013; 46
10366_CR63
AK Varshney (10366_CR154) 2022; 120
10366_CR113
GH Golub (10366_CR50) 1996
F Ros (10366_CR130) 2019; 128
10366_CR115
10366_CR116
L Lerato (10366_CR89) 2015; 10
B Sabarish (10366_CR134) 2020; 171
D Wishart (10366_CR158) 1969; 25
L He (10366_CR61) 2019; 49
P Fränti (10366_CR45) 2006; 28
H Averbuch-Elor (10366_CR9) 2020; 42
MGH Omran (10366_CR120) 2007; 11
L Kaufman (10366_CR79) 1990
GN Lance (10366_CR88) 1967; 9
F Murtagh (10366_CR111) 2014; 31
A Bouguettaya (10366_CR15) 2015; 42
U von Luxburg (10366_CR99) 2007; 17
J Qin (10366_CR124) 2003; 19
D Judd (10366_CR76) 1998; 20
BW Kernighan (10366_CR82) 1970; 49
L Kaufman (10366_CR80) 2009
10366_CR5
10366_CR2
10366_CR3
10366_CR71
Y Zhao (10366_CR177) 2005; 10
10366_CR6
10366_CR73
10366_CR100
C Alzate (10366_CR7) 2012; 35
DH Fisher (10366_CR42) 1987; 2
T Kohonen (10366_CR84) 2001
10366_CR102
Y Jeon (10366_CR74) 2015; 26
10366_CR103
10366_CR104
ER Núñez-Valdéz (10366_CR119) 2020; 6
10366_CR105
S Li (10366_CR92) 2017; 6
10366_CR106
10366_CR107
D Cheng (10366_CR27) 2019; 10
A Ishizaka (10366_CR68) 2020; 103
RJGB Campello (10366_CR21) 2013
N Pang (10366_CR121) 2019; 68
ACA Neto (10366_CR117) 2021; 33
WH Day (10366_CR34) 1984; 1
P Kumar (10366_CR86) 2009; 1
EW Forgy (10366_CR43) 1965; 21
References_xml – ident: CR22
– volume: 10
  start-page: 1591
  issue: 7
  year: 2019
  end-page: 1602
  ident: CR27
  article-title: A hierarchical clustering algorithm based on noise removal
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0836-3
– ident: CR173
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  end-page: 218
  ident: CR66
  article-title: Comparing partitions
  publication-title: J Classif
– volume: 7
  start-page: 69
  issue: 1
  year: 1999
  end-page: 79
  ident: CR77
  article-title: Multilevel hypergraph partitioning: applications in VLSI domain
  publication-title: IEEE Trans Very Large Scale Integr Syst
  doi: 10.1109/92.748202
– ident: CR39
– volume: 1
  start-page: 73
  issue: 1
  year: 2004
  end-page: 81
  ident: CR85
  article-title: Recent advances in clustering: a brief survey
  publication-title: WSEAS Trans Inf Sci Appl
– volume: 26
  start-page: 195
  issue: 2
  year: 1984
  end-page: 239
  ident: CR128
  article-title: Mixture densities, maximum likelihood and the EM algorithm
  publication-title: SIAM Rev
– volume: 78
  start-page: 1494
  issue: 9
  year: 2008
  end-page: 1510
  ident: CR152
  article-title: A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers
  publication-title: Electr Power Syst Res
– ident: CR51
– volume: 18
  start-page: 333
  year: 2016
  end-page: 351
  ident: CR44
  article-title: A hierarchical clustering method for multivariate geostatistical data
  publication-title: Spat Stat
  doi: 10.1016/j.spasta.2016.07.003
– ident: CR115
– ident: CR138
– ident: CR135
– volume: 25
  start-page: 345
  issue: 5
  year: 2000
  end-page: 366
  ident: CR55
  article-title: ROCK: a robust clustering algorithm for categorical attributes
  publication-title: Inf Syst
  doi: 10.1016/S0306-4379(00)00022-3
– ident: CR54
– ident: CR106
– year: 1973
  ident: CR8
  publication-title: Chapter 6–hierarchical clustering methods, probability and mathematical statistics: a series of monographs and textbooks
  doi: 10.1016/B978-0-12-057650-0.50012-0
– ident: CR144
– volume: 35
  start-page: 407
  issue: 100
  year: 2020
  ident: CR38
  article-title: A robust hierarchical clustering for georeferenced data
  publication-title: Spat Stat
  doi: 10.1016/j.spasta.2020.100407
– ident: CR71
– volume: 9
  start-page: 373
  issue: 4
  year: 1967
  end-page: 380
  ident: CR88
  article-title: A general theory of classificatory sorting strategies: 1. Hierarchical systems
  publication-title: Comput J
  doi: 10.1093/comjnl/9.4.373
– year: 1996
  ident: CR50
  publication-title: Matrix computations
– volume: 32
  start-page: 1212
  issue: 6
  year: 2020
  end-page: 1226
  ident: CR64
  article-title: Ultra-scalable spectral clustering and ensemble clustering
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2903410
– volume: 17
  start-page: 611
  issue: 5
  year: 2002
  end-page: 624
  ident: CR62
  article-title: Squeezer: an efficient algorithm for clustering categorical data
  publication-title: J Comput Sci Technol
  doi: 10.1007/BF02948829
– volume: 1
  start-page: 189
  issue: 2
  year: 2009
  end-page: 207
  ident: CR86
  article-title: MMeR: an algorithm for clustering heterogeneous data using rough set theory
  publication-title: Int J Rapid Manuf
– volume: 204
  start-page: 220
  issue: 106
  year: 2020
  ident: CR131
  article-title: KdMutual: a novel clustering algorithm combining mutual neighboring and hierarchical approaches using a new selection criterion
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106220
– volume: 10
  start-page: 141
  issue: 2
  year: 2005
  end-page: 168
  ident: CR177
  article-title: Hierarchical clustering algorithms for document datasets
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-005-0361-3
– volume: 11
  start-page: 583
  issue: 6
  year: 2007
  end-page: 605
  ident: CR120
  article-title: An overview of clustering methods
  publication-title: Intell Data Anal
– volume: 46
  start-page: 3056
  issue: 11
  year: 2013
  end-page: 3065
  ident: CR172
  article-title: Agglomerative clustering via maximum incremental path integral
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.04.013
– ident: CR178
– volume: 30
  start-page: 876
  issue: 3
  year: 2019
  end-page: 890
  ident: CR31
  article-title: Fast and accurate hierarchical clustering based on growing multilayer topology training
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2853407
– ident: CR153
– volume: 42
  start-page: 1791
  issue: 7
  year: 2020
  end-page: 1797
  ident: CR9
  article-title: Border-peeling clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2924953
– ident: CR170
– ident: CR57
– ident: CR60
– start-page: 75
  year: 2003
  end-page: 87
  ident: CR137
  article-title: Automatic extraction of clusters from hierarchical clustering representations
  publication-title: Advances in knowledge discovery and data mining
– ident: CR36
– volume: 202
  start-page: 1034
  issue: 4936
  year: 1964
  end-page: 1035
  ident: CR101
  article-title: Dissimilarity analysis: a new technique of hierarchical sub-division
  publication-title: Nature
– ident: CR5
– volume: 22
  start-page: 151
  issue: 2
  year: 2005
  end-page: 183
  ident: CR145
  article-title: Hierarchical clustering via joint between-within distances: extending Ward’s minimum variance method
  publication-title: J Classif
  doi: 10.1007/s00357-005-0012-9
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  ident: CR99
  article-title: A tutorial on spectral clustering
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9033-z
– volume: 25
  start-page: 023107
  issue: 2
  year: 2015
  ident: CR166
  article-title: Hierarchical clustering in minimum spanning trees
  publication-title: Chaos
– year: 2013
  ident: CR37
  publication-title: Cluster analysis: a survey
– volume: 120
  start-page: 584
  issue: 108
  year: 2022
  ident: CR154
  article-title: PIFHC: the probabilistic intuitionistic fuzzy hierarchical clustering algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108584
– ident: CR126
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  end-page: 193
  ident: CR161
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann Data Sci
– ident: CR100
– volume: 46
  start-page: 1227
  issue: 5
  year: 2013
  end-page: 1239
  ident: CR97
  article-title: PHA: a fast potential-based hierarchical agglomerative clustering method
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.11.017
– ident: CR47
– volume: 19
  start-page: 2097
  issue: 16
  year: 2003
  end-page: 2104
  ident: CR124
  article-title: Kernel hierarchical gene clustering from microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg288
– volume: 20
  start-page: 871
  issue: 8
  year: 1998
  end-page: 876
  ident: CR76
  article-title: Large-scale parallel data clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709614
– year: 2017
  ident: CR110
  article-title: Algorithms for hierarchical clustering: an overview, II
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1219
– ident: CR156
– ident: CR30
– ident: CR171
– ident: CR10
– volume: 33
  start-page: 3075
  issue: 8
  year: 2021
  end-page: 3089
  ident: CR117
  article-title: Efficient computation and visualization of multiple density-based clustering hierarchies
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2962412
– volume: 31
  start-page: 8051
  issue: 11
  year: 2019
  end-page: 8068
  ident: CR28
  article-title: A local cores-based hierarchical clustering algorithm for data sets with complex structures
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3641-8
– volume: 65
  start-page: 60
  year: 2014
  end-page: 71
  ident: CR91
  article-title: Hierarchical clustering algorithm for categorical data using a probabilistic rough set model
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.04.008
– year: 2019
  ident: CR147
  publication-title: Introduction to data mining
– ident: CR6
– volume: 39
  start-page: e95
  issue: 14
  year: 2011
  end-page: e95
  ident: CR20
  article-title: ESPRIT-tree: hierarchical clustering analysis of millions of 16s rRNA pyrosequences in quasilinear computational time
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr349
– volume: 39
  start-page: 1853
  issue: 9
  year: 2017
  end-page: 1865
  ident: CR33
  article-title: Optimal transport for domain adaptation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2615921
– volume: 14
  start-page: 783
  issue: 9
  year: 1998
  end-page: 788
  ident: CR53
  article-title: Domain identification by clustering sequence alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.783
– ident: CR63
– volume: 35
  start-page: 21
  issue: C
  year: 2012
  end-page: 30
  ident: CR7
  article-title: Hierarchical kernel spectral clustering
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.06.007
– start-page: 25
  year: 2006
  end-page: 71
  ident: CR13
  article-title: A survey of clustering data mining techniques
  publication-title: Grouping multidimensional data–recent advances in clustering
  doi: 10.1007/3-540-28349-8_2
– year: 1988
  ident: CR69
  publication-title: Algorithms for clustering data
– ident: CR165
– ident: CR94
– volume: 26
  start-page: 354
  issue: 4
  year: 1983
  end-page: 359
  ident: CR108
  article-title: A survey of recent advances in hierarchical clustering algorithms
  publication-title: Comput J
  doi: 10.1093/comjnl/26.4.354
– volume: 7
  start-page: 421
  issue: 1
  year: 2020
  end-page: 434
  ident: CR19
  article-title: Hierarchical clustering of bipartite networks based on multiobjective optimization
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2018.2830822
– volume: 1
  start-page: 7
  issue: 1
  year: 1984
  end-page: 24
  ident: CR34
  article-title: Efficient algorithms for agglomerative hierarchical clustering methods
  publication-title: J Classif
– volume: 21
  start-page: 120
  issue: 1
  year: 2020
  ident: CR67
  article-title: Fast tree aggregation for consensus hierarchical clustering
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-3453-6
– ident: CR103
– ident: CR176
– volume: 21
  start-page: 450
  issue: 5
  year: 1999
  end-page: 465
  ident: CR46
  article-title: A robust competitive clustering algorithm with applications in computer vision
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.765656
– ident: CR3
– start-page: 87
  year: 2013
  end-page: 110
  ident: CR127
  article-title: A survey of partitional and hierarchical clustering algorithms
  publication-title: Data clustering: algorithms and applications
– volume: 12
  start-page: 149
  issue: 3
  year: 2006
  end-page: 159
  ident: CR25
  article-title: A rough set-based hierarchical clustering algorithm for categorical data
  publication-title: Int J Inf Technol
– ident: CR52
– ident: CR139
– volume: 2
  start-page: 325
  issue: 4
  year: 1998
  end-page: 344
  ident: CR14
  article-title: Principal direction divisive partitioning
  publication-title: Data Min Knowl Disc
– volume: 63
  start-page: 879
  issue: 3
  year: 2007
  end-page: 893
  ident: CR122
  article-title: MMR: an algorithm for clustering categorical data using rough set theory
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2007.05.005
– volume: 5
  start-page: 83
  issue: 4
  year: 2011
  end-page: 124
  ident: CR59
  article-title: Data mining concepts and techniques: third edition
  publication-title: Morgan Kaufmann Ser Data Manag Syst
– year: 2009
  ident: CR80
  publication-title: Finding groups in data: an introduction to cluster analysis
– ident: CR159
– ident: CR83
– volume: 49
  start-page: 291
  issue: 2
  year: 1970
  end-page: 307
  ident: CR82
  article-title: An efficient heuristic procedure for partitioning graphs
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– volume: 28
  start-page: 1875
  issue: 11
  year: 2006
  end-page: 1881
  ident: CR45
  article-title: Fast agglomerative clustering using a k-nearest neighbor graph
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.227
– ident: CR125
– ident: CR148
– ident: CR102
– volume: 9
  start-page: 25
  issue: 8
  year: 2017
  ident: CR151
  article-title: MMeMeR: an algorithm for clustering heterogeneous data using rough set theory
  publication-title: Int J Intell Syst Appl
– year: 2001
  ident: CR41
  publication-title: Cluster analysis
– ident: CR93
– volume: 31
  start-page: 274
  issue: 3
  year: 2014
  end-page: 295
  ident: CR111
  article-title: Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?
  publication-title: J Classif
  doi: 10.1007/s00357-014-9161-z
– volume: 11
  start-page: 253
  issue: 3
  year: 2013
  end-page: 273
  ident: CR129
  article-title: MPOC: an agglomerative algorithm for multicriteria partially ordered clustering
  publication-title: 4OR
  doi: 10.1007/s10288-013-0228-1
– ident: CR87
– year: 2003
  ident: CR90
  publication-title: The Sage encyclopedia of social science research methods
– ident: CR12
– volume: 25
  start-page: 165
  year: 1969
  end-page: 170
  ident: CR158
  article-title: An algorithm for hierarchical classifications
  publication-title: Biometrics
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  end-page: 254
  ident: CR75
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– ident: CR35
– ident: CR29
– volume: 21
  start-page: 768
  year: 1965
  end-page: 769
  ident: CR43
  article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classifications
  publication-title: Biometrics
– volume: 2
  start-page: 651
  issue: 4
  year: 2007
  end-page: 657
  ident: CR1
  article-title: Multiple correspondence analysis
  publication-title: Encycl Meas Stat
– year: 2018
  ident: CR179
  article-title: A novel hierarchical clustering algorithm based on density peaks for complex datasets
  publication-title: Complex
  doi: 10.1155/2018/2032461
– volume: 37
  start-page: 541
  issue: 3
  year: 2015
  end-page: 554
  ident: CR95
  article-title: Dense subgraph partition of positive hypergraphs
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2346173
– volume: 2
  start-page: 86
  issue: 1
  year: 2012
  end-page: 97
  ident: CR109
  article-title: Algorithms for hierarchical clustering: an overview
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.53
– volume: 42
  start-page: 2785
  issue: 5
  year: 2015
  end-page: 2797
  ident: CR15
  article-title: Efficient agglomerative hierarchical clustering
  publication-title: Expert Syst Appl
– ident: CR140
– ident: CR163
– volume: 123
  start-page: 10
  year: 2019
  end-page: 19
  ident: CR164
  article-title: A novel hierarchical clustering analysis method based on Kullback–Leibler divergence and application on dalaimiao geochemical exploration data
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2018.11.003
– start-page: 160
  year: 2013
  end-page: 172
  ident: CR21
  article-title: Density-based clustering based on hierarchical density estimates
  publication-title: Advances in knowledge discovery and data mining
– ident: CR174
– volume: 103
  start-page: 102370
  year: 2020
  ident: CR68
  article-title: A stochastic multi-criteria divisive hierarchical clustering algorithm
  publication-title: Omega
– ident: CR96
– volume: 103
  start-page: 101871
  issue: C
  year: 2022
  ident: CR180
  article-title: Hierarchical clustering that takes advantage of both density-peak and density-connectivity
  publication-title: Inf Syst
  doi: 10.1016/j.is.2021.101871
– volume: 68
  start-page: 542
  issue: 4
  year: 2019
  end-page: 555
  ident: CR121
  article-title: Parallel hierarchical subspace clustering of categorical data
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2018.2879332
– volume: 31
  start-page: 647
  issue: 6
  year: 1985
  end-page: 656
  ident: CR16
  article-title: Note—a preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making)
  publication-title: Manag Sci
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  end-page: 7826
  ident: CR49
  article-title: Community structure in social and biological networks
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  end-page: 37
  ident: CR70
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.824819
– ident: CR157
– ident: CR116
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  end-page: 75
  ident: CR78
  article-title: Chameleon: hierarchical clustering using dynamic modeling
  publication-title: Computer
  doi: 10.1109/2.781637
– ident: CR136
– volume: 128
  start-page: 96
  year: 2019
  end-page: 108
  ident: CR130
  article-title: A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with noise
  publication-title: Expert Syst Appl
– ident: CR32
– volume: 6
  start-page: 30
  issue: 1
  year: 2017
  ident: CR92
  article-title: A novel divisive hierarchical clustering algorithm for geospatial analysis
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi6010030
– volume: 13
  start-page: 2983
  issue: 6
  year: 2022
  end-page: 3003
  ident: CR118
  article-title: A dynamic hierarchical incremental learning-based supervised clustering for data stream with considering concept drift
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-021-03673-0
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  end-page: 145
  ident: CR58
  article-title: On clustering validation techniques
  publication-title: J Intell Inf Syst
  doi: 10.1023/A:1012801612483
– ident: CR81
– volume: 38
  start-page: 47
  issue: 1
  year: 1973
  end-page: 62
  ident: CR65
  article-title: Monotone invariant clustering procedures
  publication-title: Psychometrika
– ident: CR105
– volume: 20
  start-page: 68
  issue: 1
  year: 1971
  end-page: 86
  ident: CR167
  article-title: Graph-theoretical methods for detecting and describing gestalt clusters
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1971.223083
– ident: CR168
– volume: 45
  start-page: 1669
  issue: 8
  year: 2015
  end-page: 1680
  ident: CR18
  article-title: Large scale spectral clustering via landmark-based sparse representation
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2358564
– ident: CR143
– year: 1990
  ident: CR4
  publication-title: ACTORS—a model of concurrent computation in distributed systems. MIT Press series in artificial intelligence
– ident: CR175
– volume: 49
  start-page: 1058
  issue: 3
  year: 2019
  end-page: 1071
  ident: CR61
  article-title: Fast large-scale spectral clustering via explicit feature mapping
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2794998
– year: 1989
  ident: CR72
  publication-title: Exploration informatique et statistique des données
– volume: 2
  start-page: 139
  issue: 2
  year: 1987
  end-page: 172
  ident: CR42
  article-title: Knowledge acquisition via incremental conceptual clustering
  publication-title: Mach Learn
  doi: 10.1007/BF00114265
– volume: 26
  start-page: 2534
  issue: 9
  year: 2015
  end-page: 2548
  ident: CR74
  article-title: Multi-threaded hierarchical clustering by parallel nearest-neighbor chaining
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2355205
– volume: 10
  start-page: e0141756
  issue: 10
  year: 2015
  ident: CR89
  article-title: Clustering acoustic segments using multi-stage agglomerative hierarchical clustering
  publication-title: PLoS ONE
– volume: 33
  start-page: 568
  issue: 3
  year: 2011
  end-page: 586
  ident: CR26
  article-title: Parallel spectral clustering in distributed systems
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.88
– year: 2001
  ident: CR84
  publication-title: Self-organizing maps, third edition. Springer series in information sciences
  doi: 10.1007/978-3-642-56927-2
– volume: 173
  start-page: 3
  year: 2016
  end-page: 8
  ident: CR98
  article-title: A novel travel-time based similarity measure for hierarchical clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.090
– ident: CR2
– volume: 171
  start-page: 32
  year: 2020
  end-page: 41
  ident: CR134
  article-title: Graph similarity-based hierarchical clustering of trajectory data
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.04.004
– ident: CR113
– volume: 1
  start-page: 82
  issue: 3
  year: 2012
  end-page: 87
  ident: CR142
  article-title: Clustering techniques: a brief survey of different clustering algorithms
  publication-title: Int J Latest Trends Eng Technol
– volume: 67
  start-page: 401
  year: 2014
  end-page: 411
  ident: CR123
  article-title: MGR: an information theory based hierarchical divisive clustering algorithm for categorical data
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.03.013
– ident: CR56
– volume: 28
  start-page: 623
  issue: 6
  year: 1980
  end-page: 635
  ident: CR112
  article-title: Performance tradeoffs in dynamic time warping algorithms for isolated word recognition
  publication-title: IEEE Trans Acoust Speech Signal Process
– volume: 24
  start-page: 228
  issue: 2
  year: 1986
  end-page: 238
  ident: CR17
  article-title: How to select and how to rank projects: the PROMETHEE method
  publication-title: Eur J Oper Res
– ident: CR40
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  end-page: 678
  ident: CR162
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– ident: CR169
– volume: 163
  start-page: 781
  issue: 108
  year: 2020
  ident: CR24
  article-title: Hierarchical clustering with optimal transport
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2020.108781
– ident: CR104
– ident: CR146
– ident: CR149
– year: 1990
  ident: CR79
  publication-title: Finding groups in data: an introduction to cluster analysis
  doi: 10.1002/9780470316801
– volume: 24
  start-page: 95
  issue: 2
  year: 1996
  end-page: 122
  ident: CR23
  article-title: A lattice conceptual clustering system and its application to browsing retrieval
  publication-title: Mach Learn
  doi: 10.1007/BF00058654
– ident: CR48
– ident: CR73
– ident: CR155
– volume: 8
  start-page: 1
  issue: 2
  year: 2020
  end-page: 22
  ident: CR114
  article-title: Incremental hierarchical clustering for data insertion and its evaluation
  publication-title: Int J Softw Innov
  doi: 10.4018/IJSI.2020040101
– volume: 35
  start-page: 345
  issue: 2
  year: 2018
  end-page: 366
  ident: CR132
  article-title: A comparative study of divisive and agglomerative hierarchical clustering algorithms
  publication-title: J Classif
  doi: 10.1007/s00357-018-9259-9
– volume: 13
  start-page: 10
  issue: 1
  year: 2019
  ident: CR11
  article-title: Chameleon 2: an improved graph-based clustering algorithm
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3299876
– volume: 6
  start-page: 1
  issue: 2
  year: 2020
  end-page: 15
  ident: CR119
  article-title: Incremental hierarchical clustering driven automatic annotations for unifying IoT streaming data
  publication-title: Int J Interact Multim Artif Intell
  doi: 10.9781/ijimai.2020.03.001
– volume: 24
  start-page: 103
  issue: 1
  year: 2012
  end-page: 135
  ident: CR160
  article-title: DHCC: divisive hierarchical clustering of categorical data
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-011-0221-2
– ident: CR107
– ident: CR141
– volume: 2
  start-page: 314
  issue: 3
  year: 2011
  end-page: 326
  ident: CR150
  article-title: SSDR: an algorithm for clustering categorical data using rough set theory
  publication-title: Adv Appl Sci Res
– start-page: 160
  volume-title: Advances in knowledge discovery and data mining
  year: 2013
  ident: 10366_CR21
  doi: 10.1007/978-3-642-37456-2_14
– volume: 31
  start-page: 647
  issue: 6
  year: 1985
  ident: 10366_CR16
  publication-title: Manag Sci
  doi: 10.1287/mnsc.31.6.647
– volume-title: Exploration informatique et statistique des données
  year: 1989
  ident: 10366_CR72
– volume: 2
  start-page: 139
  issue: 2
  year: 1987
  ident: 10366_CR42
  publication-title: Mach Learn
  doi: 10.1007/BF00114265
– volume: 24
  start-page: 103
  issue: 1
  year: 2012
  ident: 10366_CR160
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-011-0221-2
– ident: 10366_CR63
  doi: 10.1145/1102351.1102389
– ident: 10366_CR73
  doi: 10.1007/978-3-030-44584-3_21
– ident: 10366_CR169
  doi: 10.1109/CVPR42600.2020.01367
– volume: 28
  start-page: 1875
  issue: 11
  year: 2006
  ident: 10366_CR45
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.227
– ident: 10366_CR100
– start-page: 75
  volume-title: Advances in knowledge discovery and data mining
  year: 2003
  ident: 10366_CR137
  doi: 10.1007/3-540-36175-8_8
– volume: 18
  start-page: 333
  year: 2016
  ident: 10366_CR44
  publication-title: Spat Stat
  doi: 10.1016/j.spasta.2016.07.003
– ident: 10366_CR94
  doi: 10.1609/aaai.v33i01.33018738
– volume: 8
  start-page: 1
  issue: 2
  year: 2020
  ident: 10366_CR114
  publication-title: Int J Softw Innov
  doi: 10.4018/IJSI.2020040101
– ident: 10366_CR81
  doi: 10.1109/NGCT.2015.7375113
– ident: 10366_CR93
  doi: 10.1109/IMCEC46724.2019.8983946
– ident: 10366_CR39
  doi: 10.1109/FUZZY.2004.1375399
– ident: 10366_CR115
  doi: 10.1109/AIKE.2019.00041
– ident: 10366_CR96
  doi: 10.1609/aaai.v35i10.17051
– volume: 11
  start-page: 253
  issue: 3
  year: 2013
  ident: 10366_CR129
  publication-title: 4OR
  doi: 10.1007/s10288-013-0228-1
– ident: 10366_CR148
  doi: 10.1109/SmartWorld.2018.00199
– volume: 33
  start-page: 568
  issue: 3
  year: 2011
  ident: 10366_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.88
– volume: 31
  start-page: 274
  issue: 3
  year: 2014
  ident: 10366_CR111
  publication-title: J Classif
  doi: 10.1007/s00357-014-9161-z
– ident: 10366_CR5
  doi: 10.1109/ISIE.2019.8781307
– ident: 10366_CR140
– volume: 6
  start-page: 30
  issue: 1
  year: 2017
  ident: 10366_CR92
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi6010030
– volume: 63
  start-page: 879
  issue: 3
  year: 2007
  ident: 10366_CR122
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2007.05.005
– volume: 1
  start-page: 189
  issue: 2
  year: 2009
  ident: 10366_CR86
  publication-title: Int J Rapid Manuf
  doi: 10.1504/IJRAPIDM.2009.029382
– ident: 10366_CR30
  doi: 10.1109/ICDM.2001.989504
– ident: 10366_CR135
  doi: 10.1145/1183614.1183667
– volume: 10
  start-page: 141
  issue: 2
  year: 2005
  ident: 10366_CR177
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-005-0361-3
– volume: 9
  start-page: 25
  issue: 8
  year: 2017
  ident: 10366_CR151
  publication-title: Int J Intell Syst Appl
– ident: 10366_CR171
  doi: 10.1007/978-3-642-33718-5_31
– ident: 10366_CR36
  doi: 10.1109/CCOMS.2018.8463288
– ident: 10366_CR103
  doi: 10.1145/3292500.3330929
– volume-title: Chapter 6–hierarchical clustering methods, probability and mathematical statistics: a series of monographs and textbooks
  year: 1973
  ident: 10366_CR8
  doi: 10.1016/B978-0-12-057650-0.50012-0
– volume: 31
  start-page: 8051
  issue: 11
  year: 2019
  ident: 10366_CR28
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3641-8
– ident: 10366_CR40
– ident: 10366_CR113
  doi: 10.1109/CSII.2018.00025
– volume: 46
  start-page: 3056
  issue: 11
  year: 2013
  ident: 10366_CR172
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.04.013
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: 10366_CR78
  publication-title: Computer
  doi: 10.1109/2.781637
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 10366_CR70
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.824819
– volume: 65
  start-page: 60
  year: 2014
  ident: 10366_CR91
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.04.008
– ident: 10366_CR139
– ident: 10366_CR35
  doi: 10.1145/3493700.3493727
– ident: 10366_CR71
  doi: 10.1109/ISTEL.2010.5734151
– ident: 10366_CR104
  doi: 10.1145/3447548.3467404
– volume: 32
  start-page: 1212
  issue: 6
  year: 2020
  ident: 10366_CR64
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2903410
– volume-title: Cluster analysis: a survey
  year: 2013
  ident: 10366_CR37
– ident: 10366_CR176
  doi: 10.1145/584792.584877
– ident: 10366_CR136
  doi: 10.1145/361219.361220
– volume: 20
  start-page: 871
  issue: 8
  year: 1998
  ident: 10366_CR76
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709614
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 2009
  ident: 10366_CR80
– volume: 163
  start-page: 781
  issue: 108
  year: 2020
  ident: 10366_CR24
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2020.108781
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 10366_CR161
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-015-0040-1
– volume: 38
  start-page: 47
  issue: 1
  year: 1973
  ident: 10366_CR65
  publication-title: Psychometrika
  doi: 10.1007/BF02291173
– ident: 10366_CR143
  doi: 10.1086/408956
– volume: 21
  start-page: 768
  year: 1965
  ident: 10366_CR43
  publication-title: Biometrics
– year: 2018
  ident: 10366_CR179
  publication-title: Complex
  doi: 10.1155/2018/2032461
– ident: 10366_CR12
– ident: 10366_CR159
  doi: 10.1007/978-3-030-60796-8_37
– volume: 11
  start-page: 583
  issue: 6
  year: 2007
  ident: 10366_CR120
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2007-11602
– ident: 10366_CR141
  doi: 10.1109/COMPSAC.2018.00127
– ident: 10366_CR3
  doi: 10.1109/CVPR.2005.89
– start-page: 25
  volume-title: Grouping multidimensional data–recent advances in clustering
  year: 2006
  ident: 10366_CR13
  doi: 10.1007/3-540-28349-8_2
– ident: 10366_CR6
  doi: 10.1109/ICDE48307.2020.00184
– volume: 42
  start-page: 1791
  issue: 7
  year: 2020
  ident: 10366_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2924953
– ident: 10366_CR170
  doi: 10.1145/233269.233324
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 10366_CR66
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 173
  start-page: 3
  year: 2016
  ident: 10366_CR98
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.090
– volume: 14
  start-page: 783
  issue: 9
  year: 1998
  ident: 10366_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.783
– ident: 10366_CR52
– volume: 7
  start-page: 69
  issue: 1
  year: 1999
  ident: 10366_CR77
  publication-title: IEEE Trans Very Large Scale Integr Syst
  doi: 10.1109/92.748202
– ident: 10366_CR105
  doi: 10.1109/DEXA.2010.25
– volume: 2
  start-page: 86
  issue: 1
  year: 2012
  ident: 10366_CR109
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.53
– ident: 10366_CR51
  doi: 10.1109/CVPR.2005.50
– ident: 10366_CR173
– volume: 17
  start-page: 611
  issue: 5
  year: 2002
  ident: 10366_CR62
  publication-title: J Comput Sci Technol
  doi: 10.1007/BF02948829
– volume: 30
  start-page: 876
  issue: 3
  year: 2019
  ident: 10366_CR31
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2853407
– volume: 103
  start-page: 102370
  year: 2020
  ident: 10366_CR68
  publication-title: Omega
  doi: 10.1016/j.omega.2020.102370
– volume: 2
  start-page: 651
  issue: 4
  year: 2007
  ident: 10366_CR1
  publication-title: Encycl Meas Stat
– volume-title: Self-organizing maps, third edition. Springer series in information sciences
  year: 2001
  ident: 10366_CR84
  doi: 10.1007/978-3-642-56927-2
– year: 2017
  ident: 10366_CR110
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1219
– volume: 12
  start-page: 149
  issue: 3
  year: 2006
  ident: 10366_CR25
  publication-title: Int J Inf Technol
– volume: 19
  start-page: 2097
  issue: 16
  year: 2003
  ident: 10366_CR124
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg288
– ident: 10366_CR32
  doi: 10.1109/ICCV.2009.5459322
– volume: 21
  start-page: 450
  issue: 5
  year: 1999
  ident: 10366_CR46
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.765656
– volume: 204
  start-page: 220
  issue: 106
  year: 2020
  ident: 10366_CR131
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106220
– volume: 1
  start-page: 82
  issue: 3
  year: 2012
  ident: 10366_CR142
  publication-title: Int J Latest Trends Eng Technol
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  ident: 10366_CR58
  publication-title: J Intell Inf Syst
  doi: 10.1023/A:1012801612483
– volume: 45
  start-page: 1669
  issue: 8
  year: 2015
  ident: 10366_CR18
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2358564
– ident: 10366_CR47
  doi: 10.1109/LA-CCI47412.2019.9036754
– volume: 37
  start-page: 541
  issue: 3
  year: 2015
  ident: 10366_CR95
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2346173
– volume: 128
  start-page: 96
  year: 2019
  ident: 10366_CR130
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.03.031
– volume: 13
  start-page: 10
  issue: 1
  year: 2019
  ident: 10366_CR11
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3299876
– volume: 10
  start-page: e0141756
  issue: 10
  year: 2015
  ident: 10366_CR89
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141756
– volume: 6
  start-page: 1
  issue: 2
  year: 2020
  ident: 10366_CR119
  publication-title: Int J Interact Multim Artif Intell
  doi: 10.9781/ijimai.2020.03.001
– volume: 49
  start-page: 1058
  issue: 3
  year: 2019
  ident: 10366_CR61
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2794998
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10366_CR162
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– ident: 10366_CR57
  doi: 10.1109/ICMLC.2007.4370836
– ident: 10366_CR2
– ident: 10366_CR168
  doi: 10.1109/FSKD.2009.205
– ident: 10366_CR54
  doi: 10.1145/276304.276312
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 10366_CR75
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: 25
  start-page: 345
  issue: 5
  year: 2000
  ident: 10366_CR55
  publication-title: Inf Syst
  doi: 10.1016/S0306-4379(00)00022-3
– ident: 10366_CR156
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10366_CR99
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9033-z
– ident: 10366_CR153
– ident: 10366_CR175
  doi: 10.1109/IJCNN48605.2020.9206722
– ident: 10366_CR146
  doi: 10.1109/GrC.2012.6468689
– volume: 35
  start-page: 345
  issue: 2
  year: 2018
  ident: 10366_CR132
  publication-title: J Classif
  doi: 10.1007/s00357-018-9259-9
– start-page: 87
  volume-title: Data clustering: algorithms and applications
  year: 2013
  ident: 10366_CR127
– ident: 10366_CR116
  doi: 10.1109/UPCON.2018.8596795
– volume: 10
  start-page: 1591
  issue: 7
  year: 2019
  ident: 10366_CR27
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0836-3
– volume: 24
  start-page: 95
  issue: 2
  year: 1996
  ident: 10366_CR23
  publication-title: Mach Learn
  doi: 10.1007/BF00058654
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10366_CR49
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.122653799
– volume: 120
  start-page: 584
  issue: 108
  year: 2022
  ident: 10366_CR154
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108584
– volume: 123
  start-page: 10
  year: 2019
  ident: 10366_CR164
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2018.11.003
– ident: 10366_CR125
  doi: 10.1109/ICIP.2014.7025983
– volume: 21
  start-page: 120
  issue: 1
  year: 2020
  ident: 10366_CR67
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-3453-6
– ident: 10366_CR149
  doi: 10.1109/RAICS.2011.6069433
– volume: 35
  start-page: 407
  issue: 100
  year: 2020
  ident: 10366_CR38
  publication-title: Spat Stat
  doi: 10.1016/j.spasta.2020.100407
– ident: 10366_CR56
  doi: 10.1109/ICDM.2008.115
– volume: 35
  start-page: 21
  issue: C
  year: 2012
  ident: 10366_CR7
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.06.007
– volume: 26
  start-page: 195
  issue: 2
  year: 1984
  ident: 10366_CR128
  publication-title: SIAM Rev
  doi: 10.1137/1026034
– volume: 25
  start-page: 023107
  issue: 2
  year: 2015
  ident: 10366_CR166
  publication-title: Chaos
  doi: 10.1063/1.4908014
– volume: 22
  start-page: 151
  issue: 2
  year: 2005
  ident: 10366_CR145
  publication-title: J Classif
  doi: 10.1007/s00357-005-0012-9
– volume: 7
  start-page: 421
  issue: 1
  year: 2020
  ident: 10366_CR19
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2018.2830822
– volume: 1
  start-page: 7
  issue: 1
  year: 1984
  ident: 10366_CR34
  publication-title: J Classif
  doi: 10.1007/BF01890115
– ident: 10366_CR60
  doi: 10.1145/3534678.3539323
– ident: 10366_CR178
  doi: 10.7551/mitpress/7503.003.0205
– ident: 10366_CR126
  doi: 10.1109/IC4ME2.2018.8465616
– volume: 2
  start-page: 325
  issue: 4
  year: 1998
  ident: 10366_CR14
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009740529316
– volume: 202
  start-page: 1034
  issue: 4936
  year: 1964
  ident: 10366_CR101
  publication-title: Nature
  doi: 10.1038/2021034a0
– ident: 10366_CR22
  doi: 10.1145/3195106.3195118
– volume-title: Algorithms for clustering data
  year: 1988
  ident: 10366_CR69
– ident: 10366_CR10
  doi: 10.1109/ICDMW.2016.0123
– ident: 10366_CR48
  doi: 10.1109/CSBW.2005.10
– volume: 26
  start-page: 354
  issue: 4
  year: 1983
  ident: 10366_CR108
  publication-title: Comput J
  doi: 10.1093/comjnl/26.4.354
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 1990
  ident: 10366_CR79
  doi: 10.1002/9780470316801
– volume: 49
  start-page: 291
  issue: 2
  year: 1970
  ident: 10366_CR82
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– volume: 68
  start-page: 542
  issue: 4
  year: 2019
  ident: 10366_CR121
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2018.2879332
– volume: 25
  start-page: 165
  year: 1969
  ident: 10366_CR158
  publication-title: Biometrics
  doi: 10.2307/2528688
– volume: 20
  start-page: 68
  issue: 1
  year: 1971
  ident: 10366_CR167
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1971.223083
– volume: 103
  start-page: 101871
  issue: C
  year: 2022
  ident: 10366_CR180
  publication-title: Inf Syst
  doi: 10.1016/j.is.2021.101871
– ident: 10366_CR106
  doi: 10.1109/NoF50125.2020.9249194
– volume: 171
  start-page: 32
  year: 2020
  ident: 10366_CR134
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.04.004
– volume: 2
  start-page: 314
  issue: 3
  year: 2011
  ident: 10366_CR150
  publication-title: Adv Appl Sci Res
– ident: 10366_CR102
  doi: 10.1109/ICDM.2015.90
– volume: 13
  start-page: 2983
  issue: 6
  year: 2022
  ident: 10366_CR118
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-021-03673-0
– ident: 10366_CR165
  doi: 10.1109/GrC.2007.34
– volume: 42
  start-page: 2785
  issue: 5
  year: 2015
  ident: 10366_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.054
– ident: 10366_CR29
  doi: 10.1109/WI-IAT.2012.9
– volume: 28
  start-page: 623
  issue: 6
  year: 1980
  ident: 10366_CR112
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1980.1163491
– ident: 10366_CR138
  doi: 10.1109/CIBCB.2018.8404978
– volume-title: Introduction to data mining
  year: 2019
  ident: 10366_CR147
– volume: 9
  start-page: 373
  issue: 4
  year: 1967
  ident: 10366_CR88
  publication-title: Comput J
  doi: 10.1093/comjnl/9.4.373
– volume: 67
  start-page: 401
  year: 2014
  ident: 10366_CR123
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.03.013
– volume: 24
  start-page: 228
  issue: 2
  year: 1986
  ident: 10366_CR17
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(86)90044-5
– volume-title: Cluster analysis
  year: 2001
  ident: 10366_CR41
– volume: 1
  start-page: 73
  issue: 1
  year: 2004
  ident: 10366_CR85
  publication-title: WSEAS Trans Inf Sci Appl
– ident: 10366_CR144
– ident: 10366_CR163
  doi: 10.1109/CcS49175.2020.9231474
– volume: 33
  start-page: 3075
  issue: 8
  year: 2021
  ident: 10366_CR117
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2962412
– volume: 78
  start-page: 1494
  issue: 9
  year: 2008
  ident: 10366_CR152
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2008.01.010
– volume: 39
  start-page: e95
  issue: 14
  year: 2011
  ident: 10366_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr349
– ident: 10366_CR87
– volume-title: ACTORS—a model of concurrent computation in distributed systems. MIT Press series in artificial intelligence
  year: 1990
  ident: 10366_CR4
– ident: 10366_CR174
  doi: 10.1109/WKDD.2010.123
– volume-title: Matrix computations
  year: 1996
  ident: 10366_CR50
– ident: 10366_CR155
– ident: 10366_CR83
  doi: 10.1145/3097983.3098079
– volume-title: The Sage encyclopedia of social science research methods
  year: 2003
  ident: 10366_CR90
– volume: 46
  start-page: 1227
  issue: 5
  year: 2013
  ident: 10366_CR97
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.11.017
– ident: 10366_CR107
– volume: 5
  start-page: 83
  issue: 4
  year: 2011
  ident: 10366_CR59
  publication-title: Morgan Kaufmann Ser Data Manag Syst
– ident: 10366_CR157
  doi: 10.1007/978-3-319-63315-2_28
– volume: 39
  start-page: 1853
  issue: 9
  year: 2017
  ident: 10366_CR33
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2615921
– volume: 26
  start-page: 2534
  issue: 9
  year: 2015
  ident: 10366_CR74
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2355205
SSID ssj0005243
Score 2.6681736
Snippet Data clustering is a commonly used data processing technique in many fields, which divides objects into different clusters in terms of some similarity measure...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8219
SubjectTerms Algorithms
Artificial Intelligence
Cluster analysis
Clustering
Computer Science
Data points
Data processing
Deep learning
Hierarchies
Partition
Production methods
Similarity
Similarity measures
Surveys
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSgMxNGj14MW6YrVKDoIHHehMMpPJsYjFUxGX0lvINlaoU5lpC_69L7PYuoJeJ5mX8F7extsQOqVRQGOtwTfxA-bRRFKPq9jlTEWBUlEgOVXFsAnW78fDIb-pisLyOtu9DkkWknqp2A0Aey773AexG3lkFa2BuosdO97eDZYSO8pcuSDiHjgUflUq8z2MD-ros1D-Eh0tlE6v-b_rbqHNysjE3fJVbKMVm-6gZj3AAVf8vIsG7lNmR2USO85n2dy-4kmK3YDsIsQAFMR6PHPdFOBwLMePk-xpOnrOsUwNBuMRg8QEvYXNIvko30MPvav7y2uvGrTgaRLGUy9MDPhZgTG8ow2VkQ6lH4VuWlXCk440obGJ9TmzxLeuvzxRkpgOVyYgOiK2Q_ZRI52k9gBhy5QNk0ADoJhKwmRCQuVzsPOYoUyxFvJrfAtddSF3wzDGYtE_2SFOAOJEgThBWuj8_Z-XsgfHr7vPHBmFY1CArGVVZwD3c62uRJeBSwwqmsBd2jWlRcW5uXCRZTDRKIXli5qyi-Wfzz382_YjtOEm15e5hG3UmGYze4zW9Xz6lGcnxYt-A4zE7v8
  priority: 102
  providerName: Springer Nature
Title Comprehensive survey on hierarchical clustering algorithms and the recent developments
URI https://link.springer.com/article/10.1007/s10462-022-10366-3
https://www.proquest.com/docview/2829976447
Volume 56
WOSCitedRecordID wos000903993600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4FLy1MslJUPSBzAIn4kjk-oVK2QEMuqQClcLMd2aKUlWza7lfj3zCQOC63ohcscktgeZcYztmc8HyFPVSFU6T3sTbjQTNVOMVOVmDNViKoqhDOq6sAm9GRSnpyYaTpwa1Na5WATO0Md5h7PyF9ixA9cp1L61fkPhqhRGF1NEBobZIsLwVHP32r2R4pHnzUnCsOgPU-XZtLVOWCTYS47ByNeMPmXY7psnq_ESTv3c7jzv4zfJttp4Un3ek25Q27E5i7ZGUAdaJrj98gxPlrE0z6xnbarxUX8SecNRdDsLuwAUqV-tsIKC8AqdbNvMNzy9HtLXRMoLCgpWFHwZTSsE5La--TT4cHH_TcsgS8wL_NyyfI6wN5LhGAyH5QrfO54kSOCVW3qzIU8xDpyo6PkEWvOy8rJkJkqCOkLGTP5gGw28yY-JDTqKua18NBRqZzUrpZ5xQ2s_XRQutIjwoc_b32qTI4AGTO7rqmM0rIgLdtJy8oRef67zXlfl-Par5-hQC1OWujZu3T3APjD8ld2T8M2Gdy2BF52BynaNJtbuxbhiLwY9GD9-t_jPrq-t8fkFqLX9_mEu2RzuVjFJ-Smv1ietYsx2dCfv4zJ1uuDyfRo3Gk20HfZPlL-Hug0_wr06MPxL1Vm_4w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlKdYKOADiANETWwnjg8IVYWqVcuKQ0G9Gb9CkbbZstkt6p_iNzKTB8tD9NYD1zwmfnyesTPfzAA8lQWXpfd4Nsm4SmRlZaJdSZypgjtXcKula4tNqPG4PDrS71fg-xALQ7TKQSe2ijpMPf0j3ySPH5pOKdXr068JVY0i7-pQQqODxX48_4ZHtubV3huc32ec77w93N5N-qoCiRd5OU_yKuChgoegUx-kLXxusyKn0kyVrlIb8hCrmGkVRRYpmbpwVoRUu8CFL0RMBcq9AlelxOVAVMF0-xdKScfS44VOsL1ZH6TTh-rhsCTEnc_QaBSJ-M0Q_mkO_vLLtuZuZ_1_G6ibcKPfWLOtbiXcgpVY34b1oWgF63XYHfhIl2bxuCPus2YxO4vnbFozKgreulUQtcxPFpRBAoeG2cln7N78-KRhtg4MN8wMrQTaahaWhKvmLny4lN7dg9V6Wsf7wKJyMa-4R0GltELZSuQu07i3VUEqp0aQDTNtfJ95nQqATMwyZzShwyA6TIsOI0bw4uc7p13ekQuffk4AMqSUULK3fWwFto_Se5ktlWMfVCmwLRsDakyvrRqzhMwIXg64W97-93cfXCztCVzfPXx3YA72xvsPYY3j_rDjTm7A6ny2iI_gmj-bf2lmj9t1xODTZePxB5gAVto
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSEulFUMtOADiANEnXiJ40NVVZQRVdFoDoAqLsZbKNKQKZOZov41fl2fE4dhEb31wDWL4-XzW-LvvQfwlBeUl86hb5JTmfHK8EzZMnKmCmptQY3iti02Icfj8uhITdbgRx8LE2mVvUxsBbWfufiPfDue-KHq5FxuV4kWMdkf7Z58y2IFqXjS2pfT6CByGM6-o_vW7Bzs41o_o3T0-t2rN1mqMJA5JspFJiqPDgb1Xg2d56ZwwuSFiGWaKlUNjRc-VCFXMrA8xMTqzBrmh8p6ylzBwpBhu1fgqkQfMzp-E_HxF3pJx9ijhcqw73kK2ElhezhFWeTR56hAioz9phT_VA1_ndG2qm-08T9P2i24mQxustftkNuwFuo7sNEXsyBJtt2FD_HSPBx3hH7SLOen4YzMahKLhbfHLYhm4qbLmFkCp4mY6Wcc3uL4a0NM7Qka0gS1B-pw4ldErOYevL-U0d2H9XpWhwdAgrRBVNRhQyU3TJqKCZsrtHml59LKAeT9qmuXMrLHwiBTvcolHZGiESm6RYpmA3jx852TLh_JhU8_j2DSUVhhy86kmAvsX0z7pfekwDHIkmFfNnsE6STFGr2CzwBe9hhc3f73dx9e3NoTuI4w1G8PxoeP4AZFs7GjVG7C-mK-DFtwzZ0uvjTzx-2WIvDpsuF4DgBxX-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+survey+on+hierarchical+clustering+algorithms+and+the+recent+developments&rft.jtitle=The+Artificial+intelligence+review&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=8&rft.spage=8219&rft.epage=8264&rft_id=info:doi/10.1007%2Fs10462-022-10366-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon