A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models

Minimax optimal experimental designs are notoriously difficult to study largely because the optimality criterion is not differentiable and there is no effective algorithm for generating them. We apply semi-infinite programming (SIP) to solve minimax design problems for nonlinear models in a systemat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 24; číslo 6; s. 1063 - 1080
Hlavní autoři: Duarte, Belmiro P. M., Wong, Weng Kee
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.11.2014
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Minimax optimal experimental designs are notoriously difficult to study largely because the optimality criterion is not differentiable and there is no effective algorithm for generating them. We apply semi-infinite programming (SIP) to solve minimax design problems for nonlinear models in a systematic way using a discretization based strategy and solvers from the General Algebraic Modeling System (GAMS). Using popular models from the biological sciences, we show our approach produces minimax optimal designs that coincide with the few theoretical and numerical optimal designs in the literature. We also show our method can be readily modified to find standardized maximin optimal designs and minimax optimal designs for more complicated problems, such as when the ranges of plausible values for the model parameters are dependent and we want to find a design to minimize the maximal inefficiency of estimates for the model parameters.
AbstractList Minimax optimal experimental designs are notoriously difficult to study largely because the optimality criterion is not differentiable and there is no effective algorithm for generating them. We apply semi-infinite programming (SIP) to solve minimax design problems for nonlinear models in a systematic way using a discretization based strategy and solvers from the General Algebraic Modeling System (GAMS). Using popular models from the biological sciences, we show our approach produces minimax optimal designs that coincide with the few theoretical and numerical optimal designs in the literature. We also show our method can be readily modified to find standardized maximin optimal designs and minimax optimal designs for more complicated problems, such as when the ranges of plausible values for the model parameters are dependent and we want to find a design to minimize the maximal inefficiency of estimates for the model parameters.
Author Wong, Weng Kee
Duarte, Belmiro P. M.
Author_xml – sequence: 1
  givenname: Belmiro P. M.
  surname: Duarte
  fullname: Duarte, Belmiro P. M.
  email: bduarte@isec.pt
  organization: Department of Chemical and Biological Engineering, ISEC, Polytechnic Institute of Coimbra, GEPSI, CIEPQPF, Department of Chemical Engineering, University of Coimbra
– sequence: 2
  givenname: Weng Kee
  surname: Wong
  fullname: Wong, Weng Kee
  organization: Department of Biostatistics, Fielding School of Public Health, UCLA
BookMark eNp9kM1OAyEURompiW31AdzxAihwZ6CzbBr_kiZudE2gMCPNDDSAib691Lpy0dVd3O_c3O8s0CzE4BC6ZfSOUSrvM2Occ0IZkK7hlIgLNGetBMJAtjM0p52gBJhsrtAi5z2ljAlo5siucXaTJz70Pvji8CHFIelp8mHARmdnsR6HmHz5mHAfE64xe9zVgJ_0F46HUueIrct-CPk3U38bfXA64SlaN-ZrdNnrMbubv7lE748Pb5tnsn19etmst2QH7aqQtpcSLO-hFc6AayyAAC5aYanW0OpOdJ00Qhu5sp01btUYDrq2NACSUw1LJE93dynmnFyvdr7o4mMoSftRMaqOstRJlqqy1FGWEpVk_8hDqrXS91mGn5hcs2FwSe3jZwq14BnoB6Zmf5U
CitedBy_id crossref_primary_10_3390_pr7110834
crossref_primary_10_1016_j_chemolab_2015_12_014
crossref_primary_10_1007_s11222_017_9741_y
crossref_primary_10_1007_s11222_021_10046_2
crossref_primary_10_1080_01621459_2020_1862670
crossref_primary_10_1177_0962280217709817
crossref_primary_10_1007_s00362_015_0688_9
crossref_primary_10_1007_s00362_017_0887_7
crossref_primary_10_1007_s00362_025_01725_7
crossref_primary_10_1016_j_ces_2024_120566
crossref_primary_10_1080_10618600_2019_1601097
crossref_primary_10_1002_pst_2388
crossref_primary_10_1002_sim_6882
crossref_primary_10_1016_j_csda_2017_09_008
crossref_primary_10_1007_s11222_021_10020_y
crossref_primary_10_1007_s11222_024_10465_x
crossref_primary_10_1016_j_jmva_2014_11_006
crossref_primary_10_1109_TMI_2016_2574240
crossref_primary_10_1016_j_measurement_2021_110286
crossref_primary_10_1002_cjs_11499
crossref_primary_10_1016_j_jspi_2023_06_005
Cites_doi 10.1093/oso/9780199296590.001.0001
10.1137/S1052623402406777
10.1111/j.2517-6161.1993.tb01946.x
10.1137/1035089
10.1111/1467-9868.00056
10.1016/0378-3758(89)90004-9
10.1080/0094965031000115402
10.1007/BF00934096
10.1007/978-3-7908-2693-7_5
10.1080/00401706.1974.10489212
10.1080/00224065.2004.11980273
10.1007/0-387-23667-8_2
10.1007/978-1-4757-2868-2
10.1093/biomet/79.3.611
10.1137/0132021
10.4319/lo.1983.28.1.0185
10.6339/JDS.2005.03(2).190
10.1080/01621459.2012.656035
10.1002/9780470746912
10.1016/S0378-3758(00)00137-3
10.1080/00401706.1982.10487708
10.1016/S0378-3758(96)00131-0
10.2307/2529262
10.1080/10543406.2010.489979
10.1007/s10898-008-9321-y
10.1023/B:ANOR.0000004764.76984.30
10.1080/08982112.2011.576203
10.1016/j.spl.2008.01.059
10.1111/j.2517-6161.1972.tb00896.x
10.1080/00401706.1980.10486161
10.1080/00401706.1985.10488048
10.1016/S0167-7152(99)00033-4
10.1016/S0377-2217(01)00307-1
10.1214/ss/1177009939
10.1111/j.0006-341X.2000.01263.x
10.2307/2532705
10.1214/009053606000001307
10.1080/01621459.1971.10482261
10.1016/j.jspi.2010.11.031
10.1007/978-94-009-5912-5
10.1007/BF02591747
10.1023/A:1014878317736
10.1016/0378-3758(94)00042-T
10.1007/BF02296152
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
DOI 10.1007/s11222-013-9420-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 1080
ExternalDocumentID 10_1007_s11222_013_9420_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c358t-5f773d2f356eb3e4d33632656d0aa35a96997b6ab78d9dbe84b23a157b33720a3
IEDL.DBID RSV
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341440800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Sat Nov 29 03:32:41 EST 2025
Tue Nov 18 21:37:28 EST 2025
Fri Feb 21 02:34:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Fisher Information Matrix
General equivalence theorem
Power logistic model
Semi-infinite programming
Minmax problem
Continuous design
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-5f773d2f356eb3e4d33632656d0aa35a96997b6ab78d9dbe84b23a157b33720a3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1007_s11222_013_9420_6
crossref_primary_10_1007_s11222_013_9420_6
springer_journals_10_1007_s11222_013_9420_6
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2014
Publisher Springer US
Publisher_xml – name: Springer US
References DetteH.NeugebauerH.-M.Bayesian D-optimal designs for exponential regression modelsJ. Stat. Plan. Inference19976033134910.1016/S0378-3758(96)00131-00900.624081456635
LiW.K.W.Consideration of errors in estimating kinetic parameters based on Michaelis-Menten formalism in microbial ecologyLimnol. Oceanogr.19832818519010.4319/lo.1983.28.1.0185
SilveyS.D.Optimal Design1980LondonChapman & Hall10.1007/978-94-009-5912-50468.62070
HamiltonD.C.WattsD.G.A quadratic design criterion for precise estimation in nonlinear regression modelsTechnometrics19852724125010.1080/00401706.1985.104880480598.62083797562
ChenR.B.WongW.K.LiK.Y.Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial modelStat. Probab. Lett.200878131914192110.1016/j.spl.2008.01.0591147.623562528561
MurtyV.N.Minimax designsJ. Am. Stat. Assoc.19716631932010.1080/01621459.1971.104822610216.48201
ChalonerK.LarntzK.Optimal Bayesian design applied to logistic regression experimentsJ. Stat. Plan. Inference19895919120810.1016/0378-3758(89)90004-9985457
GalilZ.KieferJ.Time- and space-saving computer methods, related to Mitchell’s DETMAX for finding D-optimum designsTechnometrics19802230131310.1080/00401706.1980.104861610459.62060585633
KingJ.WongW.K.Minimax D-optimal designs for logistic modelBiometrics2000561263126710.1111/j.0006-341X.2000.01263.x1060.625451816369
MüllerC.H.Maximin efficient designs for estimating nonlinear aspects in linear modelsJ. Stat. Plan. Inference19954411713210.1016/0378-3758(94)00042-T0812.62081
AtkinsonA.C.DonevA.N.TobiasR.D.Optimum Experimental Designs, with SAS2007New YorkOxford University Press1183.62129
SitterR.R.Robust designs for binary dataBiometrics1992481145115510.2307/25327051212858
FedorovV.V.Convex design theoryMath. Oper.forsch. Stat., Ser. Stat.1980114034130471.62075
ChalonerK.VerdinelliI.Bayesian experimental design: a reviewStat. Sci.19951027330410.1214/ss/11770099390955.626171390519
MolchanovI.ZuyevS.Steepest descent algorithm in a space of measuresStat. Comput.20021211512310.1023/A:10148783177361897510
WongW.K.A unified approach to the construction of minimax designsBiometrika19927961162010.1093/biomet/79.3.6110762.620191187611
RoysetJ.PolakE.Der KiureghianA.Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problemsSIAM J. Optim.200314113410.1137/S10526234024067771042.490332005934
TsoukalasA.RustemB.PistikopoulosE.N.A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problemsJ. Glob. Optim.20092423525010.1007/s10898-008-9321-y2506674
Heredia-LangnerA.MontgomeryD.C.CarlyleW.M.BorrorC.M.Model-robust optimal designs: a genetic algorithm approachJ. Qual. Technol.200436263279
SagnolG.Computing optimal designs of multiresponse experiments reduces to second-order cone programmingJ. Stat. Plan. Inference201114151684170810.1016/j.jspi.2010.11.0311207.621562763200
WongW.K.CookR.D.Heteroscedastic G-optimal designsJ. R. Stat. Soc. B1993558718800794.620431229885
Chen, R.B., Chang, S.P., Wang, W., Wong, W.K.: Optimal minimax designs via particle swarm optimization methods. Preprints of the Isaac Newton Institute (2013). http://www.newton.ac.uk/preprints/NI13039.pdf
CookR.D.NachtsheimC.J.Model robust, linear-optimal designsTechnometrics198224495410.1080/00401706.1982.104877080483.62063653111
PrenticeR.L.A generalization of the probit and logit methods for dose response curvesBiometrics19763276176810.2307/2529262
Fandom NoubiapR.SeidelW.A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression modelJ. Stat. Plan. Inference20009115116810.1016/S0378-3758(00)00137-30958.62065
RustemB.HoweM.Algorithms for Worst-Case Design and Applications to Risk Management2002PrincetonPrinceton University Press1140.90013
DetteH.WongW.K.E-optimal designs for the Michaelis-Menten modelStat. Probab. Lett.19994440540810.1016/S0167-7152(99)00033-40940.620661715246
HillW.J.HunterW.G.Design of experiments for subsets of parametersTechnometrics19741642543410.1080/00401706.1974.104892120311.62045359200
UgrayZ.LasdonL.PlummerJ.GloverF.KellyJ.MartíR.A multistart scatter search heuristic for smooth NLP and MINLP problemsMetaheuristic Optimization via Memory and Evolution2005BerlinSpringer255110.1007/0-387-23667-8_2
PappD.Optimal designs for rational function regressionJ. Am. Stat. Assoc.201210740041110.1080/01621459.2012.6560351261.620722949369
BlankenshipJ.W.FalkJ.E.Infinitely constrained optimization problemsJ. Optim. Theory Appl.197619226128110.1007/BF009340960307.90071421675
PázmanA.Foundations of Optimum Experimental Design1986New YorkReidel0588.62117
JohnsonR.T.MontgomeryD.C.JonesB.A.An expository paper on optimal designQual. Eng.20112328730110.1080/08982112.2011.576203
Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS—a users guide. GAMS Development Corporation, Washington (1998)
GribikP.R.KortanekK.O.Equivalence theorems and cutting plane algorithms for a class of experimental design problemsSIAM J. Appl. Math.19773223225910.1137/01320210356.62060433749
MitchellT.J.An algorithm for the construction of D-optimal experimental designsTechnometrics1974162032100297.62055386181
BiedermanS.DetteH.PepelyshevA.Di BucchianicoA.LäuterH.WynnH.P.Maximin optimal designs for a compartmental modelmODa 7—Advances in Model-Oriented Design and Analysis2004HeidelbergPhysica-Verlag414910.1007/978-3-7908-2693-7_5
O’BrienT.E,Designing for parameter subsets in Gaussian nonlinear regression modelsJ. Data Sci.20053179197
HettichR.KortanekK.O.Semi-infinite programming: theory, methods and applicationsSIAM Rev.19933538042910.1137/10350890784.900901234637
BogackaB.PatanM.JohnsonP.J.YoudinK.AtkinsonA.C.Optimum design of experiments for enzyme inhibition kinetic modelsJ. Biopharm. Stat.201121355557210.1080/10543406.2010.489979
DetteH.SahmM.Minimax optimal designs in nonlinear regression modelsStat. Sin.19988124912640916.620531666257
SteinO.StillG.On generalized semi-infinite optimization and bilevel optimizationEur. J. Oper. Res.2002142344446210.1016/S0377-2217(01)00307-10596.650041922367
BraessD.DetteH.On the number of support points of maximin and Bayesian optimal designsAnn. Stat.200735277279210.1214/0090536060000013071117.620742336868
KingJ.WongW.K.Optimal designs for the power logistic modelJ. Stat. Comput. Simul.20047477979110.1080/00949650310001154021060.620832083103
Zhang, Y.: Bayesian D-optimal design for generalized linear models. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg (2006)
FedorovV.V.Theory of Optimal Experiments1972San DiegoAcademic Press
DetteH.Designing experiments with respect to “standardized” optimality criteriaJ. R. Stat. Soc. B1997599711010.1111/1467-9868.000560884.620811436556
DrudA.CONOPT: a GRG code for large sparse dynamic nonlinear optimization problemsMath. Program.19853115319110.1007/BF025917470557.90088777289
WynnH.P.Results in the theory and construction of D-optimum experimental designsJ. R. Stat. Soc. B1972341331470248.62033350987
ŽakovićS.RustemB.Semi-infinite programming and applications to minimax problemsAnn. Oper. Res.20031241–4811101074.905542035972
TorsneyB.López-FidalgoJ.KitsosC.P.MüllerW.G.MV-optimization in simple linear regressionmODa 4—Advances in Model-Oriented Data Analysis19957176
ReemtsenR.RückmanJ.J.Semi-Infinite Programming1998DordrechtKluwer Academic10.1007/978-1-4757-2868-20890.00054
BergerM.P.F.KingJ.WongW.K.Minimax D-optimal designs for item response theory modelsPsychometrika200065337739010.1007/BF022961521291.621941792702
Kuczewski, B.: Computational aspects of discrimination between models of dynamic systems. PhD thesis, University of Zielona, Góra, Zielona Góra, Poland (2006)
BergerM.P.F.WongW.K.An Introduction to Optimal Designs for Social and Biomedical Research2009New YorkWiley10.1002/97804707469121182.62154
A.C. Atkinson (9420_CR1) 2007
S. Žaković (9420_CR54) 2003; 124
9420_CR55
9420_CR12
J.W. Blankenship (9420_CR5) 1976; 19
W.K.W. Li (9420_CR32) 1983; 28
R. Reemtsen (9420_CR41) 1998
9420_CR8
H. Dette (9420_CR17) 1999; 44
G. Sagnol (9420_CR44) 2011; 141
R.L. Prentice (9420_CR40) 1976; 32
S. Biederman (9420_CR4) 2004
W.J. Hill (9420_CR27) 1974; 16
M.P.F. Berger (9420_CR2) 2009
V.N. Murty (9420_CR36) 1971; 66
A. Drud (9420_CR18) 1985; 31
V.V. Fedorov (9420_CR21) 1980; 11
H.P. Wynn (9420_CR53) 1972; 34
P.R. Gribik (9420_CR23) 1977; 32
K. Chaloner (9420_CR10) 1995; 10
K. Chaloner (9420_CR9) 1989; 59
H. Dette (9420_CR15) 1997; 60
H. Dette (9420_CR16) 1998; 8
A. Pázman (9420_CR39) 1986
R. Fandom Noubiap (9420_CR19) 2000; 91
J. Royset (9420_CR42) 2003; 14
W.K. Wong (9420_CR51) 1992; 79
D. Braess (9420_CR7) 2007; 35
Z. Ugray (9420_CR50) 2005
O. Stein (9420_CR47) 2002; 142
J. King (9420_CR29) 2000; 56
R.R. Sitter (9420_CR46) 1992; 48
V.V. Fedorov (9420_CR20) 1972
A. Heredia-Langner (9420_CR25) 2004; 36
9420_CR31
W.K. Wong (9420_CR52) 1993; 55
J. King (9420_CR30) 2004; 74
B. Rustem (9420_CR43) 2002
R.D. Cook (9420_CR13) 1982; 24
H. Dette (9420_CR14) 1997; 59
A. Tsoukalas (9420_CR49) 2009; 24
T.J. Mitchell (9420_CR33) 1974; 16
B. Torsney (9420_CR48) 1995
B. Bogacka (9420_CR6) 2011; 21
S.D. Silvey (9420_CR45) 1980
T.E, O’Brien (9420_CR37) 2005; 3
R.T. Johnson (9420_CR28) 2011; 23
Z. Galil (9420_CR22) 1980; 22
D. Papp (9420_CR38) 2012; 107
I. Molchanov (9420_CR34) 2002; 12
R.B. Chen (9420_CR11) 2008; 78
D.C. Hamilton (9420_CR24) 1985; 27
C.H. Müller (9420_CR35) 1995; 44
R. Hettich (9420_CR26) 1993; 35
M.P.F. Berger (9420_CR3) 2000; 65
References_xml – reference: SteinO.StillG.On generalized semi-infinite optimization and bilevel optimizationEur. J. Oper. Res.2002142344446210.1016/S0377-2217(01)00307-10596.650041922367
– reference: WynnH.P.Results in the theory and construction of D-optimum experimental designsJ. R. Stat. Soc. B1972341331470248.62033350987
– reference: TorsneyB.López-FidalgoJ.KitsosC.P.MüllerW.G.MV-optimization in simple linear regressionmODa 4—Advances in Model-Oriented Data Analysis19957176
– reference: FedorovV.V.Theory of Optimal Experiments1972San DiegoAcademic Press
– reference: PappD.Optimal designs for rational function regressionJ. Am. Stat. Assoc.201210740041110.1080/01621459.2012.6560351261.620722949369
– reference: ŽakovićS.RustemB.Semi-infinite programming and applications to minimax problemsAnn. Oper. Res.20031241–4811101074.905542035972
– reference: PázmanA.Foundations of Optimum Experimental Design1986New YorkReidel0588.62117
– reference: Zhang, Y.: Bayesian D-optimal design for generalized linear models. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg (2006)
– reference: RoysetJ.PolakE.Der KiureghianA.Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problemsSIAM J. Optim.200314113410.1137/S10526234024067771042.490332005934
– reference: BergerM.P.F.KingJ.WongW.K.Minimax D-optimal designs for item response theory modelsPsychometrika200065337739010.1007/BF022961521291.621941792702
– reference: PrenticeR.L.A generalization of the probit and logit methods for dose response curvesBiometrics19763276176810.2307/2529262
– reference: UgrayZ.LasdonL.PlummerJ.GloverF.KellyJ.MartíR.A multistart scatter search heuristic for smooth NLP and MINLP problemsMetaheuristic Optimization via Memory and Evolution2005BerlinSpringer255110.1007/0-387-23667-8_2
– reference: HillW.J.HunterW.G.Design of experiments for subsets of parametersTechnometrics19741642543410.1080/00401706.1974.104892120311.62045359200
– reference: SagnolG.Computing optimal designs of multiresponse experiments reduces to second-order cone programmingJ. Stat. Plan. Inference201114151684170810.1016/j.jspi.2010.11.0311207.621562763200
– reference: CookR.D.NachtsheimC.J.Model robust, linear-optimal designsTechnometrics198224495410.1080/00401706.1982.104877080483.62063653111
– reference: KingJ.WongW.K.Minimax D-optimal designs for logistic modelBiometrics2000561263126710.1111/j.0006-341X.2000.01263.x1060.625451816369
– reference: DetteH.Designing experiments with respect to “standardized” optimality criteriaJ. R. Stat. Soc. B1997599711010.1111/1467-9868.000560884.620811436556
– reference: Heredia-LangnerA.MontgomeryD.C.CarlyleW.M.BorrorC.M.Model-robust optimal designs: a genetic algorithm approachJ. Qual. Technol.200436263279
– reference: MitchellT.J.An algorithm for the construction of D-optimal experimental designsTechnometrics1974162032100297.62055386181
– reference: O’BrienT.E,Designing for parameter subsets in Gaussian nonlinear regression modelsJ. Data Sci.20053179197
– reference: BogackaB.PatanM.JohnsonP.J.YoudinK.AtkinsonA.C.Optimum design of experiments for enzyme inhibition kinetic modelsJ. Biopharm. Stat.201121355557210.1080/10543406.2010.489979
– reference: MüllerC.H.Maximin efficient designs for estimating nonlinear aspects in linear modelsJ. Stat. Plan. Inference19954411713210.1016/0378-3758(94)00042-T0812.62081
– reference: ReemtsenR.RückmanJ.J.Semi-Infinite Programming1998DordrechtKluwer Academic10.1007/978-1-4757-2868-20890.00054
– reference: TsoukalasA.RustemB.PistikopoulosE.N.A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problemsJ. Glob. Optim.20092423525010.1007/s10898-008-9321-y2506674
– reference: BlankenshipJ.W.FalkJ.E.Infinitely constrained optimization problemsJ. Optim. Theory Appl.197619226128110.1007/BF009340960307.90071421675
– reference: Fandom NoubiapR.SeidelW.A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression modelJ. Stat. Plan. Inference20009115116810.1016/S0378-3758(00)00137-30958.62065
– reference: WongW.K.A unified approach to the construction of minimax designsBiometrika19927961162010.1093/biomet/79.3.6110762.620191187611
– reference: MolchanovI.ZuyevS.Steepest descent algorithm in a space of measuresStat. Comput.20021211512310.1023/A:10148783177361897510
– reference: DetteH.SahmM.Minimax optimal designs in nonlinear regression modelsStat. Sin.19988124912640916.620531666257
– reference: HettichR.KortanekK.O.Semi-infinite programming: theory, methods and applicationsSIAM Rev.19933538042910.1137/10350890784.900901234637
– reference: ChenR.B.WongW.K.LiK.Y.Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial modelStat. Probab. Lett.200878131914192110.1016/j.spl.2008.01.0591147.623562528561
– reference: LiW.K.W.Consideration of errors in estimating kinetic parameters based on Michaelis-Menten formalism in microbial ecologyLimnol. Oceanogr.19832818519010.4319/lo.1983.28.1.0185
– reference: AtkinsonA.C.DonevA.N.TobiasR.D.Optimum Experimental Designs, with SAS2007New YorkOxford University Press1183.62129
– reference: WongW.K.CookR.D.Heteroscedastic G-optimal designsJ. R. Stat. Soc. B1993558718800794.620431229885
– reference: KingJ.WongW.K.Optimal designs for the power logistic modelJ. Stat. Comput. Simul.20047477979110.1080/00949650310001154021060.620832083103
– reference: FedorovV.V.Convex design theoryMath. Oper.forsch. Stat., Ser. Stat.1980114034130471.62075
– reference: BergerM.P.F.WongW.K.An Introduction to Optimal Designs for Social and Biomedical Research2009New YorkWiley10.1002/97804707469121182.62154
– reference: SitterR.R.Robust designs for binary dataBiometrics1992481145115510.2307/25327051212858
– reference: DetteH.WongW.K.E-optimal designs for the Michaelis-Menten modelStat. Probab. Lett.19994440540810.1016/S0167-7152(99)00033-40940.620661715246
– reference: HamiltonD.C.WattsD.G.A quadratic design criterion for precise estimation in nonlinear regression modelsTechnometrics19852724125010.1080/00401706.1985.104880480598.62083797562
– reference: Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS—a users guide. GAMS Development Corporation, Washington (1998)
– reference: ChalonerK.VerdinelliI.Bayesian experimental design: a reviewStat. Sci.19951027330410.1214/ss/11770099390955.626171390519
– reference: BiedermanS.DetteH.PepelyshevA.Di BucchianicoA.LäuterH.WynnH.P.Maximin optimal designs for a compartmental modelmODa 7—Advances in Model-Oriented Design and Analysis2004HeidelbergPhysica-Verlag414910.1007/978-3-7908-2693-7_5
– reference: ChalonerK.LarntzK.Optimal Bayesian design applied to logistic regression experimentsJ. Stat. Plan. Inference19895919120810.1016/0378-3758(89)90004-9985457
– reference: SilveyS.D.Optimal Design1980LondonChapman & Hall10.1007/978-94-009-5912-50468.62070
– reference: RustemB.HoweM.Algorithms for Worst-Case Design and Applications to Risk Management2002PrincetonPrinceton University Press1140.90013
– reference: GalilZ.KieferJ.Time- and space-saving computer methods, related to Mitchell’s DETMAX for finding D-optimum designsTechnometrics19802230131310.1080/00401706.1980.104861610459.62060585633
– reference: DetteH.NeugebauerH.-M.Bayesian D-optimal designs for exponential regression modelsJ. Stat. Plan. Inference19976033134910.1016/S0378-3758(96)00131-00900.624081456635
– reference: DrudA.CONOPT: a GRG code for large sparse dynamic nonlinear optimization problemsMath. Program.19853115319110.1007/BF025917470557.90088777289
– reference: Chen, R.B., Chang, S.P., Wang, W., Wong, W.K.: Optimal minimax designs via particle swarm optimization methods. Preprints of the Isaac Newton Institute (2013). http://www.newton.ac.uk/preprints/NI13039.pdf
– reference: BraessD.DetteH.On the number of support points of maximin and Bayesian optimal designsAnn. Stat.200735277279210.1214/0090536060000013071117.620742336868
– reference: MurtyV.N.Minimax designsJ. Am. Stat. Assoc.19716631932010.1080/01621459.1971.104822610216.48201
– reference: Kuczewski, B.: Computational aspects of discrimination between models of dynamic systems. PhD thesis, University of Zielona, Góra, Zielona Góra, Poland (2006)
– reference: GribikP.R.KortanekK.O.Equivalence theorems and cutting plane algorithms for a class of experimental design problemsSIAM J. Appl. Math.19773223225910.1137/01320210356.62060433749
– reference: JohnsonR.T.MontgomeryD.C.JonesB.A.An expository paper on optimal designQual. Eng.20112328730110.1080/08982112.2011.576203
– start-page: 71
  volume-title: mODa 4—Advances in Model-Oriented Data Analysis
  year: 1995
  ident: 9420_CR48
– volume-title: Optimum Experimental Designs, with SAS
  year: 2007
  ident: 9420_CR1
  doi: 10.1093/oso/9780199296590.001.0001
– volume: 14
  start-page: 1
  issue: 1
  year: 2003
  ident: 9420_CR42
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402406777
– volume: 55
  start-page: 871
  year: 1993
  ident: 9420_CR52
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1993.tb01946.x
– volume: 35
  start-page: 380
  year: 1993
  ident: 9420_CR26
  publication-title: SIAM Rev.
  doi: 10.1137/1035089
– volume: 59
  start-page: 97
  year: 1997
  ident: 9420_CR14
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00056
– volume: 59
  start-page: 191
  year: 1989
  ident: 9420_CR9
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/0378-3758(89)90004-9
– volume: 74
  start-page: 779
  year: 2004
  ident: 9420_CR30
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/0094965031000115402
– volume: 19
  start-page: 261
  issue: 2
  year: 1976
  ident: 9420_CR5
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934096
– volume: 8
  start-page: 1249
  year: 1998
  ident: 9420_CR16
  publication-title: Stat. Sin.
– start-page: 41
  volume-title: mODa 7—Advances in Model-Oriented Design and Analysis
  year: 2004
  ident: 9420_CR4
  doi: 10.1007/978-3-7908-2693-7_5
– volume: 16
  start-page: 425
  year: 1974
  ident: 9420_CR27
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489212
– volume: 36
  start-page: 263
  year: 2004
  ident: 9420_CR25
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2004.11980273
– start-page: 25
  volume-title: Metaheuristic Optimization via Memory and Evolution
  year: 2005
  ident: 9420_CR50
  doi: 10.1007/0-387-23667-8_2
– volume-title: Semi-Infinite Programming
  year: 1998
  ident: 9420_CR41
  doi: 10.1007/978-1-4757-2868-2
– volume: 79
  start-page: 611
  year: 1992
  ident: 9420_CR51
  publication-title: Biometrika
  doi: 10.1093/biomet/79.3.611
– volume: 32
  start-page: 232
  year: 1977
  ident: 9420_CR23
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0132021
– volume: 28
  start-page: 185
  year: 1983
  ident: 9420_CR32
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1983.28.1.0185
– volume: 3
  start-page: 179
  year: 2005
  ident: 9420_CR37
  publication-title: J. Data Sci.
  doi: 10.6339/JDS.2005.03(2).190
– volume: 107
  start-page: 400
  year: 2012
  ident: 9420_CR38
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.656035
– volume-title: An Introduction to Optimal Designs for Social and Biomedical Research
  year: 2009
  ident: 9420_CR2
  doi: 10.1002/9780470746912
– volume: 91
  start-page: 151
  year: 2000
  ident: 9420_CR19
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(00)00137-3
– volume: 24
  start-page: 49
  year: 1982
  ident: 9420_CR13
  publication-title: Technometrics
  doi: 10.1080/00401706.1982.10487708
– volume-title: Foundations of Optimum Experimental Design
  year: 1986
  ident: 9420_CR39
– volume: 60
  start-page: 331
  year: 1997
  ident: 9420_CR15
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(96)00131-0
– volume: 32
  start-page: 761
  year: 1976
  ident: 9420_CR40
  publication-title: Biometrics
  doi: 10.2307/2529262
– volume: 21
  start-page: 555
  issue: 3
  year: 2011
  ident: 9420_CR6
  publication-title: J. Biopharm. Stat.
  doi: 10.1080/10543406.2010.489979
– volume: 24
  start-page: 235
  year: 2009
  ident: 9420_CR49
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9321-y
– ident: 9420_CR12
– volume: 124
  start-page: 81
  issue: 1–4
  year: 2003
  ident: 9420_CR54
  publication-title: Ann. Oper. Res.
  doi: 10.1023/B:ANOR.0000004764.76984.30
– volume: 23
  start-page: 287
  year: 2011
  ident: 9420_CR28
  publication-title: Qual. Eng.
  doi: 10.1080/08982112.2011.576203
– volume: 78
  start-page: 1914
  issue: 13
  year: 2008
  ident: 9420_CR11
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2008.01.059
– volume: 34
  start-page: 133
  year: 1972
  ident: 9420_CR53
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1972.tb00896.x
– volume: 22
  start-page: 301
  year: 1980
  ident: 9420_CR22
  publication-title: Technometrics
  doi: 10.1080/00401706.1980.10486161
– volume: 27
  start-page: 241
  year: 1985
  ident: 9420_CR24
  publication-title: Technometrics
  doi: 10.1080/00401706.1985.10488048
– volume: 44
  start-page: 405
  year: 1999
  ident: 9420_CR17
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(99)00033-4
– volume-title: Theory of Optimal Experiments
  year: 1972
  ident: 9420_CR20
– ident: 9420_CR8
– volume: 142
  start-page: 444
  issue: 3
  year: 2002
  ident: 9420_CR47
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(01)00307-1
– ident: 9420_CR55
– volume: 10
  start-page: 273
  year: 1995
  ident: 9420_CR10
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177009939
– volume: 56
  start-page: 1263
  year: 2000
  ident: 9420_CR29
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.01263.x
– volume: 48
  start-page: 1145
  year: 1992
  ident: 9420_CR46
  publication-title: Biometrics
  doi: 10.2307/2532705
– volume: 35
  start-page: 772
  issue: 2
  year: 2007
  ident: 9420_CR7
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000001307
– volume: 66
  start-page: 319
  year: 1971
  ident: 9420_CR36
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482261
– volume: 141
  start-page: 1684
  issue: 5
  year: 2011
  ident: 9420_CR44
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2010.11.031
– volume-title: Optimal Design
  year: 1980
  ident: 9420_CR45
  doi: 10.1007/978-94-009-5912-5
– volume-title: Algorithms for Worst-Case Design and Applications to Risk Management
  year: 2002
  ident: 9420_CR43
– volume: 11
  start-page: 403
  year: 1980
  ident: 9420_CR21
  publication-title: Math. Oper.forsch. Stat., Ser. Stat.
– volume: 31
  start-page: 153
  year: 1985
  ident: 9420_CR18
  publication-title: Math. Program.
  doi: 10.1007/BF02591747
– volume: 12
  start-page: 115
  year: 2002
  ident: 9420_CR34
  publication-title: Stat. Comput.
  doi: 10.1023/A:1014878317736
– volume: 44
  start-page: 117
  year: 1995
  ident: 9420_CR35
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/0378-3758(94)00042-T
– volume: 65
  start-page: 377
  issue: 3
  year: 2000
  ident: 9420_CR3
  publication-title: Psychometrika
  doi: 10.1007/BF02296152
– ident: 9420_CR31
– volume: 16
  start-page: 203
  year: 1974
  ident: 9420_CR33
  publication-title: Technometrics
SSID ssj0011634
Score 2.1583428
Snippet Minimax optimal experimental designs are notoriously difficult to study largely because the optimality criterion is not differentiable and there is no...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1063
SubjectTerms Artificial Intelligence
Mathematics and Statistics
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models
URI https://link.springer.com/article/10.1007/s11222-013-9420-6
Volume 24
WOSCitedRecordID wos000341440800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9DAPTqfi_EUOnpRCa5KmOQ5xeHEI_mC3kjapDtZN2in--b6k7cZABb30stc1JO_lfY-XfB_AOccUjUEmPSy9jMeo0Rhz-BAKSzFtAyrxndiEGA6j0Uje1_e4y-a0e9OSdDv18rJbgLnMs2oEktmaZx02uCWbsSX6w_OidYAAw3FGITTHDUawppX53V-sJqPVTqhLMIPOv4a2A9s1niT9ygF2Yc1Mu9BptBpIHbpd2Lpb8LOWXWhbjFlRNO-B7pPS5GMPfW1sESipz2zlOARis5wmavIyK8bz15wgxiWuz42_WVqSXH2SGW47OQ5Cu9MgpbOZVhQcqiBOa6fch6fBzeP1rVeLL3gp5dHc45kQVF9llIdYbxumKQ0R6vFQ-0pRrmQopUhClYhIS52YiCVXVAVcJNQK3yh6AC38lDkEkqXWEVjAlDZMGD_xM6ks0lMqyIIg7YHfrEKc1szkViBjEi85le0ExzjBsZ3gOOzBxeKVt4qW4zfjy2bZ4jpCy5-tj_5kfQxthFCsup14Aq158W5OYTP9wEUszpxnfgFvvd2s
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cs4Hp1Nx_syDT0qhXdJmfRzimLgNwSl7K2mT6mDdpJ3in-8lbTcGKuhLX3ZdQ3KX-45Lvg_g0sUUjUHmW1h6KYtRJTHm8MEFlmJSB1RoG7EJPhi0RiP_objHnZWn3cuWpNmpl5fdHMxlllYj8JmuedZhg2mVHV2iPz4vWgcIMAxnFEJz3GA4K1uZ3_3FajJa7YSaBNOp_Wtou7BT4EnSzh1gD9bUtA61UquBFKFbh-3-gp81q0NVY8yconkfZJtkKhlb6GtjjUBJcWYrwSEQneUkEZOXWTqevyYEMS4xfW78TdOSJOKTzHDbSXAQ0pwGyYzNNKfgECkxWjvZATx1boc3XasQX7Ai6rbmlhtzTmUzpq6H9bZiklIPoZ7rSVsI6grf830eeiLkLenLULVY2KTCcXlItfCNoIdQwU-pIyBxpB2BOUxIxbiyQzv2hUZ6Qjix40QNsMtVCKKCmVwLZEyCJaeynuAAJzjQExx4DbhavPKW03L8ZnxdLltQRGj2s_Xxn6wvYKs77PeC3t3g_gSqCKdYflPxFCrz9F2dwWb0gQuanhsv_QLcxOCQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSD1apYn3vwpIQm3U22ORa1KGopvugtbLIbLTRtSaL4853No6WggnjJJZtk2Z3JfMPMfh_AqY0hGp3MNTD1UgajSqLP4YULTMWkdijfzMQmeK_XHgzcfqFzmpTd7mVJMj_ToFmaxmlzKsPm_OCbhXHN0MoELtP5zzKsMExkdE_Xw-PLrIyAYCPjj0KYjj8bzsqy5nevWAxMi1XRLNh0a_-e5iZsFDiTdHLD2IIlNa5DrdRwIIVL12H9fsbbmtShqrFnTt28DbJDEhUNDbTBoUampOjlinA6REc_ScTodRIP07eIIPYlWf0b72m6kkh8kgn-jiKchMy6RJJszDin5hAxyTR4kh147l49XVwbhSiDEVC7nRp2yDmVrZDaDubhiklKHYSAtiNNIagtXMd1ue8In7elK33VZn6LCsvmPtWCOILuQgU_pfaAhIE2EGYxIRXjyvTN0BUaAQphhZYVNMAsd8QLCsZyLZwx8uZcy3qBPVxgTy-w5zTgbPbINKfr-G3webmFXuG5yc-j9_80-gTW-pdd7-6md3sAVURZLD_AeAiVNH5XR7AafOB-xseZwX4BQSHpdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-infinite+programming+based+algorithm+for+finding+minimax+optimal+designs+for+nonlinear+models&rft.jtitle=Statistics+and+computing&rft.au=Duarte%2C+Belmiro+P.+M.&rft.au=Wong%2C+Weng+Kee&rft.date=2014-11-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=24&rft.issue=6&rft.spage=1063&rft.epage=1080&rft_id=info:doi/10.1007%2Fs11222-013-9420-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_013_9420_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon