Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization
The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-base...
Saved in:
| Published in: | Journal of global optimization Vol. 82; no. 1; pp. 21 - 50 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based optimization solvers may be impractical and data-driven optimization techniques are often needed. In this work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization problems with box constraints, aiming for consistent globally convergent solutions. The main contribution of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased by an illustrative example and is then extensively studied via computational experiments on a large set of benchmark problems. |
|---|---|
| AbstractList | The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based optimization solvers may be impractical and data-driven optimization techniques are often needed. In this work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization problems with box constraints, aiming for consistent globally convergent solutions. The main contribution of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased by an illustrative example and is then extensively studied via computational experiments on a large set of benchmark problems. |
| Audience | Academic |
| Author | Boukouvala, Fani Zhai, Jianyuan |
| Author_xml | – sequence: 1 givenname: Jianyuan surname: Zhai fullname: Zhai, Jianyuan organization: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology – sequence: 2 givenname: Fani orcidid: 0000-0002-0584-1517 surname: Boukouvala fullname: Boukouvala, Fani email: fani.boukouvala@chbe.gatech.edu organization: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology |
| BookMark | eNp9kE1rHSEUhqWk0Ju0f6CrgaxN_RhHXYY0H4VAN9mLo8cbw4ze6tzQ5tfHe6dQ6OJyFsLLeTy8zzk6SzkBQl8puaKEyG-VEqUVJoxiQkkvsPqANlRIjpmmwxnaEM0EFoTQT-i81hdCiFaCbZD9bheLfYmvkLq6s0u0UzcWm9wztsnjMe-T7-y0zSUuz3PtQi7dmH9jl1Ndio0JfFfjvJ8amhMebW1B3i1xjm_H6DP6GOxU4cvf9wI93d0-3Tzgx5_3P26uH7HjQi1YwNCPapTaOwAv-eCBeaqD08T2dFASgg2SW2p1D9RTJxVTdAQQ3HkS-AW6XL_dlfxrD3UxL3lfUrto2ECl0Iwr3rau1q2tncDEFHLr4Np4mGOrBCG2_FqSNrLnB4CtgCu51gLB7EqcbfljKDEH9WZVb5p6c1RvVIPUf5CLy1HGwdh0GuUrWtudtIXyr8YJ6h1fH5yL |
| CitedBy_id | crossref_primary_10_3390_pr13092929 crossref_primary_10_1007_s10589_023_00466_3 crossref_primary_10_1016_j_strusafe_2022_102313 crossref_primary_10_1016_j_future_2022_09_018 crossref_primary_10_1002_aic_17776 crossref_primary_10_1007_s11081_022_09740_5 |
| Cites_doi | 10.1016/j.compchemeng.2019.106519 10.1007/bf01099647 10.1016/j.paerosci.2008.11.001 10.1007/s10288-014-0275-2 10.1016/j.compchemeng.2014.05.021 10.1007/BF02592064 10.1016/j.cnsns.2014.08.026 10.1023/a:1008382309369 10.1007/bf00941892 10.1080/00401706.1979.10489755 10.1017/S0962492919000060 10.1145/1377612.1377613 10.1007/bf00175354 10.1080/0740817X.2013.768783 10.1002/aic.16601 10.1007/s10898-018-0643-0 10.1007/s10107-003-0467-6 10.1016/j.ejor.2015.12.018 10.1287/ijoc.9.3.231 10.1002/cite.201800091 10.1016/j.compchemeng.2017.09.017 10.1126/science.220.4598.671 10.1023/A:1008306431147 10.1007/s10957-018-1396-0 10.1007/978-0-387-74759-0_128 10.1002/aic.11579 10.1007/s10898-020-00912-0 10.1137/040603371 10.1007/BF01580665 10.1023/b:stco.0000035301.49549.88 10.1007/978-1-4614-3226-5 10.1016/j.compchemeng.2019.106567 10.1007/s10107-005-0581-8 10.1109/MCSE.2011.37 10.1002/aic.12341 10.1007/s10898-012-9951-y 10.1093/comjnl/7.4.308 10.1002/aic.14418 10.1007/s11590-019-01421-0 10.1007/s11590-016-1028-2 10.1007/s10898-014-0166-2 10.1137/s1052623493250780 10.1137/s1052623496300507 10.1007/978-1-4899-7491-4 10.1137/1.9780898718768 10.1016/j.compchemeng.2021.107343 10.1016/S0927-0507(06)13018-2 10.1007/978-3-319-68913-5_3 10.1109/ICNN.1995.488968 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-021-01045-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 50 |
| ExternalDocumentID | A707077433 10_1007_s10898_021_01045_8 |
| GrantInformation_xml | – fundername: Fani Boukouvala funderid: Au1 – fundername: National Science Foundation grantid: 1805724 funderid: http://dx.doi.org/10.13039/100000001 – fundername: RAPID – fundername: Georgia Institute of Technology funderid: http://dx.doi.org/10.13039/100006778 |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-5e64b8b79dceed736de2d19fc90a41687efaf73a1a94e1d1c78281bee53cd0f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725412200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Tue Nov 04 23:17:47 EST 2025 Sat Nov 29 09:47:41 EST 2025 Sat Nov 29 01:59:36 EST 2025 Tue Nov 18 22:38:16 EST 2025 Fri Feb 21 02:46:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Branch-and-bound Simulation-optimization Convex underestimators Global optimization Black-box optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-5e64b8b79dceed736de2d19fc90a41687efaf73a1a94e1d1c78281bee53cd0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0584-1517 |
| PQID | 2617592383 |
| PQPubID | 29930 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2617592383 gale_infotracacademiconefile_A707077433 crossref_primary_10_1007_s10898_021_01045_8 crossref_citationtrail_10_1007_s10898_021_01045_8 springer_journals_10_1007_s10898_021_01045_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Huyer, Neumaier (CR30) 2008; 35 Gosavi, Gosavi (CR2) 2015 Duran, Grossmann (CR47) 1986; 36 Kieslich, Boukouvala, Floudas (CR8) 2018 CR35 Larson, Menickelly, Wild (CR26) 2019; 28 Tawarmalani, Sahinidis (CR37) 2005; 103 Boukouvala, Misener, Floudas (CR25) 2016; 252 CR31 Kirkpatrick, Gelatt, Vecchi (CR19) 1983; 220 Forrester, Keane (CR34) 2009; 45 Whitley (CR21) 1994; 4 Jones, Perttunen, Stuckman (CR17) 1993; 79 Misener, Floudas (CR40) 2014; 59 Cozad, Sahinidis, Miller (CR9) 2014; 60 Androulakis, Maranas, Floudas (CR41) 1995; 7 McKay, Beckman, Conover (CR38) 1979; 21 Reeves (CR20) 1997; 9 Bhosekar, Ierapetritou (CR5) 2018; 108 Torczon (CR13) 1997; 7 Müller, Park, Sahu, Varadharajan, Arora, Faybishenko, Agarwal (CR33) 2020 CR43 Eason, Cremaschi (CR36) 2014; 68 Amaran, Sahinidis, Sharda, Bury (CR1) 2014; 12 Huyer, Neumaier (CR18) 1999; 14 Schweidtmann, Mitsos (CR10) 2019; 180 Caballero, Grossmann (CR3) 2008; 54 Lewis, Torczon (CR14) 1999; 9 Bajaj, Hasan (CR7) 2019 Jones, Schonlau, Welch (CR29) 1998; 13 Garud, Mariappan, Karimi (CR11) 2019; 130 Nelder, Mead (CR12) 1965; 7 McCormick (CR46) 1976; 10 CR57 CR56 CR54 CR53 CR50 Walt, Colbert, Varoquaux (CR51) 2011; 13 Smola, Schölkopf (CR49) 2004; 14 Jones, Floudas, Pardalos (CR16) 2009 McBride, Sundmacher (CR6) 2019; 91 Boukouvala, Floudas (CR32) 2017; 11 Sergeyev, Kvasov (CR45) 2015; 21 CR28 Zhai, Boukouvala (CR55) 2019 Henao, Maravelias (CR4) 2011; 57 CR27 CR24 CR22 Rios, Sahinidis (CR23) 2013; 56 Hüllen, Zhai, Kim, Sinha, Realff, Boukouvala (CR39) 2019 Audet, Dennis (CR15) 2006; 17 Tawarmalani, Sahinidis (CR42) 2004; 99 Xu, Nelson (CR44) 2013; 45 Vapnik (CR48) 1999 Hart, Laird, Watson, Woodruff (CR52) 2012 MA Duran (1045_CR47) 1986; 36 J Müller (1045_CR33) 2020 IP Androulakis (1045_CR41) 1995; 7 1045_CR22 RM Lewis (1045_CR14) 1999; 9 1045_CR24 S Kirkpatrick (1045_CR19) 1983; 220 J Larson (1045_CR26) 2019; 28 1045_CR27 1045_CR28 I Bajaj (1045_CR7) 2019 F Boukouvala (1045_CR32) 2017; 11 K McBride (1045_CR6) 2019; 91 CR Reeves (1045_CR20) 1997; 9 J Zhai (1045_CR55) 2019 CA Kieslich (1045_CR8) 2018 G Hüllen (1045_CR39) 2019 1045_CR50 1045_CR53 1045_CR54 1045_CR56 SS Garud (1045_CR11) 2019; 130 M Tawarmalani (1045_CR42) 2004; 99 1045_CR57 A Gosavi (1045_CR2) 2015 WE Hart (1045_CR52) 2012 S Amaran (1045_CR1) 2014; 12 GP McCormick (1045_CR46) 1976; 10 JA Nelder (1045_CR12) 1965; 7 C Audet (1045_CR15) 2006; 17 WL Xu (1045_CR44) 2013; 45 SVD Walt (1045_CR51) 2011; 13 DR Jones (1045_CR17) 1993; 79 J Eason (1045_CR36) 2014; 68 LM Rios (1045_CR23) 2013; 56 AM Schweidtmann (1045_CR10) 2019; 180 MD McKay (1045_CR38) 1979; 21 V Vapnik (1045_CR48) 1999 JA Caballero (1045_CR3) 2008; 54 1045_CR43 DR Jones (1045_CR16) 2009 R Misener (1045_CR40) 2014; 59 V Torczon (1045_CR13) 1997; 7 AIJ Forrester (1045_CR34) 2009; 45 D Whitley (1045_CR21) 1994; 4 F Boukouvala (1045_CR25) 2016; 252 W Huyer (1045_CR30) 2008; 35 YD Sergeyev (1045_CR45) 2015; 21 AJ Smola (1045_CR49) 2004; 14 DR Jones (1045_CR29) 1998; 13 1045_CR31 A Bhosekar (1045_CR5) 2018; 108 1045_CR35 W Huyer (1045_CR18) 1999; 14 A Cozad (1045_CR9) 2014; 60 M Tawarmalani (1045_CR37) 2005; 103 CA Henao (1045_CR4) 2011; 57 |
| References_xml | – year: 1999 ident: CR48 publication-title: The Nature of Statistical Learning Theory – ident: CR22 – year: 2019 ident: CR39 article-title: Managing uncertainty in data-driven simulation-based optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106519 – volume: 7 start-page: 337 issue: 4 year: 1995 end-page: 363 ident: CR41 article-title: αBB: A global optimization method for general constrained nonconvex problems publication-title: J. Global Optim. doi: 10.1007/bf01099647 – volume: 45 start-page: 50 issue: 1 year: 2009 end-page: 79 ident: CR34 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – ident: CR35 – ident: CR54 – volume: 12 start-page: 301 issue: 4 year: 2014 end-page: 333 ident: CR1 article-title: Simulation optimization: a review of algorithms and applications publication-title: 4OR doi: 10.1007/s10288-014-0275-2 – volume: 68 start-page: 220 year: 2014 end-page: 232 ident: CR36 article-title: Adaptive sequential sampling for surrogate model generation with artificial neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.05.021 – volume: 36 start-page: 307 issue: 3 year: 1986 end-page: 339 ident: CR47 article-title: An outer-approximation algorithm for a class of mixed-integer nonlinear programs publication-title: Math. Program. doi: 10.1007/BF02592064 – volume: 21 start-page: 99 issue: 1 year: 2015 end-page: 111 ident: CR45 article-title: A deterministic global optimization using smooth diagonal auxiliary functions publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.08.026 – volume: 14 start-page: 331 issue: 4 year: 1999 end-page: 355 ident: CR18 article-title: Global optimization by multilevel coordinate search publication-title: J. Global Optim. doi: 10.1023/a:1008382309369 – volume: 79 start-page: 157 issue: 1 year: 1993 end-page: 181 ident: CR17 article-title: Lipschitzian optimization without the Lipschitz constant publication-title: J. Optim. Theory Appl. doi: 10.1007/bf00941892 – volume: 21 start-page: 239 issue: 2 year: 1979 end-page: 245 ident: CR38 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics doi: 10.1080/00401706.1979.10489755 – volume: 28 start-page: 287 year: 2019 end-page: 404 ident: CR26 article-title: Derivative-free optimization methods publication-title: Acta Numer doi: 10.1017/S0962492919000060 – volume: 35 start-page: 1 issue: 2 year: 2008 end-page: 25 ident: CR30 article-title: SNOBFIT-stable noisy optimization by branch and fit publication-title: ACM Trans. Math. Softw. doi: 10.1145/1377612.1377613 – volume: 4 start-page: 65 issue: 2 year: 1994 end-page: 85 ident: CR21 article-title: A genetic algorithm tutorial publication-title: Stat. Comput. doi: 10.1007/bf00175354 – volume: 45 start-page: 685 issue: 7 year: 2013 end-page: 698 ident: CR44 article-title: Empirical stochastic branch-and-bound for optimization via simulation publication-title: IIE Trans. doi: 10.1080/0740817X.2013.768783 – year: 2019 ident: CR55 article-title: Nonlinear variable selection algorithms for surrogate modeling publication-title: AIChE J. doi: 10.1002/aic.16601 – ident: CR50 – year: 2018 ident: CR8 article-title: Optimization of black-box problems using Smolyak grids and polynomial approximations publication-title: J. Global Optim. doi: 10.1007/s10898-018-0643-0 – volume: 99 start-page: 563 issue: 3 year: 2004 end-page: 591 ident: CR42 article-title: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study publication-title: Math. Program. doi: 10.1007/s10107-003-0467-6 – volume: 252 start-page: 701 issue: 3 year: 2016 end-page: 727 ident: CR25 article-title: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization CDFO publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.12.018 – ident: CR57 – volume: 9 start-page: 231 issue: 3 year: 1997 end-page: 250 ident: CR20 article-title: Feature article-genetic algorithms for the operations researcher publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.9.3.231 – volume: 91 start-page: 228 issue: 3 year: 2019 end-page: 239 ident: CR6 article-title: Overview of surrogate modeling in chemical process engineering publication-title: Chem. Ing. Tec. doi: 10.1002/cite.201800091 – volume: 108 start-page: 250 year: 2018 end-page: 267 ident: CR5 article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.09.017 – volume: 220 start-page: 671 issue: 4598 year: 1983 end-page: 680 ident: CR19 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 13 start-page: 455 issue: 4 year: 1998 end-page: 492 ident: CR29 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – ident: CR43 – volume: 180 start-page: 925 issue: 3 year: 2019 end-page: 948 ident: CR10 article-title: Deterministic global optimization with artificial neural networks embedded publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-1396-0 – start-page: 725 year: 2009 end-page: 735 ident: CR16 article-title: Direct global optimization algorithm direct global optimization algorithm publication-title: Encyclopedia of Optimization doi: 10.1007/978-0-387-74759-0_128 – ident: CR53 – volume: 54 start-page: 2633 issue: 10 year: 2008 end-page: 2650 ident: CR3 article-title: An algorithm for the use of surrogate models in modular flowsheet optimization publication-title: AIChE J. doi: 10.1002/aic.11579 – year: 2020 ident: CR33 article-title: Surrogate optimization of deep neural networks for groundwater predictions publication-title: J. Global Optim. doi: 10.1007/s10898-020-00912-0 – volume: 17 start-page: 188 issue: 1 year: 2006 end-page: 217 ident: CR15 article-title: Mesh adaptive direct search algorithms for constrained optimization publication-title: SIAM J. Optim. doi: 10.1137/040603371 – volume: 10 start-page: 147 issue: 1 year: 1976 end-page: 175 ident: CR46 article-title: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems publication-title: Math. Program. doi: 10.1007/BF01580665 – start-page: 1 year: 2015 end-page: 12 ident: CR2 article-title: Background publication-title: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning – volume: 14 start-page: 199 issue: 3 year: 2004 end-page: 222 ident: CR49 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/b:stco.0000035301.49549.88 – ident: CR56 – year: 2012 ident: CR52 publication-title: Pyomo-Optimization Modeling in Python doi: 10.1007/978-1-4614-3226-5 – ident: CR27 – volume: 130 start-page: 106567 year: 2019 ident: CR11 article-title: Surrogate-based black-box optimisation via domain exploration and smart placement publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106567 – volume: 103 start-page: 225 issue: 2 year: 2005 end-page: 249 ident: CR37 article-title: A polyhedral branch-and-cut approach to global optimization publication-title: Math. Program. doi: 10.1007/s10107-005-0581-8 – volume: 13 start-page: 22 issue: 2 year: 2011 end-page: 30 ident: CR51 article-title: The Numpy array: a structure for efficient numerical computation publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.37 – volume: 57 start-page: 1216 issue: 5 year: 2011 end-page: 1232 ident: CR4 article-title: Surrogate-based superstructure optimization framework publication-title: AIChE J. doi: 10.1002/aic.12341 – ident: CR31 – volume: 56 start-page: 1247 issue: 3 year: 2013 end-page: 1293 ident: CR23 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Global Optim. doi: 10.1007/s10898-012-9951-y – volume: 7 start-page: 308 issue: 4 year: 1965 end-page: 313 ident: CR12 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 60 start-page: 2211 issue: 6 year: 2014 end-page: 2227 ident: CR9 article-title: Learning surrogate models for simulation-based optimization publication-title: AIChE J. doi: 10.1002/aic.14418 – year: 2019 ident: CR7 article-title: Deterministic global derivative-free optimization of black-box problems with bounded Hessian publication-title: Optim. Lett. doi: 10.1007/s11590-019-01421-0 – volume: 11 start-page: 895 issue: 5 year: 2017 end-page: 913 ident: CR32 article-title: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems publication-title: Optim. Lett. doi: 10.1007/s11590-016-1028-2 – volume: 59 start-page: 503 issue: 2 year: 2014 end-page: 526 ident: CR40 article-title: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations publication-title: J. Global Optim. doi: 10.1007/s10898-014-0166-2 – volume: 7 start-page: 1 issue: 1 year: 1997 end-page: 25 ident: CR13 article-title: On the convergence of pattern search algorithms publication-title: SIAM J. Optim. doi: 10.1137/s1052623493250780 – ident: CR28 – volume: 9 start-page: 1082 issue: 4 year: 1999 end-page: 1099 ident: CR14 article-title: Pattern search algorithms for bound constrained minimization publication-title: SIAM J. Optim. doi: 10.1137/s1052623496300507 – ident: CR24 – year: 2019 ident: 1045_CR39 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106519 – volume: 36 start-page: 307 issue: 3 year: 1986 ident: 1045_CR47 publication-title: Math. Program. doi: 10.1007/BF02592064 – start-page: 725 volume-title: Encyclopedia of Optimization year: 2009 ident: 1045_CR16 doi: 10.1007/978-0-387-74759-0_128 – volume: 45 start-page: 50 issue: 1 year: 2009 ident: 1045_CR34 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 17 start-page: 188 issue: 1 year: 2006 ident: 1045_CR15 publication-title: SIAM J. Optim. doi: 10.1137/040603371 – volume: 79 start-page: 157 issue: 1 year: 1993 ident: 1045_CR17 publication-title: J. Optim. Theory Appl. doi: 10.1007/bf00941892 – volume: 60 start-page: 2211 issue: 6 year: 2014 ident: 1045_CR9 publication-title: AIChE J. doi: 10.1002/aic.14418 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 1045_CR19 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 57 start-page: 1216 issue: 5 year: 2011 ident: 1045_CR4 publication-title: AIChE J. doi: 10.1002/aic.12341 – volume: 12 start-page: 301 issue: 4 year: 2014 ident: 1045_CR1 publication-title: 4OR doi: 10.1007/s10288-014-0275-2 – start-page: 1 volume-title: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning year: 2015 ident: 1045_CR2 doi: 10.1007/978-1-4899-7491-4 – ident: 1045_CR28 – ident: 1045_CR53 – ident: 1045_CR43 – volume: 21 start-page: 99 issue: 1 year: 2015 ident: 1045_CR45 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.08.026 – volume: 108 start-page: 250 year: 2018 ident: 1045_CR5 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.09.017 – volume: 14 start-page: 331 issue: 4 year: 1999 ident: 1045_CR18 publication-title: J. Global Optim. doi: 10.1023/a:1008382309369 – volume: 28 start-page: 287 year: 2019 ident: 1045_CR26 publication-title: Acta Numer doi: 10.1017/S0962492919000060 – ident: 1045_CR24 doi: 10.1137/1.9780898718768 – year: 2020 ident: 1045_CR33 publication-title: J. Global Optim. doi: 10.1007/s10898-020-00912-0 – volume: 45 start-page: 685 issue: 7 year: 2013 ident: 1045_CR44 publication-title: IIE Trans. doi: 10.1080/0740817X.2013.768783 – volume-title: The Nature of Statistical Learning Theory year: 1999 ident: 1045_CR48 – volume: 59 start-page: 503 issue: 2 year: 2014 ident: 1045_CR40 publication-title: J. Global Optim. doi: 10.1007/s10898-014-0166-2 – volume: 54 start-page: 2633 issue: 10 year: 2008 ident: 1045_CR3 publication-title: AIChE J. doi: 10.1002/aic.11579 – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 1045_CR12 publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – ident: 1045_CR50 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 1045_CR23 publication-title: J. Global Optim. doi: 10.1007/s10898-012-9951-y – ident: 1045_CR31 doi: 10.1016/j.compchemeng.2021.107343 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 1045_CR49 publication-title: Stat. Comput. doi: 10.1023/b:stco.0000035301.49549.88 – ident: 1045_CR54 – volume: 180 start-page: 925 issue: 3 year: 2019 ident: 1045_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-1396-0 – volume: 11 start-page: 895 issue: 5 year: 2017 ident: 1045_CR32 publication-title: Optim. Lett. doi: 10.1007/s11590-016-1028-2 – year: 2019 ident: 1045_CR55 publication-title: AIChE J. doi: 10.1002/aic.16601 – year: 2018 ident: 1045_CR8 publication-title: J. Global Optim. doi: 10.1007/s10898-018-0643-0 – ident: 1045_CR35 doi: 10.1016/S0927-0507(06)13018-2 – volume: 68 start-page: 220 year: 2014 ident: 1045_CR36 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.05.021 – volume-title: Pyomo-Optimization Modeling in Python year: 2012 ident: 1045_CR52 doi: 10.1007/978-1-4614-3226-5 – volume: 103 start-page: 225 issue: 2 year: 2005 ident: 1045_CR37 publication-title: Math. Program. doi: 10.1007/s10107-005-0581-8 – year: 2019 ident: 1045_CR7 publication-title: Optim. Lett. doi: 10.1007/s11590-019-01421-0 – volume: 91 start-page: 228 issue: 3 year: 2019 ident: 1045_CR6 publication-title: Chem. Ing. Tec. doi: 10.1002/cite.201800091 – ident: 1045_CR27 doi: 10.1007/978-3-319-68913-5_3 – volume: 7 start-page: 1 issue: 1 year: 1997 ident: 1045_CR13 publication-title: SIAM J. Optim. doi: 10.1137/s1052623493250780 – volume: 130 start-page: 106567 year: 2019 ident: 1045_CR11 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106567 – ident: 1045_CR22 doi: 10.1109/ICNN.1995.488968 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 1045_CR38 publication-title: Technometrics doi: 10.1080/00401706.1979.10489755 – volume: 13 start-page: 22 issue: 2 year: 2011 ident: 1045_CR51 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.37 – volume: 99 start-page: 563 issue: 3 year: 2004 ident: 1045_CR42 publication-title: Math. Program. doi: 10.1007/s10107-003-0467-6 – ident: 1045_CR57 – volume: 252 start-page: 701 issue: 3 year: 2016 ident: 1045_CR25 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.12.018 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 1045_CR29 publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 7 start-page: 337 issue: 4 year: 1995 ident: 1045_CR41 publication-title: J. Global Optim. doi: 10.1007/bf01099647 – volume: 35 start-page: 1 issue: 2 year: 2008 ident: 1045_CR30 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1377612.1377613 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 1045_CR21 publication-title: Stat. Comput. doi: 10.1007/bf00175354 – volume: 10 start-page: 147 issue: 1 year: 1976 ident: 1045_CR46 publication-title: Math. Program. doi: 10.1007/BF01580665 – ident: 1045_CR56 – volume: 9 start-page: 1082 issue: 4 year: 1999 ident: 1045_CR14 publication-title: SIAM J. Optim. doi: 10.1137/s1052623496300507 – volume: 9 start-page: 231 issue: 3 year: 1997 ident: 1045_CR20 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.9.3.231 |
| SSID | ssj0009852 |
| Score | 2.3610494 |
| Snippet | The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21 |
| SubjectTerms | Algorithms Complexity Computer Science Computer simulation Computer-generated environments Decision analysis Decision making First principles Mathematical optimization Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Optimization techniques Real Functions Simulation Spatial data |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH4asMM4DChD6waTD0gMMUtxUifOsdqGdhlCgBA3y_GPtRJtpyZM-_P3XupQBmwSHCM7juW8H19iv-8D2K-CsZnNHcf0nPKBN4FXRai4wXgslc-sMKEVmyhOTtTVVXkai8Lq7rR7tyXZRuo7xW6KysFS-vxFIMLVCqxhulMk2HB2frmk2lWtzk5SppJLjMKxVObxMf5KR_eD8oPd0TbpHG88b7qb8DqCTDZcWMUWvPDTHmx0Ag4s-nMP1u-wEeLV91sK17oHW7FXzT5GaurDbTBfTGO4m1OIZDUdxsbHVKTNMeJm6nhFIk3MXP-YzcfNaFIzhMSsmv3mlmAoqVF4x-rxJGqGccqhjs0wbE1iPegbuDj-evH5G48iDdxmUjVc-nxQqaooHaXbIsudT50ogy0Tg2BPFT6YUGRGmHLghRMWIQlCZe9lZl0Ssh1Ync6m_i2wNJTWKZF7I5NBCMJIT5pGwQqEiHlS9kF0r0rbSGBOM7_WS-plWnONa67bNdeqD0e39_xc0Hf8t_cBWYAm38aRrYklCjg_YsnSw4LIkRBzZX3Y7YxER6evNZHbSwTMCps_dUaxbP73c989rft7eJVSEUb7I2gXVpv5jd-Dl_ZXM67nH1pn-AMI6AS- priority: 102 providerName: Springer Nature |
| Title | Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization |
| URI | https://link.springer.com/article/10.1007/s10898-021-01045-8 https://www.proquest.com/docview/2617592383 |
| Volume | 82 |
| WOSCitedRecordID | wos000725412200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgMcgBYQC23lAxIgsIiTdeycqlJaIaEuUVtB4WI5_qCVurtlExA_vzOpt8uH6IXLSFESx9LYMy-25z2Ap020rnCl55iecz4MNvJGxYZbjMdSh8IJG3uxCTUa6ePjqk4Lbm06VjmPiX2g9lNHa-SviTlcIhrRxdb5N06qUbS7miQ0lmAFkY2gI137eb0g3dW94k5W5ZJLjMepaCaVzmkqLsvpZxphDde_JaY_w_Nf-6R9-tm7-78dvwd3EvBk25cjZRVuhMka3P6FjnANVtNEb9nzxEb94j7Yt7az3M8oKrKWzl9jKw3JcZxwO_G8IV0mZs--4je7k3HLEAWzZvqTO0KeJEARPGtPx0kmjFPa9GyKkWqcSkAfwNHe7tHOO550GbgrpO64DOWw0Y2qPGVYVZQ-5F5U0VWZRXynVYg2qsIKWw2D8MIhCkF0HIIsnM9i8RCWJ9NJeAQsj5XzWpTBymwYo7AykIxRdAJRYZlVAxBznxiXOMup52dmwbZMfjToR9P70egBvLx65_ySsePap5-Rqw1NZ2zZ2VSVgP0jYiyzrYgPCWFWMYD1uX9NmuetWTh3AK_mI2Rx-9_ffXx9a0_gVk51Fv1azzosd7PvYQNuuh_daTvbhCX16fMmrLzZHdUHePVecbT72Q7Z_ENva7LqEG0tv6A9OPx4AWkdDD0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlYAC0gBgp4AQJULOI4D2eBUEWpWrWMuphFd5bjB63UmSmT0NKP6j9yb8ZheIjuumCdxHmdnHuS-J4D8KIOxkpbOI7lOeWZN4HXZai5QT7OlZdWmNCFTZTDoTo4qPaX4KLvhaFplT0ndkTtppa-kb8j5_Ac1YiSH06-ckqNor-rfYTGHBa7_vwMX9ma9zubeH9fpunWp9HHbR5TBbiVuWp57ousVnVZOaoPpSycT52ogq0Sg-pElT6YUEojTJV54YTFGorazvtcWpcEicNeg-sZGYvRTMF0f-Hxq7qAn6RKc54j_ccendipp6iXLaV3d1RRXP1WB_-sBn_9lu2q3dbd_-w63YM7UVazjflzsAJLfrIKt38xW1yFlUhjDXsdvbbf3AezaVrD3Yw4nzU0uxxHqSls5JCbieM1pU4xc_wFT7E9HDcMNT6rp9-5JV1N8RreseZoHEPQOIkCx6bIw-PY4PoARldx3g9heTKd-EfA0lBZp0ThTZ5kIQiTewppClag5i2SagCih4C20ZGdjvxYL7ykCTYaYaM72Gg1gPWf25zM_UguXfsVIUsTWeHI1sSeCzw-sv3SGyW5PaGIlANY6-GkI4s1eoGlAbztAblY_O_9Pr58tOdwc3v0eU_v7Qx3n8CtlDpKuq9aa7Dczr75p3DDnrZHzexZ94Ax0FcM1B9Z6mLr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAcgBZQlxbwAQQIrMbJOnEOCFUsK6qi1R56qLhYjj9ope5uuwkf_Wn9d53JOiwforceOCdx7ORl5tnxvAfwrArGZjZ3HNNzyvveBF4VoeIG47FUPrPChNZsohiN1MFBOV6B864WhrZVdjGxDdRuZmmNfJuUwyWyEZVth7gtYjwYvjs55eQgRX9aOzuNBUT2_Nl3nL7Vb3cH-K6fp-nww_77jzw6DHCbSdVw6fN-paqidJQriix3PnWiDLZMDDIVVfhgQpEZYcq-F05YzKfI87yXmXVJyLDZa3C9wCkm7SYcy89LvV_Vmv0kZSq5xFQQ63Vi1Z6iuraU5vHIqLj6LSf-mRn--kXbZr7h3f_4md2DO5Fus53F97EGK366Drd_EWFch7UY3mr2Mmpwv7oPZmAaw92ccgGradc5tlKRCckhN1PHK3KjYub4Cw6xOZzUDLk_q2Y_uCW-TbYb3rH6aBLN0TiRBcdmGJ8nsfD1Aexfxbgfwup0NvUbwNJQWqdE7o1M-iEIIz2ZNwUrkAvnSdkD0cFB26jUTj0_1kuNaYKQRgjpFkJa9eD1z2tOFjoll579glCmKYhhy9bEWgzsH8mB6Z2CVKCQXGY92OqgpWN0q_USVz1404Fzefjf9310eWtP4SbiU3_aHe1twq2UCk3axa4tWG3mX_1juGG_NUf1_En7rTHQV4zTC25Qa9c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+spatial+branch-and-bound+algorithms+for+box-constrained+simulation-based+optimization&rft.jtitle=Journal+of+global+optimization&rft.au=Zhai+Jianyuan&rft.au=Boukouvala+Fani&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=82&rft.issue=1&rft.spage=21&rft.epage=50&rft_id=info:doi/10.1007%2Fs10898-021-01045-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |