Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization

The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-base...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 82; číslo 1; s. 21 - 50
Hlavní autoři: Zhai, Jianyuan, Boukouvala, Fani
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2022
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based optimization solvers may be impractical and data-driven optimization techniques are often needed. In this work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization problems with box constraints, aiming for consistent globally convergent solutions. The main contribution of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased by an illustrative example and is then extensively studied via computational experiments on a large set of benchmark problems.
AbstractList The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based optimization solvers may be impractical and data-driven optimization techniques are often needed. In this work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization problems with box constraints, aiming for consistent globally convergent solutions. The main contribution of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased by an illustrative example and is then extensively studied via computational experiments on a large set of benchmark problems.
Audience Academic
Author Boukouvala, Fani
Zhai, Jianyuan
Author_xml – sequence: 1
  givenname: Jianyuan
  surname: Zhai
  fullname: Zhai, Jianyuan
  organization: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Fani
  orcidid: 0000-0002-0584-1517
  surname: Boukouvala
  fullname: Boukouvala, Fani
  email: fani.boukouvala@chbe.gatech.edu
  organization: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
BookMark eNp9kE1rHSEUhqWk0Ju0f6CrgaxN_RhHXYY0H4VAN9mLo8cbw4ze6tzQ5tfHe6dQ6OJyFsLLeTy8zzk6SzkBQl8puaKEyG-VEqUVJoxiQkkvsPqANlRIjpmmwxnaEM0EFoTQT-i81hdCiFaCbZD9bheLfYmvkLq6s0u0UzcWm9wztsnjMe-T7-y0zSUuz3PtQi7dmH9jl1Ndio0JfFfjvJ8amhMebW1B3i1xjm_H6DP6GOxU4cvf9wI93d0-3Tzgx5_3P26uH7HjQi1YwNCPapTaOwAv-eCBeaqD08T2dFASgg2SW2p1D9RTJxVTdAQQ3HkS-AW6XL_dlfxrD3UxL3lfUrto2ECl0Iwr3rau1q2tncDEFHLr4Np4mGOrBCG2_FqSNrLnB4CtgCu51gLB7EqcbfljKDEH9WZVb5p6c1RvVIPUf5CLy1HGwdh0GuUrWtudtIXyr8YJ6h1fH5yL
CitedBy_id crossref_primary_10_3390_pr13092929
crossref_primary_10_1007_s10589_023_00466_3
crossref_primary_10_1016_j_strusafe_2022_102313
crossref_primary_10_1016_j_future_2022_09_018
crossref_primary_10_1002_aic_17776
crossref_primary_10_1007_s11081_022_09740_5
Cites_doi 10.1016/j.compchemeng.2019.106519
10.1007/bf01099647
10.1016/j.paerosci.2008.11.001
10.1007/s10288-014-0275-2
10.1016/j.compchemeng.2014.05.021
10.1007/BF02592064
10.1016/j.cnsns.2014.08.026
10.1023/a:1008382309369
10.1007/bf00941892
10.1080/00401706.1979.10489755
10.1017/S0962492919000060
10.1145/1377612.1377613
10.1007/bf00175354
10.1080/0740817X.2013.768783
10.1002/aic.16601
10.1007/s10898-018-0643-0
10.1007/s10107-003-0467-6
10.1016/j.ejor.2015.12.018
10.1287/ijoc.9.3.231
10.1002/cite.201800091
10.1016/j.compchemeng.2017.09.017
10.1126/science.220.4598.671
10.1023/A:1008306431147
10.1007/s10957-018-1396-0
10.1007/978-0-387-74759-0_128
10.1002/aic.11579
10.1007/s10898-020-00912-0
10.1137/040603371
10.1007/BF01580665
10.1023/b:stco.0000035301.49549.88
10.1007/978-1-4614-3226-5
10.1016/j.compchemeng.2019.106567
10.1007/s10107-005-0581-8
10.1109/MCSE.2011.37
10.1002/aic.12341
10.1007/s10898-012-9951-y
10.1093/comjnl/7.4.308
10.1002/aic.14418
10.1007/s11590-019-01421-0
10.1007/s11590-016-1028-2
10.1007/s10898-014-0166-2
10.1137/s1052623493250780
10.1137/s1052623496300507
10.1007/978-1-4899-7491-4
10.1137/1.9780898718768
10.1016/j.compchemeng.2021.107343
10.1016/S0927-0507(06)13018-2
10.1007/978-3-319-68913-5_3
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-021-01045-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 50
ExternalDocumentID A707077433
10_1007_s10898_021_01045_8
GrantInformation_xml – fundername: Fani Boukouvala
  funderid: Au1
– fundername: National Science Foundation
  grantid: 1805724
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: RAPID
– fundername: Georgia Institute of Technology
  funderid: http://dx.doi.org/10.13039/100006778
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-5e64b8b79dceed736de2d19fc90a41687efaf73a1a94e1d1c78281bee53cd0f3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725412200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Nov 04 23:17:47 EST 2025
Sat Nov 29 09:47:41 EST 2025
Sat Nov 29 01:59:36 EST 2025
Tue Nov 18 22:38:16 EST 2025
Fri Feb 21 02:46:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Branch-and-bound
Simulation-optimization
Convex underestimators
Global optimization
Black-box optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-5e64b8b79dceed736de2d19fc90a41687efaf73a1a94e1d1c78281bee53cd0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0584-1517
PQID 2617592383
PQPubID 29930
PageCount 30
ParticipantIDs proquest_journals_2617592383
gale_infotracacademiconefile_A707077433
crossref_primary_10_1007_s10898_021_01045_8
crossref_citationtrail_10_1007_s10898_021_01045_8
springer_journals_10_1007_s10898_021_01045_8
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Huyer, Neumaier (CR30) 2008; 35
Gosavi, Gosavi (CR2) 2015
Duran, Grossmann (CR47) 1986; 36
Kieslich, Boukouvala, Floudas (CR8) 2018
CR35
Larson, Menickelly, Wild (CR26) 2019; 28
Tawarmalani, Sahinidis (CR37) 2005; 103
Boukouvala, Misener, Floudas (CR25) 2016; 252
CR31
Kirkpatrick, Gelatt, Vecchi (CR19) 1983; 220
Forrester, Keane (CR34) 2009; 45
Whitley (CR21) 1994; 4
Jones, Perttunen, Stuckman (CR17) 1993; 79
Misener, Floudas (CR40) 2014; 59
Cozad, Sahinidis, Miller (CR9) 2014; 60
Androulakis, Maranas, Floudas (CR41) 1995; 7
McKay, Beckman, Conover (CR38) 1979; 21
Reeves (CR20) 1997; 9
Bhosekar, Ierapetritou (CR5) 2018; 108
Torczon (CR13) 1997; 7
Müller, Park, Sahu, Varadharajan, Arora, Faybishenko, Agarwal (CR33) 2020
CR43
Eason, Cremaschi (CR36) 2014; 68
Amaran, Sahinidis, Sharda, Bury (CR1) 2014; 12
Huyer, Neumaier (CR18) 1999; 14
Schweidtmann, Mitsos (CR10) 2019; 180
Caballero, Grossmann (CR3) 2008; 54
Lewis, Torczon (CR14) 1999; 9
Bajaj, Hasan (CR7) 2019
Jones, Schonlau, Welch (CR29) 1998; 13
Garud, Mariappan, Karimi (CR11) 2019; 130
Nelder, Mead (CR12) 1965; 7
McCormick (CR46) 1976; 10
CR57
CR56
CR54
CR53
CR50
Walt, Colbert, Varoquaux (CR51) 2011; 13
Smola, Schölkopf (CR49) 2004; 14
Jones, Floudas, Pardalos (CR16) 2009
McBride, Sundmacher (CR6) 2019; 91
Boukouvala, Floudas (CR32) 2017; 11
Sergeyev, Kvasov (CR45) 2015; 21
CR28
Zhai, Boukouvala (CR55) 2019
Henao, Maravelias (CR4) 2011; 57
CR27
CR24
CR22
Rios, Sahinidis (CR23) 2013; 56
Hüllen, Zhai, Kim, Sinha, Realff, Boukouvala (CR39) 2019
Audet, Dennis (CR15) 2006; 17
Tawarmalani, Sahinidis (CR42) 2004; 99
Xu, Nelson (CR44) 2013; 45
Vapnik (CR48) 1999
Hart, Laird, Watson, Woodruff (CR52) 2012
MA Duran (1045_CR47) 1986; 36
J Müller (1045_CR33) 2020
IP Androulakis (1045_CR41) 1995; 7
1045_CR22
RM Lewis (1045_CR14) 1999; 9
1045_CR24
S Kirkpatrick (1045_CR19) 1983; 220
J Larson (1045_CR26) 2019; 28
1045_CR27
1045_CR28
I Bajaj (1045_CR7) 2019
F Boukouvala (1045_CR32) 2017; 11
K McBride (1045_CR6) 2019; 91
CR Reeves (1045_CR20) 1997; 9
J Zhai (1045_CR55) 2019
CA Kieslich (1045_CR8) 2018
G Hüllen (1045_CR39) 2019
1045_CR50
1045_CR53
1045_CR54
1045_CR56
SS Garud (1045_CR11) 2019; 130
M Tawarmalani (1045_CR42) 2004; 99
1045_CR57
A Gosavi (1045_CR2) 2015
WE Hart (1045_CR52) 2012
S Amaran (1045_CR1) 2014; 12
GP McCormick (1045_CR46) 1976; 10
JA Nelder (1045_CR12) 1965; 7
C Audet (1045_CR15) 2006; 17
WL Xu (1045_CR44) 2013; 45
SVD Walt (1045_CR51) 2011; 13
DR Jones (1045_CR17) 1993; 79
J Eason (1045_CR36) 2014; 68
LM Rios (1045_CR23) 2013; 56
AM Schweidtmann (1045_CR10) 2019; 180
MD McKay (1045_CR38) 1979; 21
V Vapnik (1045_CR48) 1999
JA Caballero (1045_CR3) 2008; 54
1045_CR43
DR Jones (1045_CR16) 2009
R Misener (1045_CR40) 2014; 59
V Torczon (1045_CR13) 1997; 7
AIJ Forrester (1045_CR34) 2009; 45
D Whitley (1045_CR21) 1994; 4
F Boukouvala (1045_CR25) 2016; 252
W Huyer (1045_CR30) 2008; 35
YD Sergeyev (1045_CR45) 2015; 21
AJ Smola (1045_CR49) 2004; 14
DR Jones (1045_CR29) 1998; 13
1045_CR31
A Bhosekar (1045_CR5) 2018; 108
1045_CR35
W Huyer (1045_CR18) 1999; 14
A Cozad (1045_CR9) 2014; 60
M Tawarmalani (1045_CR37) 2005; 103
CA Henao (1045_CR4) 2011; 57
References_xml – year: 1999
  ident: CR48
  publication-title: The Nature of Statistical Learning Theory
– ident: CR22
– year: 2019
  ident: CR39
  article-title: Managing uncertainty in data-driven simulation-based optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106519
– volume: 7
  start-page: 337
  issue: 4
  year: 1995
  end-page: 363
  ident: CR41
  article-title: αBB: A global optimization method for general constrained nonconvex problems
  publication-title: J. Global Optim.
  doi: 10.1007/bf01099647
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  end-page: 79
  ident: CR34
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– ident: CR35
– ident: CR54
– volume: 12
  start-page: 301
  issue: 4
  year: 2014
  end-page: 333
  ident: CR1
  article-title: Simulation optimization: a review of algorithms and applications
  publication-title: 4OR
  doi: 10.1007/s10288-014-0275-2
– volume: 68
  start-page: 220
  year: 2014
  end-page: 232
  ident: CR36
  article-title: Adaptive sequential sampling for surrogate model generation with artificial neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.021
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  end-page: 339
  ident: CR47
  article-title: An outer-approximation algorithm for a class of mixed-integer nonlinear programs
  publication-title: Math. Program.
  doi: 10.1007/BF02592064
– volume: 21
  start-page: 99
  issue: 1
  year: 2015
  end-page: 111
  ident: CR45
  article-title: A deterministic global optimization using smooth diagonal auxiliary functions
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.08.026
– volume: 14
  start-page: 331
  issue: 4
  year: 1999
  end-page: 355
  ident: CR18
  article-title: Global optimization by multilevel coordinate search
  publication-title: J. Global Optim.
  doi: 10.1023/a:1008382309369
– volume: 79
  start-page: 157
  issue: 1
  year: 1993
  end-page: 181
  ident: CR17
  article-title: Lipschitzian optimization without the Lipschitz constant
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/bf00941892
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  end-page: 245
  ident: CR38
  article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489755
– volume: 28
  start-page: 287
  year: 2019
  end-page: 404
  ident: CR26
  article-title: Derivative-free optimization methods
  publication-title: Acta Numer
  doi: 10.1017/S0962492919000060
– volume: 35
  start-page: 1
  issue: 2
  year: 2008
  end-page: 25
  ident: CR30
  article-title: SNOBFIT-stable noisy optimization by branch and fit
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1377612.1377613
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  end-page: 85
  ident: CR21
  article-title: A genetic algorithm tutorial
  publication-title: Stat. Comput.
  doi: 10.1007/bf00175354
– volume: 45
  start-page: 685
  issue: 7
  year: 2013
  end-page: 698
  ident: CR44
  article-title: Empirical stochastic branch-and-bound for optimization via simulation
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2013.768783
– year: 2019
  ident: CR55
  article-title: Nonlinear variable selection algorithms for surrogate modeling
  publication-title: AIChE J.
  doi: 10.1002/aic.16601
– ident: CR50
– year: 2018
  ident: CR8
  article-title: Optimization of black-box problems using Smolyak grids and polynomial approximations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0643-0
– volume: 99
  start-page: 563
  issue: 3
  year: 2004
  end-page: 591
  ident: CR42
  article-title: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0467-6
– volume: 252
  start-page: 701
  issue: 3
  year: 2016
  end-page: 727
  ident: CR25
  article-title: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization CDFO
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.12.018
– ident: CR57
– volume: 9
  start-page: 231
  issue: 3
  year: 1997
  end-page: 250
  ident: CR20
  article-title: Feature article-genetic algorithms for the operations researcher
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.9.3.231
– volume: 91
  start-page: 228
  issue: 3
  year: 2019
  end-page: 239
  ident: CR6
  article-title: Overview of surrogate modeling in chemical process engineering
  publication-title: Chem. Ing. Tec.
  doi: 10.1002/cite.201800091
– volume: 108
  start-page: 250
  year: 2018
  end-page: 267
  ident: CR5
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  end-page: 680
  ident: CR19
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  end-page: 492
  ident: CR29
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– ident: CR43
– volume: 180
  start-page: 925
  issue: 3
  year: 2019
  end-page: 948
  ident: CR10
  article-title: Deterministic global optimization with artificial neural networks embedded
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1396-0
– start-page: 725
  year: 2009
  end-page: 735
  ident: CR16
  article-title: Direct global optimization algorithm direct global optimization algorithm
  publication-title: Encyclopedia of Optimization
  doi: 10.1007/978-0-387-74759-0_128
– ident: CR53
– volume: 54
  start-page: 2633
  issue: 10
  year: 2008
  end-page: 2650
  ident: CR3
  article-title: An algorithm for the use of surrogate models in modular flowsheet optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.11579
– year: 2020
  ident: CR33
  article-title: Surrogate optimization of deep neural networks for groundwater predictions
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00912-0
– volume: 17
  start-page: 188
  issue: 1
  year: 2006
  end-page: 217
  ident: CR15
  article-title: Mesh adaptive direct search algorithms for constrained optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  end-page: 175
  ident: CR46
  article-title: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– start-page: 1
  year: 2015
  end-page: 12
  ident: CR2
  article-title: Background
  publication-title: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  ident: CR49
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/b:stco.0000035301.49549.88
– ident: CR56
– year: 2012
  ident: CR52
  publication-title: Pyomo-Optimization Modeling in Python
  doi: 10.1007/978-1-4614-3226-5
– ident: CR27
– volume: 130
  start-page: 106567
  year: 2019
  ident: CR11
  article-title: Surrogate-based black-box optimisation via domain exploration and smart placement
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106567
– volume: 103
  start-page: 225
  issue: 2
  year: 2005
  end-page: 249
  ident: CR37
  article-title: A polyhedral branch-and-cut approach to global optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0581-8
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  end-page: 30
  ident: CR51
  article-title: The Numpy array: a structure for efficient numerical computation
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 57
  start-page: 1216
  issue: 5
  year: 2011
  end-page: 1232
  ident: CR4
  article-title: Surrogate-based superstructure optimization framework
  publication-title: AIChE J.
  doi: 10.1002/aic.12341
– ident: CR31
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  end-page: 1293
  ident: CR23
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9951-y
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  end-page: 313
  ident: CR12
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 60
  start-page: 2211
  issue: 6
  year: 2014
  end-page: 2227
  ident: CR9
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.14418
– year: 2019
  ident: CR7
  article-title: Deterministic global derivative-free optimization of black-box problems with bounded Hessian
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-019-01421-0
– volume: 11
  start-page: 895
  issue: 5
  year: 2017
  end-page: 913
  ident: CR32
  article-title: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1028-2
– volume: 59
  start-page: 503
  issue: 2
  year: 2014
  end-page: 526
  ident: CR40
  article-title: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0166-2
– volume: 7
  start-page: 1
  issue: 1
  year: 1997
  end-page: 25
  ident: CR13
  article-title: On the convergence of pattern search algorithms
  publication-title: SIAM J. Optim.
  doi: 10.1137/s1052623493250780
– ident: CR28
– volume: 9
  start-page: 1082
  issue: 4
  year: 1999
  end-page: 1099
  ident: CR14
  article-title: Pattern search algorithms for bound constrained minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/s1052623496300507
– ident: CR24
– year: 2019
  ident: 1045_CR39
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106519
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  ident: 1045_CR47
  publication-title: Math. Program.
  doi: 10.1007/BF02592064
– start-page: 725
  volume-title: Encyclopedia of Optimization
  year: 2009
  ident: 1045_CR16
  doi: 10.1007/978-0-387-74759-0_128
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  ident: 1045_CR34
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 17
  start-page: 188
  issue: 1
  year: 2006
  ident: 1045_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– volume: 79
  start-page: 157
  issue: 1
  year: 1993
  ident: 1045_CR17
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/bf00941892
– volume: 60
  start-page: 2211
  issue: 6
  year: 2014
  ident: 1045_CR9
  publication-title: AIChE J.
  doi: 10.1002/aic.14418
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 1045_CR19
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 57
  start-page: 1216
  issue: 5
  year: 2011
  ident: 1045_CR4
  publication-title: AIChE J.
  doi: 10.1002/aic.12341
– volume: 12
  start-page: 301
  issue: 4
  year: 2014
  ident: 1045_CR1
  publication-title: 4OR
  doi: 10.1007/s10288-014-0275-2
– start-page: 1
  volume-title: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning
  year: 2015
  ident: 1045_CR2
  doi: 10.1007/978-1-4899-7491-4
– ident: 1045_CR28
– ident: 1045_CR53
– ident: 1045_CR43
– volume: 21
  start-page: 99
  issue: 1
  year: 2015
  ident: 1045_CR45
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.08.026
– volume: 108
  start-page: 250
  year: 2018
  ident: 1045_CR5
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 14
  start-page: 331
  issue: 4
  year: 1999
  ident: 1045_CR18
  publication-title: J. Global Optim.
  doi: 10.1023/a:1008382309369
– volume: 28
  start-page: 287
  year: 2019
  ident: 1045_CR26
  publication-title: Acta Numer
  doi: 10.1017/S0962492919000060
– ident: 1045_CR24
  doi: 10.1137/1.9780898718768
– year: 2020
  ident: 1045_CR33
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00912-0
– volume: 45
  start-page: 685
  issue: 7
  year: 2013
  ident: 1045_CR44
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2013.768783
– volume-title: The Nature of Statistical Learning Theory
  year: 1999
  ident: 1045_CR48
– volume: 59
  start-page: 503
  issue: 2
  year: 2014
  ident: 1045_CR40
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0166-2
– volume: 54
  start-page: 2633
  issue: 10
  year: 2008
  ident: 1045_CR3
  publication-title: AIChE J.
  doi: 10.1002/aic.11579
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 1045_CR12
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– ident: 1045_CR50
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 1045_CR23
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9951-y
– ident: 1045_CR31
  doi: 10.1016/j.compchemeng.2021.107343
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 1045_CR49
  publication-title: Stat. Comput.
  doi: 10.1023/b:stco.0000035301.49549.88
– ident: 1045_CR54
– volume: 180
  start-page: 925
  issue: 3
  year: 2019
  ident: 1045_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1396-0
– volume: 11
  start-page: 895
  issue: 5
  year: 2017
  ident: 1045_CR32
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1028-2
– year: 2019
  ident: 1045_CR55
  publication-title: AIChE J.
  doi: 10.1002/aic.16601
– year: 2018
  ident: 1045_CR8
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0643-0
– ident: 1045_CR35
  doi: 10.1016/S0927-0507(06)13018-2
– volume: 68
  start-page: 220
  year: 2014
  ident: 1045_CR36
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.021
– volume-title: Pyomo-Optimization Modeling in Python
  year: 2012
  ident: 1045_CR52
  doi: 10.1007/978-1-4614-3226-5
– volume: 103
  start-page: 225
  issue: 2
  year: 2005
  ident: 1045_CR37
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0581-8
– year: 2019
  ident: 1045_CR7
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-019-01421-0
– volume: 91
  start-page: 228
  issue: 3
  year: 2019
  ident: 1045_CR6
  publication-title: Chem. Ing. Tec.
  doi: 10.1002/cite.201800091
– ident: 1045_CR27
  doi: 10.1007/978-3-319-68913-5_3
– volume: 7
  start-page: 1
  issue: 1
  year: 1997
  ident: 1045_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/s1052623493250780
– volume: 130
  start-page: 106567
  year: 2019
  ident: 1045_CR11
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106567
– ident: 1045_CR22
  doi: 10.1109/ICNN.1995.488968
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 1045_CR38
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489755
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  ident: 1045_CR51
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 99
  start-page: 563
  issue: 3
  year: 2004
  ident: 1045_CR42
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0467-6
– ident: 1045_CR57
– volume: 252
  start-page: 701
  issue: 3
  year: 2016
  ident: 1045_CR25
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.12.018
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 1045_CR29
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 7
  start-page: 337
  issue: 4
  year: 1995
  ident: 1045_CR41
  publication-title: J. Global Optim.
  doi: 10.1007/bf01099647
– volume: 35
  start-page: 1
  issue: 2
  year: 2008
  ident: 1045_CR30
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1377612.1377613
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 1045_CR21
  publication-title: Stat. Comput.
  doi: 10.1007/bf00175354
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  ident: 1045_CR46
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– ident: 1045_CR56
– volume: 9
  start-page: 1082
  issue: 4
  year: 1999
  ident: 1045_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/s1052623496300507
– volume: 9
  start-page: 231
  issue: 3
  year: 1997
  ident: 1045_CR20
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.9.3.231
SSID ssj0009852
Score 2.3611393
Snippet The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Algorithms
Complexity
Computer Science
Computer simulation
Computer-generated environments
Decision analysis
Decision making
First principles
Mathematical optimization
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Optimization techniques
Real Functions
Simulation
Spatial data
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4geNCDsqvE1YX0wQSMdpjpnkfPyRAe4YCEAyF76_RrgISdhZ3B-POtGnpd1MjF80w_kqqu-vpR3wfwsZQG01yBC6nOcINCGM4o53hei1CVIvFpT198cVKenqrJpDqLB25tfFa5iIl9oPYzR2fku8QcniMaUfLr7R0n1Si6XY0SGs9gDZFNSk-6vomzJemu6hV3kkrkPMd4HItmYumcouIyQZtphDVc_ZaY_gzPf92T9unn6PX_TnwdXkXgyfYePGUAK6EZwstHdIRDGMSF3rKdyEb96Q2YA9MZ7ucUFVlL76-xF0tyHFfcNJ5b0mVi5uYSx-yupi1DFMzs7Ad3hDxJgCJ41l5Po0wYp7Tp2Qwj1TSWgL6F86PD8_1jHnUZuJO56ngeiswqW1aeMmwpCx-ET6vaVYlBfKfKUJsanSA1VRZSnzpEIYiOQ8il80ktN2C1mTXhHTCbWSMMtk2My6yrjVJe2ETinkeVMi9GkC5sol3kLKeZ3-gl2zLZUaMddW9HrUbw-Veb2wfGjif_3iZTa1rO2LMzsSoB50fEWHqvJD4khFlyBOOFfXVc561eGncEXxYesvz873HfP93bB3ghqM6iP-sZw2o3vw-b8Nx9767b-Vbv5T8BDVQCFQ
  priority: 102
  providerName: ProQuest
Title Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization
URI https://link.springer.com/article/10.1007/s10898-021-01045-8
https://www.proquest.com/docview/2617592383
Volume 82
WOSCitedRecordID wos000725412200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgMcKF1ALC0rH5AAgaW8vHaOfQoJuqzaqhQull-hK3V30SYgfn5nUqdbnhJcRopiJ5Yzj8-x5xuAZzI3GOaGaEhVgQsUwnBGOcdFlYVSZolPW_ri03dyNFJnZ-U4JoXV3Wn3bkuy9dQ3kt0UpYNltPxFIMLVCqxhuFNUsOHo-HRJtavaOjtJmQku0AvHVJnfP-OHcPSzU_5ld7QNOgfr_zfc-3Avgky2faUVG3ArzHqw3hVwYNGee3D3BhshXh1eU7jWPdiIrWr2IlJTv3wAZs80hvsFuUhW02FsfI2l2hzn3Mw8t1SkiZmLz_PFpDmf1gwhMbPz79wRDKVqFMGzejKNNcM4xVDP5ui2pjEf9CGcHOyf7L7hsUgDd7lQDRdhWFhlZekp3Mp86EPm07JyZWIQ7CkZKlOhRqSmLELqU4eQBKFyCCJ3PqnyR7A6m8_CY2C2sCYz2DcxrrCuMkr5zCY5LoCUzMWwD2n3qbSLBOY08gu9pF6mOdc457qdc6368Oq6z5cr-o6_tn5OGqDJtvHJzsQUBRwfsWTpbUnkSIi58j5sdUqio9HXmsjtBQJmhbdfd0qxvP3n9z75t-abcCejJIz2R9AWrDaLr-Ep3Hbfmkm9GMCK_PBxAGs7-6PxEV69lRzlYbJLMnvfyjFJeYxyLD4NWvO5BF16CxY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ5AC2gLi3gAwgQWCR2snEOCFWUqlWXVQ8r1JvlV2il7m7ZBGh_VP8jM1mH5SF664FzkomdfJ75_JhvAJ4W0mCY6-NAqjKcoBCHM8o5nlcilIVIfNrKF38aFMOhOjwsD5bgosuFoWOVnU9sHbWfOlojf0PK4TmyESXfnX7hVDWKdle7EhpzWOyH8-84Zavf7m3j_30mxM6H0ftdHqsKcCdz1fA89DOrbFF6ig-F7PsgfFpWrkwMshNVhMpU2IXUlFlIfeowhiK3CyGXzieVRLPX4HpGwmJ0UlAcLDR-VVvgJylFznN0_zFHJ2bqKcplEzR3RxbF1W9x8M9o8Ne2bBvtdu78Z9_pLtyOtJptzcfBKiyFyRrc-kVscQ1Woxur2Yuotf3yHpht0xjuZ-TzWU2ny9GKpWIjR9xMPLdUdYqZk8_YxeZoXDPk-MxOz7gjXk3lNYJn9fE4FkHjRAo8m6IfHscE1_swuop-P4DlyXQS1oHZzBph8NnEuMy6yijlhU0kzuhUIfN-D9IOAtpFRXZq-YleaEkTbDTCRrew0aoHr34-czrXI7n07ueELE3OCi07E3MusH0k-6W3ClJ7QhIpe7DZwUlHL1brBZZ68LoD5OLyv9_78HJrT-Dm7ujjQA_2hvsbsCIoo6Rd1dqE5Wb2NTyCG-5bc1zPHrcDjIG-YqD-AOcVYRk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgJYiFgr4AAIEVhM72TgHhCqWFVWr1R4qVHGx_EpbqbtbNuHRn9Z_x0zWYXmI3nrgnMSxk88z39iebwCeFtKgm-vjRKoyDFCIwxnlHM8rEcpCJD5t5Ys_7hWjkTo4KMcrcN7lwtCxys4mtobazxytkW-RcniObETJrSoeixgPhm9PP3OqIEU7rV05jQVEdsPZNwzf6jc7A_zXz4QYvt9_94HHCgPcyVw1PA_9zCpblJ58RSH7PgiflpUrE4NMRRWhMhUOJzVlFlKfOvSnyPNCyKXzSSWx2StwtcAQk04TjvNPS71f1Rb7SUqR8xxdQczXiVl7ivLaBMXxyKi4-s0n_ukZ_tqibT3f8PZ__M3uwK1It9n2Yn6swUqYrsPNX0QY12EtmreavYga3C_vghmYxnA_J1_Aajp1jq1YKkJyxM3Uc0vVqJg5OcQhNkeTmiH3Z3b2nTvi21R2I3hWH09icTROZMGzGdrnSUx83YD9yxj3PVidzqbhPjCbWSMMPpsYl1lXGaW8sInESE8VMu_3IO3goF1Uaqeen-ilxjRBSCOEdAshrXrw6uczpwudkgvvfk4o02TEsGVnYi4G9o_kwPR2QSpQSC5lDzY7aOlo3Wq9xFUPXnfgXF7-93sfXNzaE7iO-NR7O6Pdh3BDUKJJu9i1CavN_Et4BNfc1-a4nj9u5xoDfck4_QHJXWoF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+spatial+branch-and-bound+algorithms+for+box-constrained+simulation-based+optimization&rft.jtitle=Journal+of+global+optimization&rft.au=Zhai%2C+Jianyuan&rft.au=Boukouvala%2C+Fani&rft.date=2022-01-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=82&rft.issue=1&rft.spage=21&rft.epage=50&rft_id=info:doi/10.1007%2Fs10898-021-01045-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_021_01045_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon