A branch & bound algorithm to determine optimal cross-splits for decision tree induction

State-of-the-art decision tree algorithms are top-down induction heuristics which greedily partition the attribute space by iteratively choosing the best split on an individual attribute. Despite their attractive performance in terms of runtime, simple examples, such as the XOR-Problem, point out th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of mathematics and artificial intelligence Ročník 88; číslo 4; s. 291 - 311
Hlavní autori: Bollwein, Ferdinand, Dahmen, Martin, Westphal, Stephan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.04.2020
Springer
Springer Nature B.V
Predmet:
ISSN:1012-2443, 1573-7470
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract State-of-the-art decision tree algorithms are top-down induction heuristics which greedily partition the attribute space by iteratively choosing the best split on an individual attribute. Despite their attractive performance in terms of runtime, simple examples, such as the XOR-Problem, point out that these heuristics often fail to find the best classification rules if there are strong interactions between two or more attributes from the given datasets. In this context, we present a branch and bound based decision tree algorithm to identify optimal bivariate axis-aligned splits according to a given impurity measure. In contrast to a univariate split that can be found in linear time, such an optimal cross-split has to consider every combination of values for every possible selection of pairs of attributes which leads to a combinatorial optimization problem that is quadratic in the number of values and attributes. To overcome this complexity, we use a branch and bound procedure, a well known technique from combinatorial optimization, to divide the solution space into several sets and to detect the optimal cross-splits in a short amount of time. These cross splits can either be used directly to construct quaternary decision trees or they can be used to select only the better one of the individual splits. In the latter case, the outcome is a binary decision tree with a certain sense of foresight for correlated attributes. We test both of these variants on various datasets of the UCI Machine Learning Repository and show that cross-splits can consistently produce smaller decision trees than state-of-the-art methods with comparable accuracy. In some cases, our algorithm produces considerably more accurate trees due to the ability of drawing more elaborate decisions than univariate induction algorithms.
AbstractList State-of-the-art decision tree algorithms are top-down induction heuristics which greedily partition the attribute space by iteratively choosing the best split on an individual attribute. Despite their attractive performance in terms of runtime, simple examples, such as the XOR-Problem, point out that these heuristics often fail to find the best classification rules if there are strong interactions between two or more attributes from the given datasets. In this context, we present a branch and bound based decision tree algorithm to identify optimal bivariate axis-aligned splits according to a given impurity measure. In contrast to a univariate split that can be found in linear time, such an optimal cross-split has to consider every combination of values for every possible selection of pairs of attributes which leads to a combinatorial optimization problem that is quadratic in the number of values and attributes. To overcome this complexity, we use a branch and bound procedure, a well known technique from combinatorial optimization, to divide the solution space into several sets and to detect the optimal cross-splits in a short amount of time. These cross splits can either be used directly to construct quaternary decision trees or they can be used to select only the better one of the individual splits. In the latter case, the outcome is a binary decision tree with a certain sense of foresight for correlated attributes. We test both of these variants on various datasets of the UCI Machine Learning Repository and show that cross-splits can consistently produce smaller decision trees than state-of-the-art methods with comparable accuracy. In some cases, our algorithm produces considerably more accurate trees due to the ability of drawing more elaborate decisions than univariate induction algorithms.
State-of-the-art decision tree algorithms are top-down induction heuristics which greedily partition the attribute space by iteratively choosing the best split on an individual attribute. Despite their attractive performance in terms of runtime, simple examples, such as the XOR-Problem, point out that these heuristics often fail to find the best classification rules if there are strong interactions between two or more attributes from the given datasets. In this context, we present a branch and bound based decision tree algorithm to identify optimal bivariate axis-aligned splits according to a given impurity measure. In contrast to a univariate split that can be found in linear time, such an optimal cross-split has to consider every combination of values for every possible selection of pairs of attributes which leads to a combinatorial optimization problem that is quadratic in the number of values and attributes. To overcome this complexity, we use a branch and bound procedure, a well known technique from combinatorial optimization, to divide the solution space into several sets and to detect the optimal cross-splits in a short amount of time. These cross splits can either be used directly to construct quaternary decision trees or they can be used to select only the better one of the individual splits. In the latter case, the outcome is a binary decision tree with a certain sense of foresight for correlated attributes. We test both of these variants on various datasets of the UCI Machine Learning Repository and show that cross-splits can consistently produce smaller decision trees than state-of-the-art methods with comparable accuracy. In some cases, our algorithm produces considerably more accurate trees due to the ability of drawing more elaborate decisions than univariate induction algorithms. Keywords Branch & bound * Decision trees * Classification * Cross-splits Mathematics Subject Classification (2010) 68T05 * 90C27
Audience Academic
Author Dahmen, Martin
Bollwein, Ferdinand
Westphal, Stephan
Author_xml – sequence: 1
  givenname: Ferdinand
  orcidid: 0000-0002-4894-5615
  surname: Bollwein
  fullname: Bollwein, Ferdinand
  email: ferdinand.bollwein@tu-clausthal.de
  organization: Institute of Mathematics, Clausthal University of Technology
– sequence: 2
  givenname: Martin
  surname: Dahmen
  fullname: Dahmen, Martin
  organization: Institute of Mathematics, Clausthal University of Technology
– sequence: 3
  givenname: Stephan
  surname: Westphal
  fullname: Westphal, Stephan
  organization: Institute of Mathematics, Clausthal University of Technology
BookMark eNp9kE9rHCEYh6Wk0CTtF-hJCPRm8jo6o3tcQtoEFnJJIDdxndeNYVY36h7y7etkCoUcggf_8Dy-_H5n5CSmiIT85HDJAdRV4SBVx4CvGKwGLRl8Iae8V4IpqeCknYF3rJNSfCNnpbwAzNhwSp7WdJttdM_0F92mYxypnXYph_q8pzXRESvmfYhI06GGvZ2oy6kUVg5TqIX6lBviQgkp0poRaYjj0dV2_U6-ejsV_PFvPyePv28erm_Z5v7P3fV6w5zodWW9W3kJyvoRPNc4DJ0QA8CoFerBbbEfOXI3yBGl5agQXA8cQfCt5oDOi3Nysfx7yOn1iKWal3TMsY003YrrrqEaGnW5UDs7oQnRp5qta2vEfXCtSx_a-1pxJWZBNkEvwnvejN64UO0crIlhMhzMXLxZijetePNevJlndR_UQ27V5bfPJbFIpcFxh_l_jE-svxGil58
CitedBy_id crossref_primary_10_3390_agriculture14101763
Cites_doi 10.1016/0020-0190(76)90095-8
10.1007/978-3-642-13105-9_2
10.1016/j.dss.2009.05.016
10.1016/j.eswa.2007.12.020
10.1016/j.eswa.2008.07.018
10.1023/A:1009744630224
10.1007/978-1-4419-9226-0_5
10.1287/opre.43.4.570
10.1016/j.enbuild.2012.03.003
10.1186/1475-925X-6-23
10.1023/A:1022604100933
10.1023/A:1009869804967
10.1613/jair.63
10.1109/ICCKE.2015.7365834
10.1016/j.eswa.2012.05.028
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
COPYRIGHT 2020 Springer
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-019-09684-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 311
ExternalDocumentID A717303184
10_1007_s10472_019_09684_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-5c9f407afd0f18e66233600d87e86cbe5d1e1c64de4a1e7e0c501e031b810ecf3
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534791700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-2443
IngestDate Wed Nov 05 14:47:52 EST 2025
Sat Nov 29 09:49:16 EST 2025
Sat Nov 29 05:14:37 EST 2025
Tue Nov 18 22:36:42 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Branch & bound
Cross-splits
90C27
68T05
Decision trees
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-5c9f407afd0f18e66233600d87e86cbe5d1e1c64de4a1e7e0c501e031b810ecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4894-5615
PQID 2918203180
PQPubID 2043872
PageCount 21
ParticipantIDs proquest_journals_2918203180
gale_infotracacademiconefile_A717303184
crossref_citationtrail_10_1007_s10472_019_09684_0
crossref_primary_10_1007_s10472_019_09684_0
springer_journals_10_1007_s10472_019_09684_0
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References MurthySKKasifSSalzbergSA system for induction of oblique decision treesJ. Artif. Intell. Res.199421320900.68335
MurthySKAutomatic construction of decision trees from data: A multi-disciplinary surveyData Mining Knowl. Discov.199824345389
CzerniakJacekZarzyckiHubertApplication of rough sets in the presumptive diagnosis of urinary system diseasesArtificial Intelligence and Security in Computing Systems2003Boston, MASpringer US4151
Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: Oc1: A randomized algorithm for building oblique decision trees. In: Proceedings of AAAI, vol. 93, pp 322–327. Citeseer (1993)
Bhatt, R., Dhall, A.: Skin segmentation dataset. UCI Machine Learning Repository
Cicalese, F., Laber, E.: Approximation algorithms for clustering via weighted impurity measures (2018)
Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M.: Heart disease databases (1988)
MingersJAn empirical comparison of pruning methods for decision tree inductionMach. Learn.198942227243
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
LaurentHRivestRLConstructing optimal binary decision trees is np-completeInform. Process. Lett.19765115174135980333.68029
Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis. https://books.google.de/books?id=JwQx-WOmSyQC (1984)
CortezPCerdeiraAAlmeidaFMatosTReisJModeling wine preferences by data mining from physicochemical propertiesDecis. Support. Syst.2009474547553
BreimanLSome properties of splitting criteriaMach. Learn.199624141470849.68095
BrodleyCEUtgoffPEMultivariate decision treesMach Learn199519145770831.68091
Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete gradient clustering algorithm for features analysis of x-ray images. In: Information Technologies in Biomedicine, pp 15–24. Springer (2010)
MangasarianOLStreetWNWolbergWHBreast cancer diagnosis and prognosis via linear programmingOper. Res.199543457057713564100857.90073
YehICYangKJTingTMKnowledge discovery on rfm model using bernoulli sequenceExpert Syst. Appl.2009363, Part 258665871http://www.sciencedirect.com/science/article/pii/S0957417408004508
FriedmanJHastieTTibshiraniRThe elements of statistical learning, vol. 12001New YorkSpringer Series in Statistics0973.62007
YehICLienChThe comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clientsExpert Syst. Appl.200936224732480
CoppersmithDHongSJHoskingJRPartitioning nominal attributes in decision treesData Min. Knowl. Disc.199932197217
QuinlanJRInduction of decision treesMach. Learn.19861181106
Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., Jong, K.D., Dzeroski, S., Fahlman, S.E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Welde, W.V.D., Wenzel, W., Wnek, J., Zhang, J.: The monk’s problems a performance comparison of different learning algorithms. Tech rep (1991)
TsanasAXifaraAAccurate quantitative estimation of energy performance of residential buildings using statistical machine learning toolsEnergy Build.201249560567
Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
LittleMAMcSharryPERobertsSJCostelloDAMorozIMExploiting nonlinear recurrence and fractal scaling properties for voice disorder detectionBiomed. Eng. Online20076123
GilDGirelaJLDe JuanJGomez-TorresMJJohnssonMPredicting seminal quality with artificial intelligence methodsExpert Syst. Appl.201239161256412573
Mirzamomen, Z., Fekri, M.N., Kangavari, M.: Cross split decision trees for pattern classification. In: 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), pp 240–245. IEEE (2015)
Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)
Abreu, N.G.C.F.M., et al.: Analise do perfil do cliente recheio e desenvolvimento de um sistema promocional. Ph.D thesis (2011)
IC Yeh (9684_CR28) 2009; 36
L Breiman (9684_CR4) 1996; 24
Jacek Czerniak (9684_CR11) 2003
9684_CR8
SK Murthy (9684_CR21) 1998; 2
9684_CR7
9684_CR5
D Gil (9684_CR15) 2012; 39
9684_CR13
9684_CR12
A Tsanas (9684_CR27) 2012; 49
CE Brodley (9684_CR6) 1995; 19
J Friedman (9684_CR14) 2001
MA Little (9684_CR17) 2007; 6
J Mingers (9684_CR19) 1989; 4
IC Yeh (9684_CR29) 2009; 36
D Coppersmith (9684_CR9) 1999; 3
9684_CR3
9684_CR2
H Laurent (9684_CR16) 1976; 5
9684_CR26
9684_CR1
9684_CR25
9684_CR23
JR Quinlan (9684_CR24) 1986; 1
P Cortez (9684_CR10) 2009; 47
OL Mangasarian (9684_CR18) 1995; 43
9684_CR20
SK Murthy (9684_CR22) 1994; 2
References_xml – reference: CoppersmithDHongSJHoskingJRPartitioning nominal attributes in decision treesData Min. Knowl. Disc.199932197217
– reference: Mirzamomen, Z., Fekri, M.N., Kangavari, M.: Cross split decision trees for pattern classification. In: 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), pp 240–245. IEEE (2015)
– reference: Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis. https://books.google.de/books?id=JwQx-WOmSyQC (1984)
– reference: Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete gradient clustering algorithm for features analysis of x-ray images. In: Information Technologies in Biomedicine, pp 15–24. Springer (2010)
– reference: QuinlanJRInduction of decision treesMach. Learn.19861181106
– reference: TsanasAXifaraAAccurate quantitative estimation of energy performance of residential buildings using statistical machine learning toolsEnergy Build.201249560567
– reference: YehICYangKJTingTMKnowledge discovery on rfm model using bernoulli sequenceExpert Syst. Appl.2009363, Part 258665871http://www.sciencedirect.com/science/article/pii/S0957417408004508
– reference: Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., Jong, K.D., Dzeroski, S., Fahlman, S.E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Welde, W.V.D., Wenzel, W., Wnek, J., Zhang, J.: The monk’s problems a performance comparison of different learning algorithms. Tech rep (1991)
– reference: Abreu, N.G.C.F.M., et al.: Analise do perfil do cliente recheio e desenvolvimento de um sistema promocional. Ph.D thesis (2011)
– reference: Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: Oc1: A randomized algorithm for building oblique decision trees. In: Proceedings of AAAI, vol. 93, pp 322–327. Citeseer (1993)
– reference: CzerniakJacekZarzyckiHubertApplication of rough sets in the presumptive diagnosis of urinary system diseasesArtificial Intelligence and Security in Computing Systems2003Boston, MASpringer US4151
– reference: MurthySKAutomatic construction of decision trees from data: A multi-disciplinary surveyData Mining Knowl. Discov.199824345389
– reference: MurthySKKasifSSalzbergSA system for induction of oblique decision treesJ. Artif. Intell. Res.199421320900.68335
– reference: BrodleyCEUtgoffPEMultivariate decision treesMach Learn199519145770831.68091
– reference: Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
– reference: YehICLienChThe comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clientsExpert Syst. Appl.200936224732480
– reference: GilDGirelaJLDe JuanJGomez-TorresMJJohnssonMPredicting seminal quality with artificial intelligence methodsExpert Syst. Appl.201239161256412573
– reference: BreimanLSome properties of splitting criteriaMach. Learn.199624141470849.68095
– reference: LaurentHRivestRLConstructing optimal binary decision trees is np-completeInform. Process. Lett.19765115174135980333.68029
– reference: Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
– reference: LittleMAMcSharryPERobertsSJCostelloDAMorozIMExploiting nonlinear recurrence and fractal scaling properties for voice disorder detectionBiomed. Eng. Online20076123
– reference: Bhatt, R., Dhall, A.: Skin segmentation dataset. UCI Machine Learning Repository
– reference: Cicalese, F., Laber, E.: Approximation algorithms for clustering via weighted impurity measures (2018)
– reference: FriedmanJHastieTTibshiraniRThe elements of statistical learning, vol. 12001New YorkSpringer Series in Statistics0973.62007
– reference: CortezPCerdeiraAAlmeidaFMatosTReisJModeling wine preferences by data mining from physicochemical propertiesDecis. Support. Syst.2009474547553
– reference: MingersJAn empirical comparison of pruning methods for decision tree inductionMach. Learn.198942227243
– reference: MangasarianOLStreetWNWolbergWHBreast cancer diagnosis and prognosis via linear programmingOper. Res.199543457057713564100857.90073
– reference: Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)
– reference: Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M.: Heart disease databases (1988)
– ident: 9684_CR8
– ident: 9684_CR25
– volume: 5
  start-page: 15
  issue: 1
  year: 1976
  ident: 9684_CR16
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(76)90095-8
– ident: 9684_CR7
  doi: 10.1007/978-3-642-13105-9_2
– volume: 47
  start-page: 547
  issue: 4
  year: 2009
  ident: 9684_CR10
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2009.05.016
– volume: 36
  start-page: 2473
  issue: 2
  year: 2009
  ident: 9684_CR28
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.020
– ident: 9684_CR13
– volume: 36
  start-page: 5866
  issue: 3, Part 2
  year: 2009
  ident: 9684_CR29
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.018
– volume: 2
  start-page: 345
  issue: 4
  year: 1998
  ident: 9684_CR21
  publication-title: Data Mining Knowl. Discov.
  doi: 10.1023/A:1009744630224
– start-page: 41
  volume-title: Artificial Intelligence and Security in Computing Systems
  year: 2003
  ident: 9684_CR11
  doi: 10.1007/978-1-4419-9226-0_5
– ident: 9684_CR2
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 9684_CR24
  publication-title: Mach. Learn.
– ident: 9684_CR26
– volume: 43
  start-page: 570
  issue: 4
  year: 1995
  ident: 9684_CR18
  publication-title: Oper. Res.
  doi: 10.1287/opre.43.4.570
– volume: 49
  start-page: 560
  year: 2012
  ident: 9684_CR27
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.03.003
– volume: 6
  start-page: 23
  issue: 1
  year: 2007
  ident: 9684_CR17
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-6-23
– ident: 9684_CR3
– ident: 9684_CR5
– volume: 4
  start-page: 227
  issue: 2
  year: 1989
  ident: 9684_CR19
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022604100933
– volume: 24
  start-page: 41
  issue: 1
  year: 1996
  ident: 9684_CR4
  publication-title: Mach. Learn.
– volume: 3
  start-page: 197
  issue: 2
  year: 1999
  ident: 9684_CR9
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009869804967
– volume: 19
  start-page: 45
  issue: 1
  year: 1995
  ident: 9684_CR6
  publication-title: Mach Learn
– ident: 9684_CR12
– ident: 9684_CR23
  doi: 10.1613/jair.63
– ident: 9684_CR1
– volume: 2
  start-page: 1
  year: 1994
  ident: 9684_CR22
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.63
– volume-title: The elements of statistical learning, vol. 1
  year: 2001
  ident: 9684_CR14
– ident: 9684_CR20
  doi: 10.1109/ICCKE.2015.7365834
– volume: 39
  start-page: 12564
  issue: 16
  year: 2012
  ident: 9684_CR15
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.028
SSID ssj0009686
Score 2.210664
Snippet State-of-the-art decision tree algorithms are top-down induction heuristics which greedily partition the attribute space by iteratively choosing the best split...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 291
SubjectTerms Algorithms
Artificial Intelligence
Bivariate analysis
Branch and bound methods
Combinatorial analysis
Complex Systems
Computer Science
Datasets
Decision trees
Machine learning
Mathematics
Optimization
Solution space
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQ4QAHCgVEoSAfEBzAUhYncY4VouJChdjUm5U4NkXqgprA9zOTOC27BOdMHMf2bPLMe4QcRV4iMg_ZywI_Y5BvxCwxqWFRYDhP4VT5TlaSTUT9vhgM4mvbFJbX1e71lWRpqd81u_EIywiwxCcUnEGivgzuTqA63tw-LKB2w5LfEYGrGDgv37bKfD_GB3f02Sh_uR0tnU6v-b_pbpB1G2TSbnUqNsmSnrRIsyZwoFafW2Ttag7amm-RQZemSLMxpMc0RbYlmowep7OnYjimxZRmtnBG0ymYmTGMX_4SyyGMLXIKwS-IVIQ9FK-6KWT7FTTtNrnvXdydXzJLvMCUH4iCBSo2kOglJnOMK3QIIZIPgVEmIi1Cleogc7WrQp5pnrg60o4KHFeDeUiF62hl_B3SmEwnepfQFCISCAodbVJEpuGJbxIQCR2tY9_lXpu49fpLZVHJkRxjJBd4yriQEhZSlgspnTY5nb_zXGFy_Cp9gtsqUWFhZJXYvgOYH0JfyS7WIaBp423SqXdeWk3OpRcjxD08hoHO6p1ePP75u3t_E98nqx6m8mVRUIc0itmLPiAr6rV4ymeH5Ql_A02D8tk
  priority: 102
  providerName: Springer Nature
Title A branch & bound algorithm to determine optimal cross-splits for decision tree induction
URI https://link.springer.com/article/10.1007/s10472-019-09684-0
https://www.proquest.com/docview/2918203180
Volume 88
WOSCitedRecordID wos000534791700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1R4NAegNIitsDKhwoOrVU7cb5OaEEgpKqrFdBq1YuV-AOQYJeSlN_PTNZh1SK4cMklzsTWG9tje_wewOcsKnMbkXpZEluO642Cl77yPEu8UhV6VSxsKzaRDYf5eFyMwoZbHdIquzGxHajt1NAe-beoIKpx9ECxf_uHk2oUna4GCY03sCSjSJKff8_4nHQ3bZUeicKK4zQWh0sz4eqcyigpgRKG0lxx8c_E9P_w_OSctJ1-jldfW_E1WAmBJxvMPOU9LLjJOqx2og4s9PF1ePfjkci1_gDjAatIeuOS7bKKFJhYeX2B1pvLG9ZMmQ3JNI5Ncei5Qftt43iNoW1TMwyIschMxIfR8Te7mtgZXe1H-Hl8dH54woMYAzdxkjc8MYXHxV_prfAydymGTTEGSzbPXJ6ayiVWOmlSZZ0qpcucMImQDttd5VI44-MNWJxMJ24TWIVRCgaKwvmK2GpUGfsSi6TCuSKWKuqB7JDQJjCVk2DGtZ5zLBN6GtHTLXpa9ODL4ze3M56OF0vvEcCaOjFaNmW4i4D1IzosPaDcBMJM9WC7Q1WH3l3rOaQ9-Nr5xfz18__99LK1LXgb0XK-TQzahsXm7q_bgWVz31zVd31YOjgajk77rY_3KUn1DJ-j5Dc-T89-PQBdUAEh
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ5UChULBTwgY8DWDixkzgHhFZA1WrbFYci7c0k_qCV2t3SBBB_it_ITOJ0BYjeeuAcx07s55mxPX4P4EmRVtqlpF6WScdxvVHyKtSBF1lQqkZUSeE6sYliOtWzWflhBX4Od2EorXKwiZ2hdgtLe-Sv0pKoxhGB4s3pF06qUXS6Okho9LCY-B_fccnWvN59h-P7NE233x-83eFRVYBbmemWZ7YMuIqpghMh0T5H_y_R6ztdeJ3b2mcu8YnNlfOqSnzhhc1E4rHlWifC2yCx3itwVUldEFf_pOBLkt-8U5YkyiyOblPGSzrxqp4qKAmCEpRyrbj4zRH-6Q7-Opft3N32-v_WUbfgZgys2bifCbdhxc83YH0QrWDRhm3Ajf1zotrmDszGrCZpkUP2jNWkMMWq48_4N-3hCWsXzMVkIc8WaFpPsP6uM3mDoXvbMAz4sUgvUsToeJ8dzV1Px3sXPl7K327C6nwx9_eA1RiFYSAsfKiJjUdVMlRYJBfelzJR6QiSYeSNjUzsJAhybJYc0oQWg2gxHVqMGMGL83dOex6SC0s_J0AZMlJYs63iXQv8PqL7MmPKvSCMqBFsDSgy0Xo1ZgmhEbwccLh8_O92719c22O4vnOwv2f2dqeTB7CW0tZFlwS1Bavt2Vf_EK7Zb-1Rc_aom1cMPl02Pn8Bbf9aEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VpargQNpA1UBa9lCVA6zqx_p1jNpGRdAoUinKbWXvo4mUOlVs-P3M-JGEApUQZ4_H693Z2RntzPcBnEReGmuP2MsCX3PMNxKe2szyKLBCZGhVvqMrsoloNIonk2S80cVfVbu3V5J1TwOhNOXl2YO2ZxuNbyKikgIq9wljwTFpfyaINIjy9Ztva9jdsOJ6JBArjgeZ37TN_FnHL0fTYwf9201pdQANO_8_9D142QSfbFBbyz5smbwLnZbYgTX7vAsvrldgrsUrmAxYRvQbU3bKMmJhYun8brGcldN7Vi6YbgpqDFug-7lH_dXv8QLD27JgGBSjSE3kw-gKnM1yXUPWvobb4eXX8yveEDJw5QdxyQOVWEwAU6sd68YmxNDJx4BJx5GJQ5WZQLvGVaHQRqSuiYyjAsc16Day2HWMsv4BbOeL3BwCyzBSwWDRMTYjxBqR-jZFkdAxJvFd4fXAbddCqgatnEgz5nKNs0wTKXEiZTWR0unBh9U7DzVWx5PS72mJJW1k1KzSph8Bx0eQWHJA9Qnk8kQP-q0VyGaHF9JLCPoeH6Oij-2qrx___btv_k38HeyOL4byy6fR57fw3KNsv6ob6sN2ufxujmBH_ShnxfK4Mvyfhwj-oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+branch+%26+bound+algorithm+to+determine+optimal+cross-splits+for+decision+tree+induction&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Bollwein%2C+Ferdinand&rft.au=Dahmen%2C+Martin&rft.au=Westphal%2C+Stephan&rft.date=2020-04-01&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=88&rft.issue=4&rft.spage=291&rft.epage=311&rft_id=info:doi/10.1007%2Fs10472-019-09684-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10472_019_09684_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon