ROSI: A Robotic System for Harsh Outdoor Industrial Inspection - System Design and Applications

Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems Jg. 103; H. 2; S. 30
Hauptverfasser: Rocha, Filipe, Garcia, Gabriel, Pereira, Raphael F. S., Faria, Henrique D., Silva, Thales H., Andrade, Ricardo H. R., Barbosa, Evelyn S., Almeida, André, Cruz, Emanuel, Andrade, Wagner, Serrantola, Wenderson G., Moura, Luiz, Azpúrua, Héctor, Franca, André, Pessin, Gustavo, Freitas, Gustavo M., Costa, Ramon R., Lizarralde, Fernando
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.10.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:0921-0296, 1573-0409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks’ traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors’ dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations.
AbstractList Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks’ traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors’ dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations.
Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks' traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors' dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations. Keywords Mobile manipulator design * Assisted operation control * Machine learning for industrial inspection * Belt conveyor inspection * Service robot
ArticleNumber 30
Audience Academic
Author Franca, André
Almeida, André
Silva, Thales H.
Azpúrua, Héctor
Andrade, Ricardo H. R.
Andrade, Wagner
Pereira, Raphael F. S.
Serrantola, Wenderson G.
Freitas, Gustavo M.
Cruz, Emanuel
Rocha, Filipe
Barbosa, Evelyn S.
Lizarralde, Fernando
Costa, Ramon R.
Pessin, Gustavo
Moura, Luiz
Garcia, Gabriel
Faria, Henrique D.
Author_xml – sequence: 1
  givenname: Filipe
  orcidid: 0000-0003-2167-1973
  surname: Rocha
  fullname: Rocha, Filipe
  email: filipe.rocha@coppe.ufrj.br
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 2
  givenname: Gabriel
  surname: Garcia
  fullname: Garcia, Gabriel
  organization: Vale S.A
– sequence: 3
  givenname: Raphael F. S.
  surname: Pereira
  fullname: Pereira, Raphael F. S.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 4
  givenname: Henrique D.
  surname: Faria
  fullname: Faria, Henrique D.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 5
  givenname: Thales H.
  surname: Silva
  fullname: Silva, Thales H.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 6
  givenname: Ricardo H. R.
  surname: Andrade
  fullname: Andrade, Ricardo H. R.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 7
  givenname: Evelyn S.
  surname: Barbosa
  fullname: Barbosa, Evelyn S.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 8
  givenname: André
  surname: Almeida
  fullname: Almeida, André
  organization: Instituto Tecnológico Vale
– sequence: 9
  givenname: Emanuel
  surname: Cruz
  fullname: Cruz, Emanuel
  organization: Universidade Federal de Ouro Preto
– sequence: 10
  givenname: Wagner
  surname: Andrade
  fullname: Andrade, Wagner
  organization: Universidade Federal de Ouro Preto
– sequence: 11
  givenname: Wenderson G.
  surname: Serrantola
  fullname: Serrantola, Wenderson G.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 12
  givenname: Luiz
  surname: Moura
  fullname: Moura, Luiz
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 13
  givenname: Héctor
  surname: Azpúrua
  fullname: Azpúrua, Héctor
  organization: Instituto Tecnológico Vale
– sequence: 14
  givenname: André
  surname: Franca
  fullname: Franca, André
  organization: Vale S.A
– sequence: 15
  givenname: Gustavo
  surname: Pessin
  fullname: Pessin, Gustavo
  organization: Instituto Tecnológico Vale
– sequence: 16
  givenname: Gustavo M.
  surname: Freitas
  fullname: Freitas, Gustavo M.
  organization: Department of Electrical Engineering, Universidade Federal de Minas Gerais
– sequence: 17
  givenname: Ramon R.
  surname: Costa
  fullname: Costa, Ramon R.
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
– sequence: 18
  givenname: Fernando
  surname: Lizarralde
  fullname: Lizarralde, Fernando
  organization: Department of Electrical Engineering, Federal University of Rio de Janeiro
BookMark eNp9kM1uGyEURlGUSrHdvEBWSF1PcoFhGLKz0jaxFMlS0q4RwzAO0RimgBd---JMq0pdWCz4ud-56J4luvTBW4RuCNwSAHGXCLR1UwElFZCay4peoAXhglVQg7xEC5CnEpXNFVqm9A4AsuVygdTL9nVzj9f4JXQhO4NfjynbPR5CxE86pje8PeQ-lNvG94eUo9NjOabJmuyCx9Vf4KtNbuex9j1eT9PojD7V02f0adBjstd_9hX6-f3bj4en6nn7uHlYP1eG8TZXnImhJrYdOjkQSq2UjHPZy06zpm861lkhQTS8Ex0wqyXpa8KobTgYaeuesBX6MvedYvh1sCmr93CIvnypKBdENKwlsqRu59ROj1Y5P4QctSmrt3tnitLBlfe1oDVwxqgoQDsDJoaUoh2UcfljsgK6URFQJ_9q9q-Kf_XhX9GC0v_QKbq9jsfzEJuhVMJ-Z-O_Mc5QvwGE5Zho
CitedBy_id crossref_primary_10_1007_s11370_023_00472_8
crossref_primary_10_1007_s10846_025_02251_2
crossref_primary_10_1016_j_engfailanal_2024_109101
crossref_primary_10_1016_j_robot_2023_104535
crossref_primary_10_3390_electronics13234850
crossref_primary_10_1109_TIM_2025_3591863
crossref_primary_10_3390_su14148536
crossref_primary_10_1007_s10846_022_01758_2
crossref_primary_10_1016_j_resourpol_2023_104291
crossref_primary_10_1109_TFR_2025_3586831
crossref_primary_10_3390_en15020601
crossref_primary_10_1016_j_arcontrol_2024_100949
crossref_primary_10_1007_s10846_022_01701_5
crossref_primary_10_3390_en15010327
crossref_primary_10_3390_mining5010005
crossref_primary_10_3390_s23041902
crossref_primary_10_3390_s23156758
crossref_primary_10_1016_j_jestch_2024_101763
Cites_doi 10.1007/978-3-319-57870-5
10.1007/978-1-84628-642-1
10.1016/S0301-679X(99)00077-8
10.1115/1.3143764
10.1109/ICAR46387.2019.8981561
10.1109/IROS.2017.8206485
10.1007/s10514-012-9321-0
10.5220/0006369101900200
10.1109/ICMLA.2019.00116
10.1109/MRA.2018.2877189
10.1145/358669.358692
10.1364/OE.25.008315
10.3390/app11052299
10.1109/ICMECH.2019.8722900
10.1080/10402004.2010.533817
10.1145/3174243.3174266
10.1109/CVPR.2016.90
10.3390/s20205762
10.3390/s20082243
10.3390/app10144984
10.1016/j.ifacol.2015.08.033
10.1109/EESMS.2011.6067043
10.1109/IROS.2007.4399139
10.1109/URAI.2016.7734069
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
COPYRIGHT 2021 Springer
Copyright Springer Nature B.V. Oct 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: COPYRIGHT 2021 Springer
– notice: Copyright Springer Nature B.V. Oct 2021
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-021-01459-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID A724053327
10_1007_s10846_021_01459_2
GrantInformation_xml – fundername: FAPEMIG
– fundername: Conselho Nacional de Desenvolvimento Científico e ecnológico
  grantid: CNPq/ITV N ◦ 10/2018 - Faixa A
  funderid: https://doi.org/10.13039/501100003593
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: Code 001
  funderid: https://doi.org/10.13039/501100002322
– fundername: Vale S.A.
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-537f41e8fb9f122e993559d9ba36d6b3be790765b7b03ea91d4132e650c9e4d13
IEDL.DBID K7-
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695210700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
IngestDate Sat Oct 18 23:03:04 EDT 2025
Sat Nov 29 09:49:39 EST 2025
Tue Nov 18 21:44:01 EST 2025
Sat Nov 29 01:33:01 EST 2025
Fri Feb 21 02:47:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Assisted operation control
Belt conveyor inspection
Mobile manipulator design
Service robot
Machine learning for industrial inspection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-537f41e8fb9f122e993559d9ba36d6b3be790765b7b03ea91d4132e650c9e4d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2167-1973
PQID 2571763819
PQPubID 326251
ParticipantIDs proquest_journals_2571763819
gale_infotracacademiconefile_A724053327
crossref_citationtrail_10_1007_s10846_021_01459_2
crossref_primary_10_1007_s10846_021_01459_2
springer_journals_10_1007_s10846_021_01459_2
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2021
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A Lightweight YOLOv2: A Binarized CNN with a parallel support vector regression for an FPGA. In: Proc. of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 31–40 (2018)
Silva, R., Costa, R., Soares, E., Faria, H., Silva, T., Andrade, R., Bernardo, M., Lizarralde, F., Freitas, G., Stanzani, A., Fonseca, F., Pessin, G., Rocha, F.: Passive traction control systems for a hybrid vehicle (Deposit, May 3rd 2020) BR Patent 10 2020 013081 1
Staab, H.J., Rossano, G., Botelho, E., Fuhlbrigge, T., Zhang, G., Choi, S., Martinez, C.: Conveyor inspection with unmanned vehicle carying sensor structure (Apr 24th 2018). US Patent 9,950,873 B2
Cruz, E., Reis, A., Guimaraes, F., Almeida, S.: Conveyor belt roller failure detection system based on machine learning. 7th International Congress on Automation in mining (Automining 2020) (2020)
HornungAWurmKMBennewitzMStachnissCBurgardWOctomap: an efficient probabilistic 3d mapping framework based on octreesAutonomous Robots201334318920610.1007/s10514-012-9321-0
TandonNChoudhuryAA review of vibration and acoustic measurement methods for the detection of defects in rolling element bearingsTribol. Int.19993246948010.1016/S0301-679X(99)00077-8
Faria, H.D., Lizarralde, F., Costa, R.R., Andrade, R.H.R., Silva, T.H., Pereira, R.F.S., Barbosa, E.S., Rocha, F., Franca, A., Freitas, G.M., Pessin, G.: ROSI: A mobile robot for inspection of belt conveyor. In: Proc. 21st IFAC World Congress, pp. 10166–10171. Berlin (Germany) (2020)
MerriauxPRossiRBoutteauRVaucheyVQinLChanucPRigaudFRogerFDecouxBSavatierXThe VIKINGS autonomous inspection robot: Competing in the argos challengeIEEE Robot. Autom. Mag.2018261213410.1109/MRA.2018.2877189
Yang, W., Zhang, X., Ma, H.: An inspection robot using infrared thermography for belt conveyor. In: Proc. of the 13Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 400–404 (2016)
CarvalhoRNascimentoRD’AngeloTDelabridaSGC BianchiAOliveiraRAAzpúruaHUzeda GarciaLGA UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industrySensors2020208224310.3390/s20082243
Aminossadati, S., Yang, B.: Fibre-optic conveyor monitoring system. Tech. rep. Australian Coal Research Limited (2014)
Mandow, A., Martinez, J.L., Morales, J., Blanco, J.L., Garcia-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1222–1227. IEEE (2007)
LodewijksGStrategies for automated maintenance of belt conveyor systemsBulk Solids Handling20042411622
FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692
Nascimento, R., Carvalho, R., Delabrida, S., Bianchi, A.G.C., Oliveira, R.A.R., Garcia, L.G.U.: An integrated inspection system for belt conveyor rollers - advancing in an enterprise architecture. In: Proc. of the 19Th International Conference on Enterprise Information Systems (ICEIS), Vol. 2. INSTICC, pp. 190–200 (2017)
SkoczylasAStefaniakPAnufriievSJachnikBBelt conveyors rollers diagnostics based on acoustic signal collected using autonomous legged inspection robotAppl. Sci.2021115229910.3390/app11052299
Chan, D.K., Silva, R.K., Monteiro, J.C., Lizarralde, F.: Efficient stairway detection and modeling for autonomous robot climbing. In: Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5916–5921. Vancouver (Canada) (2017)
Staab, H., Botelho, E., Lasko, D.T., Shah, H., Eakins, W., Richter, U.: A Robotic Vehicle System for Conveyor Inspection in Mining. In: IEEE International Conference on Mechatronics (ICM), Vol. 1. pp. 352–357 (2019)
D’Angelo, T., Mendes, M., Keller, B., Ferreira, R., Delabrida, S., Rabelo, R., Azpurua, H., Bianchi, A.: Deep learning-based object detection for digital inspection in the mining industry. In: 18Th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 633–640 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Freitas, R.S., Xaud, M.F., Marcovistz, I., Neves, A.F., Faria, R.O., Carvalho, G.P., Hsu, L., Nunes, E.V., Peixoto, A.J., Lizarralde, F., Freitas, G., R.Costa, R., From, P., Galassi, M., Derks, W.J., AndersRøyrøy, P: The embedded electronics and software of DORIS offshore robot. In: 2Nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production ACOOGP, pp. 208–213. Florianopolis (Brazil) (2015)
Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. 1st edn, Springer (2008)
Freitas, G., nd Gabriel, C., Garcia, M.P.T., Rocha, F., Franca, A., Fonseca, F.R., Lizarralde, F., Costa, R.R., Neves, A.F., Monteiro, J.C.: Robot device, and method for inspection of components of a belt conveyor (Deposit, May 18th 2018). Patent: BR102018010213 - CA3100772 - CN112533845 - WO2019218035
SantosAARochaFASdaRReisAJGuimarãesFGAutomatic system for visual detection of dirt buildup on conveyor belts using convolutional neural networksSensors20202020576210.3390/s20205762
NakamuraYHanafusaHInverse kinematic solutions with singularity robustness for robot manipulator controlJournal of Dynamic Systems, Measurement, and Control1986108316317110.1115/1.3143764
RezaeiADadoucheAWickramasingheVDmochowskiWA comparison study between acoustic sensors for bearing fault detection under different speed and load using a variety of signal processing techniquesTribol. Trans.201154217918610.1080/10402004.2010.533817
Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation. Springer (2017)
Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems O’Reilly Media (2019)
ChenDLiuQHeZPhase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDROptics Express20172578315832510.1364/OE.25.008315
Garcia, G., Rocha, F., Torre, M., Serrantola, W., Lizarralde, F., Franca, A., Pessin, G., Freitas, G.: ROSI: A novel robotic method for belt conveyor structures inspection. In: 19Th IEEE International Conference on Advanced Robotics (ICAR), pp. 326–331 (2019)
SzrekJWodeckiJBlazejRZimrozRAn inspection robot for belt conveyor maintenance in underground mine—infrared thermography for overheated idlers detectionAppl. Sci.20201014498410.3390/app10144984
Pang, Y., Lodewijks, G.: The application of RFID technology in large-scale dry bulk material transport system monitoring. In: 2011 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, pp. 1–5 (2011)
A Skoczylas (1459_CR27) 2021; 11
A Hornung (1459_CR14) 2013; 34
J Szrek (1459_CR30) 2020; 10
Y Nakamura (1459_CR19) 1986; 108
MA Fischler (1459_CR8) 1981; 24
D Chen (1459_CR4) 2017; 25
1459_CR18
1459_CR16
1459_CR13
1459_CR12
1459_CR11
1459_CR33
1459_CR10
1459_CR32
A Rezaei (1459_CR22) 2011; 54
N Tandon (1459_CR31) 1999; 32
1459_CR7
AA Santos (1459_CR23) 2020; 20
1459_CR9
1459_CR3
1459_CR29
1459_CR6
1459_CR28
1459_CR5
1459_CR26
1459_CR25
1459_CR24
1459_CR1
1459_CR21
G Lodewijks (1459_CR15) 2004; 24
1459_CR20
P Merriaux (1459_CR17) 2018; 26
R Carvalho (1459_CR2) 2020; 20
References_xml – reference: Garcia, G., Rocha, F., Torre, M., Serrantola, W., Lizarralde, F., Franca, A., Pessin, G., Freitas, G.: ROSI: A novel robotic method for belt conveyor structures inspection. In: 19Th IEEE International Conference on Advanced Robotics (ICAR), pp. 326–331 (2019)
– reference: LodewijksGStrategies for automated maintenance of belt conveyor systemsBulk Solids Handling20042411622
– reference: MerriauxPRossiRBoutteauRVaucheyVQinLChanucPRigaudFRogerFDecouxBSavatierXThe VIKINGS autonomous inspection robot: Competing in the argos challengeIEEE Robot. Autom. Mag.2018261213410.1109/MRA.2018.2877189
– reference: NakamuraYHanafusaHInverse kinematic solutions with singularity robustness for robot manipulator controlJournal of Dynamic Systems, Measurement, and Control1986108316317110.1115/1.3143764
– reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
– reference: Pang, Y., Lodewijks, G.: The application of RFID technology in large-scale dry bulk material transport system monitoring. In: 2011 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, pp. 1–5 (2011)
– reference: Silva, R., Costa, R., Soares, E., Faria, H., Silva, T., Andrade, R., Bernardo, M., Lizarralde, F., Freitas, G., Stanzani, A., Fonseca, F., Pessin, G., Rocha, F.: Passive traction control systems for a hybrid vehicle (Deposit, May 3rd 2020) BR Patent 10 2020 013081 1
– reference: Freitas, R.S., Xaud, M.F., Marcovistz, I., Neves, A.F., Faria, R.O., Carvalho, G.P., Hsu, L., Nunes, E.V., Peixoto, A.J., Lizarralde, F., Freitas, G., R.Costa, R., From, P., Galassi, M., Derks, W.J., AndersRøyrøy, P: The embedded electronics and software of DORIS offshore robot. In: 2Nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production ACOOGP, pp. 208–213. Florianopolis (Brazil) (2015)
– reference: TandonNChoudhuryAA review of vibration and acoustic measurement methods for the detection of defects in rolling element bearingsTribol. Int.19993246948010.1016/S0301-679X(99)00077-8
– reference: Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
– reference: FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692
– reference: SkoczylasAStefaniakPAnufriievSJachnikBBelt conveyors rollers diagnostics based on acoustic signal collected using autonomous legged inspection robotAppl. Sci.2021115229910.3390/app11052299
– reference: Mandow, A., Martinez, J.L., Morales, J., Blanco, J.L., Garcia-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1222–1227. IEEE (2007)
– reference: HornungAWurmKMBennewitzMStachnissCBurgardWOctomap: an efficient probabilistic 3d mapping framework based on octreesAutonomous Robots201334318920610.1007/s10514-012-9321-0
– reference: Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation. Springer (2017)
– reference: ChenDLiuQHeZPhase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDROptics Express20172578315832510.1364/OE.25.008315
– reference: D’Angelo, T., Mendes, M., Keller, B., Ferreira, R., Delabrida, S., Rabelo, R., Azpurua, H., Bianchi, A.: Deep learning-based object detection for digital inspection in the mining industry. In: 18Th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 633–640 (2019)
– reference: Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems O’Reilly Media (2019)
– reference: Staab, H.J., Rossano, G., Botelho, E., Fuhlbrigge, T., Zhang, G., Choi, S., Martinez, C.: Conveyor inspection with unmanned vehicle carying sensor structure (Apr 24th 2018). US Patent 9,950,873 B2
– reference: SantosAARochaFASdaRReisAJGuimarãesFGAutomatic system for visual detection of dirt buildup on conveyor belts using convolutional neural networksSensors20202020576210.3390/s20205762
– reference: CarvalhoRNascimentoRD’AngeloTDelabridaSGC BianchiAOliveiraRAAzpúruaHUzeda GarciaLGA UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industrySensors2020208224310.3390/s20082243
– reference: Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. 1st edn, Springer (2008)
– reference: Yang, W., Zhang, X., Ma, H.: An inspection robot using infrared thermography for belt conveyor. In: Proc. of the 13Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 400–404 (2016)
– reference: Aminossadati, S., Yang, B.: Fibre-optic conveyor monitoring system. Tech. rep. Australian Coal Research Limited (2014)
– reference: Staab, H., Botelho, E., Lasko, D.T., Shah, H., Eakins, W., Richter, U.: A Robotic Vehicle System for Conveyor Inspection in Mining. In: IEEE International Conference on Mechatronics (ICM), Vol. 1. pp. 352–357 (2019)
– reference: Faria, H.D., Lizarralde, F., Costa, R.R., Andrade, R.H.R., Silva, T.H., Pereira, R.F.S., Barbosa, E.S., Rocha, F., Franca, A., Freitas, G.M., Pessin, G.: ROSI: A mobile robot for inspection of belt conveyor. In: Proc. 21st IFAC World Congress, pp. 10166–10171. Berlin (Germany) (2020)
– reference: Cruz, E., Reis, A., Guimaraes, F., Almeida, S.: Conveyor belt roller failure detection system based on machine learning. 7th International Congress on Automation in mining (Automining 2020) (2020)
– reference: RezaeiADadoucheAWickramasingheVDmochowskiWA comparison study between acoustic sensors for bearing fault detection under different speed and load using a variety of signal processing techniquesTribol. Trans.201154217918610.1080/10402004.2010.533817
– reference: Freitas, G., nd Gabriel, C., Garcia, M.P.T., Rocha, F., Franca, A., Fonseca, F.R., Lizarralde, F., Costa, R.R., Neves, A.F., Monteiro, J.C.: Robot device, and method for inspection of components of a belt conveyor (Deposit, May 18th 2018). Patent: BR102018010213 - CA3100772 - CN112533845 - WO2019218035
– reference: Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A Lightweight YOLOv2: A Binarized CNN with a parallel support vector regression for an FPGA. In: Proc. of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 31–40 (2018)
– reference: Nascimento, R., Carvalho, R., Delabrida, S., Bianchi, A.G.C., Oliveira, R.A.R., Garcia, L.G.U.: An integrated inspection system for belt conveyor rollers - advancing in an enterprise architecture. In: Proc. of the 19Th International Conference on Enterprise Information Systems (ICEIS), Vol. 2. INSTICC, pp. 190–200 (2017)
– reference: Chan, D.K., Silva, R.K., Monteiro, J.C., Lizarralde, F.: Efficient stairway detection and modeling for autonomous robot climbing. In: Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5916–5921. Vancouver (Canada) (2017)
– reference: SzrekJWodeckiJBlazejRZimrozRAn inspection robot for belt conveyor maintenance in underground mine—infrared thermography for overheated idlers detectionAppl. Sci.20201014498410.3390/app10144984
– ident: 1459_CR32
  doi: 10.1007/978-3-319-57870-5
– ident: 1459_CR24
  doi: 10.1007/978-1-84628-642-1
– ident: 1459_CR29
– volume: 32
  start-page: 469
  year: 1999
  ident: 1459_CR31
  publication-title: Tribol. Int.
  doi: 10.1016/S0301-679X(99)00077-8
– volume: 108
  start-page: 163
  issue: 3
  year: 1986
  ident: 1459_CR19
  publication-title: Journal of Dynamic Systems, Measurement, and Control
  doi: 10.1115/1.3143764
– ident: 1459_CR25
– ident: 1459_CR11
  doi: 10.1109/ICAR46387.2019.8981561
– ident: 1459_CR5
– ident: 1459_CR7
– ident: 1459_CR3
  doi: 10.1109/IROS.2017.8206485
– ident: 1459_CR9
– volume: 34
  start-page: 189
  issue: 3
  year: 2013
  ident: 1459_CR14
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-012-9321-0
– ident: 1459_CR20
  doi: 10.5220/0006369101900200
– ident: 1459_CR6
  doi: 10.1109/ICMLA.2019.00116
– volume: 26
  start-page: 21
  issue: 1
  year: 2018
  ident: 1459_CR17
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2018.2877189
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 1459_CR8
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– ident: 1459_CR12
– volume: 25
  start-page: 8315
  issue: 7
  year: 2017
  ident: 1459_CR4
  publication-title: Optics Express
  doi: 10.1364/OE.25.008315
– volume: 11
  start-page: 2299
  issue: 5
  year: 2021
  ident: 1459_CR27
  publication-title: Appl. Sci.
  doi: 10.3390/app11052299
– ident: 1459_CR28
  doi: 10.1109/ICMECH.2019.8722900
– volume: 54
  start-page: 179
  issue: 2
  year: 2011
  ident: 1459_CR22
  publication-title: Tribol. Trans.
  doi: 10.1080/10402004.2010.533817
– ident: 1459_CR26
– ident: 1459_CR1
– ident: 1459_CR18
  doi: 10.1145/3174243.3174266
– ident: 1459_CR13
  doi: 10.1109/CVPR.2016.90
– volume: 20
  start-page: 5762
  issue: 20
  year: 2020
  ident: 1459_CR23
  publication-title: Sensors
  doi: 10.3390/s20205762
– volume: 24
  start-page: 16
  issue: 1
  year: 2004
  ident: 1459_CR15
  publication-title: Bulk Solids Handling
– volume: 20
  start-page: 2243
  issue: 8
  year: 2020
  ident: 1459_CR2
  publication-title: Sensors
  doi: 10.3390/s20082243
– volume: 10
  start-page: 4984
  issue: 14
  year: 2020
  ident: 1459_CR30
  publication-title: Appl. Sci.
  doi: 10.3390/app10144984
– ident: 1459_CR10
  doi: 10.1016/j.ifacol.2015.08.033
– ident: 1459_CR21
  doi: 10.1109/EESMS.2011.6067043
– ident: 1459_CR16
  doi: 10.1109/IROS.2007.4399139
– ident: 1459_CR33
  doi: 10.1109/URAI.2016.7734069
SSID ssj0009859
Score 2.4298432
Snippet Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30
SubjectTerms Algorithms
Artificial Intelligence
Belt conveyors
Cognition
Contact force
Control
Conveying machinery
Data mining
Decoupling
Electrical Engineering
Energy conservation
Energy consumption
Engineering
Fault detection
Field tests
Hybrid systems
Innovations
Inspection
Locomotion
Machine learning
Mechanical Engineering
Mechatronics
Mineral industry
Mining industry
Regular Paper
Robot arms
Robot control
Robot dynamics
Robotics
Robots
Sensors
Standardization
Systems design
Topical collection on ICAR 2019 Special Issue
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6ketCD1aoYrbIHwYMuNI_dZL0VtVSQVlotvS3ZZIOCJNKHv9_ZPGx9gt4SspssO8_NzHwDcIIeCHMTO6C-iB3qxZxTFbqCasYYV17Ei9qq0a3f6wXjsbgri8KmVbZ7FZLMNfVSsRvaSmpSCkwoTFBUvKto7gIjjoPhaAG1G7ACYc-MdAQvS2W-f8cHc_RZKX-JjuZGp1P_33K3YLN0Mkm74IptWNFpA-pVAwdSynMDNpbQCHdADvrDmwvSJoNMZTiTFGjmBN1a0sXz7yPpz2dxhneLfh94WdRqZimh1YSrPCuEhGlM2kvx8V146FzfX3Zp2X-BRi4LZpS5fuLZOkiUSGzH0cJgsYtYIDF5zJWrtI9Ha86Ur1quDoUdo0V0NPp8kdBebLt7UEuzVO8DYYlWSoXmD7TnJUEouBZoJkWoAt4KWWKBXZFBRiU4uemR8SwXsMpmPyXup8z3UzoWnL3PeSmgOX4dfWqoK43c4pujsCw_wPUZBCzZ9tG3Qd_X8S1oVgwgS4GeStRsNqpi9J8sOK8Ivnj883cP_jb8ENYdwzN5umATarPJXB_BWvQ6e5pOjnNGfwM4xPO0
  priority: 102
  providerName: Springer Nature
Title ROSI: A Robotic System for Harsh Outdoor Industrial Inspection - System Design and Applications
URI https://link.springer.com/article/10.1007/s10846-021-01459-2
https://www.proquest.com/docview/2571763819
Volume 103
WOSCitedRecordID wos000695210700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6KEcWMpDLCwrHyr10FoQJ3ZiLmh5iarVstptEeJixbEjkFAC7MLvZ5w4DS2CCxcrUWLHysx4xp6ZbwC-oAXCwzxIaCwNo5ERguo0lNRyzoWOMlHnVp3_iofD5OJCjvyB29SHVTZrYrVQmzJzZ-Q7yFoBygIqsP3bO-qqRjnvqi-h8QEWAsYCx-c_Y9qC7ia8xtpjuGVmUvikGZ86h5qXugAF51iTlP2jmP5fnl_4SSv1c9J578SXYckbnmRQc8pnmLPFCnSaog7Ey_gKLD5DKFwFNT6b_NgjAzIudYk9SY1wTtDUJae4J74iZw8zU-JdWwMEL-v8zbIgtOlwVEWKkLQwZPDMZ74Gf06Ofx-eUl-TgWYhT2aUh3EeBTbJtczxl1vp8NmlkUhgYYQOtY1xuy24jvVuaFMZGNSSzKIdmEkbmSBch_miLOwGEJ5brXXqTqWjKE9SKaxE1SlTnYjdlOddCBqCqMwDlru6GTeqhVp2RFRIRFURUbEufPvb57aG63jz7a-OzsrJMo6cpT4lAefnULHUIEZ7B-1hFneh1xBXeSGfqpayXfjesEf7-PXvbr492hZ8Yo4xq5DBHszP7h_sNnzMHmfX0_s-LBwcD0fjfsXqfRerOsF2xC-xHU_OnwAwQAJB
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RilQ4QEtBXaCtD0U9UAvixHaMhKpVAe1ql6WiUHFz49hRK1UJsAtV_xS_kXEeDaWCG4feEiV2nOTzPOyZbwDeoQXCwyyIqVSW0cgKQU0SKuo458JEqahyq74O5WgUn56qz1Nw3eTC-LDKRiaWgtoWqV8j30RoBTgXUIF9PDunvmqU311tSmhUsBi437_QZRvv9Hfx_64ztr93_KlH66oCNA15PKE8lFkUuDgzKgsYc8ozjCurcIjCChMaJ9FhFNxIsxW6RAUW5TxzaMmkykU2CLHfJ_A0CmPpufoHkrYkvzGvuP0YuuhMiTpJp07VQ01PfUCE38hTlP2lCO-qg3_2ZUt1t7_wv32o5zBfG9akW82EFzDl8kVYaIpWkFqGLcLcLQbGl6CPDr_0t0mXHBWmwJakYnAnaMqTHvr838nh5cQWeNbWOMHDKj-1yAltGuyWkTAkyS3p3ooJWIKTR3npZZjOi9y9AsIzZ4xJ_Kp7FGVxooRTaBqoxMRiK-FZB4IGADqtCdl9XZCfuqWS9qDRCBpdgkazDmz8aXNW0ZE8ePd7jyvtZRX2nCZ1ygWOz7N-6a5Eew7tfSY7sNaASddCbKxbJHXgQwPH9vL9z115uLe38Kx3fDDUw_5osAqzzE-KMjxyDaYnF5fuNcykV5Mf44s35fQi8O2xYXoDCvhZXw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFqH2QKFQsX2ADyAOYLVxYidGQtWKZdXVVtuqPNSbsWNHIKGk3d0W8df66xgnTlNA9NYDt0SJHSf55mF75huA5-iB8LiIMppKy2hihaBGx5I6zrkwSS6a3KrPB-lkkp2cyKMFuGxzYXxYZasTa0Vtq9yvke8gtCKUBTRgO0UIizgaDPdOz6ivIOV3WttyGg1Exu7nD5y-zd6OBvivXzA2fP_x3T4NFQZoHvNsTnmcFknkssLIImLMSc82Lq3E4QorTGxcipNHwU1qdmOnZWRR5zOHXk0uXWKjGPu9A0tohbmXsXFKO8LfjDc8fwyn60yKkLAT0vbQ6lMfHOE39SRlvxnFP03DX3u0tekbrv7PH-0B3A8ON-k3EvIQFly5BqttMQsSdNsarFxjZnwE6vjww-gN6ZPjylTYkjTM7gRdfLKvp7Ov5PB8bis862qf4GGTt1qVhLYNBnWEDNGlJf1rsQKP4dOtvPQ6LJZV6Z4A4YUzxmi_Gp8kRaalcBJdBqlNJnY1L3oQtWBQeSBq9_VCvquOYtoDSCGAVA0gxXrw6qrNaUNTcuPdLz3GlNdh2HOuQyoGjs-zgal-in4ezgNY2oOtFlgqKLeZ6lDVg9ctNLvL_37uxs29PYN7iE51MJqMN2GZefmooya3YHE-PXfbcDe_mH-bTZ_Wkkbgy22j9BdYemIZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROSI%3A+A+Robotic+System+for+Harsh+Outdoor+Industrial+Inspection%E2%80%93System+Design+and+Applications&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Rocha%2C+Filipe&rft.au=Garcia%2C+Gabriel&rft.au=Pereira%2C+Raphael+F.S&rft.au=Faria%2C+Henrique+D&rft.date=2021-10-01&rft.pub=Springer&rft.issn=0921-0296&rft.volume=103&rft.issue=2&rft_id=info:doi/10.1007%2Fs10846-021-01459-2&rft.externalDocID=A724053327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon