ROSI: A Robotic System for Harsh Outdoor Industrial Inspection - System Design and Applications
Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect con...
Gespeichert in:
| Veröffentlicht in: | Journal of intelligent & robotic systems Jg. 103; H. 2; S. 30 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.10.2021
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0921-0296, 1573-0409 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks’ traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors’ dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations. |
|---|---|
| AbstractList | Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks’ traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors’ dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations. Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks' traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors' dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations. Keywords Mobile manipulator design * Assisted operation control * Machine learning for industrial inspection * Belt conveyor inspection * Service robot |
| ArticleNumber | 30 |
| Audience | Academic |
| Author | Franca, André Almeida, André Silva, Thales H. Azpúrua, Héctor Andrade, Ricardo H. R. Andrade, Wagner Pereira, Raphael F. S. Serrantola, Wenderson G. Freitas, Gustavo M. Cruz, Emanuel Rocha, Filipe Barbosa, Evelyn S. Lizarralde, Fernando Costa, Ramon R. Pessin, Gustavo Moura, Luiz Garcia, Gabriel Faria, Henrique D. |
| Author_xml | – sequence: 1 givenname: Filipe orcidid: 0000-0003-2167-1973 surname: Rocha fullname: Rocha, Filipe email: filipe.rocha@coppe.ufrj.br organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 2 givenname: Gabriel surname: Garcia fullname: Garcia, Gabriel organization: Vale S.A – sequence: 3 givenname: Raphael F. S. surname: Pereira fullname: Pereira, Raphael F. S. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 4 givenname: Henrique D. surname: Faria fullname: Faria, Henrique D. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 5 givenname: Thales H. surname: Silva fullname: Silva, Thales H. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 6 givenname: Ricardo H. R. surname: Andrade fullname: Andrade, Ricardo H. R. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 7 givenname: Evelyn S. surname: Barbosa fullname: Barbosa, Evelyn S. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 8 givenname: André surname: Almeida fullname: Almeida, André organization: Instituto Tecnológico Vale – sequence: 9 givenname: Emanuel surname: Cruz fullname: Cruz, Emanuel organization: Universidade Federal de Ouro Preto – sequence: 10 givenname: Wagner surname: Andrade fullname: Andrade, Wagner organization: Universidade Federal de Ouro Preto – sequence: 11 givenname: Wenderson G. surname: Serrantola fullname: Serrantola, Wenderson G. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 12 givenname: Luiz surname: Moura fullname: Moura, Luiz organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 13 givenname: Héctor surname: Azpúrua fullname: Azpúrua, Héctor organization: Instituto Tecnológico Vale – sequence: 14 givenname: André surname: Franca fullname: Franca, André organization: Vale S.A – sequence: 15 givenname: Gustavo surname: Pessin fullname: Pessin, Gustavo organization: Instituto Tecnológico Vale – sequence: 16 givenname: Gustavo M. surname: Freitas fullname: Freitas, Gustavo M. organization: Department of Electrical Engineering, Universidade Federal de Minas Gerais – sequence: 17 givenname: Ramon R. surname: Costa fullname: Costa, Ramon R. organization: Department of Electrical Engineering, Federal University of Rio de Janeiro – sequence: 18 givenname: Fernando surname: Lizarralde fullname: Lizarralde, Fernando organization: Department of Electrical Engineering, Federal University of Rio de Janeiro |
| BookMark | eNp9kM1uGyEURlGUSrHdvEBWSF1PcoFhGLKz0jaxFMlS0q4RwzAO0RimgBd---JMq0pdWCz4ud-56J4luvTBW4RuCNwSAHGXCLR1UwElFZCay4peoAXhglVQg7xEC5CnEpXNFVqm9A4AsuVygdTL9nVzj9f4JXQhO4NfjynbPR5CxE86pje8PeQ-lNvG94eUo9NjOabJmuyCx9Vf4KtNbuex9j1eT9PojD7V02f0adBjstd_9hX6-f3bj4en6nn7uHlYP1eG8TZXnImhJrYdOjkQSq2UjHPZy06zpm861lkhQTS8Ex0wqyXpa8KobTgYaeuesBX6MvedYvh1sCmr93CIvnypKBdENKwlsqRu59ROj1Y5P4QctSmrt3tnitLBlfe1oDVwxqgoQDsDJoaUoh2UcfljsgK6URFQJ_9q9q-Kf_XhX9GC0v_QKbq9jsfzEJuhVMJ-Z-O_Mc5QvwGE5Zho |
| CitedBy_id | crossref_primary_10_1007_s11370_023_00472_8 crossref_primary_10_1007_s10846_025_02251_2 crossref_primary_10_1016_j_engfailanal_2024_109101 crossref_primary_10_1016_j_robot_2023_104535 crossref_primary_10_3390_electronics13234850 crossref_primary_10_1109_TIM_2025_3591863 crossref_primary_10_3390_su14148536 crossref_primary_10_1007_s10846_022_01758_2 crossref_primary_10_1016_j_resourpol_2023_104291 crossref_primary_10_1109_TFR_2025_3586831 crossref_primary_10_3390_en15020601 crossref_primary_10_1016_j_arcontrol_2024_100949 crossref_primary_10_1007_s10846_022_01701_5 crossref_primary_10_3390_en15010327 crossref_primary_10_3390_mining5010005 crossref_primary_10_3390_s23041902 crossref_primary_10_3390_s23156758 crossref_primary_10_1016_j_jestch_2024_101763 |
| Cites_doi | 10.1007/978-3-319-57870-5 10.1007/978-1-84628-642-1 10.1016/S0301-679X(99)00077-8 10.1115/1.3143764 10.1109/ICAR46387.2019.8981561 10.1109/IROS.2017.8206485 10.1007/s10514-012-9321-0 10.5220/0006369101900200 10.1109/ICMLA.2019.00116 10.1109/MRA.2018.2877189 10.1145/358669.358692 10.1364/OE.25.008315 10.3390/app11052299 10.1109/ICMECH.2019.8722900 10.1080/10402004.2010.533817 10.1145/3174243.3174266 10.1109/CVPR.2016.90 10.3390/s20205762 10.3390/s20082243 10.3390/app10144984 10.1016/j.ifacol.2015.08.033 10.1109/EESMS.2011.6067043 10.1109/IROS.2007.4399139 10.1109/URAI.2016.7734069 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 COPYRIGHT 2021 Springer Copyright Springer Nature B.V. Oct 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: COPYRIGHT 2021 Springer – notice: Copyright Springer Nature B.V. Oct 2021 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10846-021-01459-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| ExternalDocumentID | A724053327 10_1007_s10846_021_01459_2 |
| GrantInformation_xml | – fundername: FAPEMIG – fundername: Conselho Nacional de Desenvolvimento Científico e ecnológico grantid: CNPq/ITV N ◦ 10/2018 - Faixa A funderid: https://doi.org/10.13039/501100003593 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: Code 001 funderid: https://doi.org/10.13039/501100002322 – fundername: Vale S.A. |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-537f41e8fb9f122e993559d9ba36d6b3be790765b7b03ea91d4132e650c9e4d13 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695210700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-0296 |
| IngestDate | Sat Oct 18 23:03:04 EDT 2025 Sat Nov 29 09:49:39 EST 2025 Tue Nov 18 21:44:01 EST 2025 Sat Nov 29 01:33:01 EST 2025 Fri Feb 21 02:47:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Assisted operation control Belt conveyor inspection Mobile manipulator design Service robot Machine learning for industrial inspection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-537f41e8fb9f122e993559d9ba36d6b3be790765b7b03ea91d4132e650c9e4d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2167-1973 |
| PQID | 2571763819 |
| PQPubID | 326251 |
| ParticipantIDs | proquest_journals_2571763819 gale_infotracacademiconefile_A724053327 crossref_citationtrail_10_1007_s10846_021_01459_2 crossref_primary_10_1007_s10846_021_01459_2 springer_journals_10_1007_s10846_021_01459_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A Lightweight YOLOv2: A Binarized CNN with a parallel support vector regression for an FPGA. In: Proc. of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 31–40 (2018) Silva, R., Costa, R., Soares, E., Faria, H., Silva, T., Andrade, R., Bernardo, M., Lizarralde, F., Freitas, G., Stanzani, A., Fonseca, F., Pessin, G., Rocha, F.: Passive traction control systems for a hybrid vehicle (Deposit, May 3rd 2020) BR Patent 10 2020 013081 1 Staab, H.J., Rossano, G., Botelho, E., Fuhlbrigge, T., Zhang, G., Choi, S., Martinez, C.: Conveyor inspection with unmanned vehicle carying sensor structure (Apr 24th 2018). US Patent 9,950,873 B2 Cruz, E., Reis, A., Guimaraes, F., Almeida, S.: Conveyor belt roller failure detection system based on machine learning. 7th International Congress on Automation in mining (Automining 2020) (2020) HornungAWurmKMBennewitzMStachnissCBurgardWOctomap: an efficient probabilistic 3d mapping framework based on octreesAutonomous Robots201334318920610.1007/s10514-012-9321-0 TandonNChoudhuryAA review of vibration and acoustic measurement methods for the detection of defects in rolling element bearingsTribol. Int.19993246948010.1016/S0301-679X(99)00077-8 Faria, H.D., Lizarralde, F., Costa, R.R., Andrade, R.H.R., Silva, T.H., Pereira, R.F.S., Barbosa, E.S., Rocha, F., Franca, A., Freitas, G.M., Pessin, G.: ROSI: A mobile robot for inspection of belt conveyor. In: Proc. 21st IFAC World Congress, pp. 10166–10171. Berlin (Germany) (2020) MerriauxPRossiRBoutteauRVaucheyVQinLChanucPRigaudFRogerFDecouxBSavatierXThe VIKINGS autonomous inspection robot: Competing in the argos challengeIEEE Robot. Autom. Mag.2018261213410.1109/MRA.2018.2877189 Yang, W., Zhang, X., Ma, H.: An inspection robot using infrared thermography for belt conveyor. In: Proc. of the 13Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 400–404 (2016) CarvalhoRNascimentoRD’AngeloTDelabridaSGC BianchiAOliveiraRAAzpúruaHUzeda GarciaLGA UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industrySensors2020208224310.3390/s20082243 Aminossadati, S., Yang, B.: Fibre-optic conveyor monitoring system. Tech. rep. Australian Coal Research Limited (2014) Mandow, A., Martinez, J.L., Morales, J., Blanco, J.L., Garcia-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1222–1227. IEEE (2007) LodewijksGStrategies for automated maintenance of belt conveyor systemsBulk Solids Handling20042411622 FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692 Nascimento, R., Carvalho, R., Delabrida, S., Bianchi, A.G.C., Oliveira, R.A.R., Garcia, L.G.U.: An integrated inspection system for belt conveyor rollers - advancing in an enterprise architecture. In: Proc. of the 19Th International Conference on Enterprise Information Systems (ICEIS), Vol. 2. INSTICC, pp. 190–200 (2017) SkoczylasAStefaniakPAnufriievSJachnikBBelt conveyors rollers diagnostics based on acoustic signal collected using autonomous legged inspection robotAppl. Sci.2021115229910.3390/app11052299 Chan, D.K., Silva, R.K., Monteiro, J.C., Lizarralde, F.: Efficient stairway detection and modeling for autonomous robot climbing. In: Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5916–5921. Vancouver (Canada) (2017) Staab, H., Botelho, E., Lasko, D.T., Shah, H., Eakins, W., Richter, U.: A Robotic Vehicle System for Conveyor Inspection in Mining. In: IEEE International Conference on Mechatronics (ICM), Vol. 1. pp. 352–357 (2019) D’Angelo, T., Mendes, M., Keller, B., Ferreira, R., Delabrida, S., Rabelo, R., Azpurua, H., Bianchi, A.: Deep learning-based object detection for digital inspection in the mining industry. In: 18Th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 633–640 (2019) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014) Freitas, R.S., Xaud, M.F., Marcovistz, I., Neves, A.F., Faria, R.O., Carvalho, G.P., Hsu, L., Nunes, E.V., Peixoto, A.J., Lizarralde, F., Freitas, G., R.Costa, R., From, P., Galassi, M., Derks, W.J., AndersRøyrøy, P: The embedded electronics and software of DORIS offshore robot. In: 2Nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production ACOOGP, pp. 208–213. Florianopolis (Brazil) (2015) Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. 1st edn, Springer (2008) Freitas, G., nd Gabriel, C., Garcia, M.P.T., Rocha, F., Franca, A., Fonseca, F.R., Lizarralde, F., Costa, R.R., Neves, A.F., Monteiro, J.C.: Robot device, and method for inspection of components of a belt conveyor (Deposit, May 18th 2018). Patent: BR102018010213 - CA3100772 - CN112533845 - WO2019218035 SantosAARochaFASdaRReisAJGuimarãesFGAutomatic system for visual detection of dirt buildup on conveyor belts using convolutional neural networksSensors20202020576210.3390/s20205762 NakamuraYHanafusaHInverse kinematic solutions with singularity robustness for robot manipulator controlJournal of Dynamic Systems, Measurement, and Control1986108316317110.1115/1.3143764 RezaeiADadoucheAWickramasingheVDmochowskiWA comparison study between acoustic sensors for bearing fault detection under different speed and load using a variety of signal processing techniquesTribol. Trans.201154217918610.1080/10402004.2010.533817 Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation. Springer (2017) Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems O’Reilly Media (2019) ChenDLiuQHeZPhase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDROptics Express20172578315832510.1364/OE.25.008315 Garcia, G., Rocha, F., Torre, M., Serrantola, W., Lizarralde, F., Franca, A., Pessin, G., Freitas, G.: ROSI: A novel robotic method for belt conveyor structures inspection. In: 19Th IEEE International Conference on Advanced Robotics (ICAR), pp. 326–331 (2019) SzrekJWodeckiJBlazejRZimrozRAn inspection robot for belt conveyor maintenance in underground mine—infrared thermography for overheated idlers detectionAppl. Sci.20201014498410.3390/app10144984 Pang, Y., Lodewijks, G.: The application of RFID technology in large-scale dry bulk material transport system monitoring. In: 2011 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, pp. 1–5 (2011) A Skoczylas (1459_CR27) 2021; 11 A Hornung (1459_CR14) 2013; 34 J Szrek (1459_CR30) 2020; 10 Y Nakamura (1459_CR19) 1986; 108 MA Fischler (1459_CR8) 1981; 24 D Chen (1459_CR4) 2017; 25 1459_CR18 1459_CR16 1459_CR13 1459_CR12 1459_CR11 1459_CR33 1459_CR10 1459_CR32 A Rezaei (1459_CR22) 2011; 54 N Tandon (1459_CR31) 1999; 32 1459_CR7 AA Santos (1459_CR23) 2020; 20 1459_CR9 1459_CR3 1459_CR29 1459_CR6 1459_CR28 1459_CR5 1459_CR26 1459_CR25 1459_CR24 1459_CR1 1459_CR21 G Lodewijks (1459_CR15) 2004; 24 1459_CR20 P Merriaux (1459_CR17) 2018; 26 R Carvalho (1459_CR2) 2020; 20 |
| References_xml | – reference: Garcia, G., Rocha, F., Torre, M., Serrantola, W., Lizarralde, F., Franca, A., Pessin, G., Freitas, G.: ROSI: A novel robotic method for belt conveyor structures inspection. In: 19Th IEEE International Conference on Advanced Robotics (ICAR), pp. 326–331 (2019) – reference: LodewijksGStrategies for automated maintenance of belt conveyor systemsBulk Solids Handling20042411622 – reference: MerriauxPRossiRBoutteauRVaucheyVQinLChanucPRigaudFRogerFDecouxBSavatierXThe VIKINGS autonomous inspection robot: Competing in the argos challengeIEEE Robot. Autom. Mag.2018261213410.1109/MRA.2018.2877189 – reference: NakamuraYHanafusaHInverse kinematic solutions with singularity robustness for robot manipulator controlJournal of Dynamic Systems, Measurement, and Control1986108316317110.1115/1.3143764 – reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) – reference: Pang, Y., Lodewijks, G.: The application of RFID technology in large-scale dry bulk material transport system monitoring. In: 2011 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, pp. 1–5 (2011) – reference: Silva, R., Costa, R., Soares, E., Faria, H., Silva, T., Andrade, R., Bernardo, M., Lizarralde, F., Freitas, G., Stanzani, A., Fonseca, F., Pessin, G., Rocha, F.: Passive traction control systems for a hybrid vehicle (Deposit, May 3rd 2020) BR Patent 10 2020 013081 1 – reference: Freitas, R.S., Xaud, M.F., Marcovistz, I., Neves, A.F., Faria, R.O., Carvalho, G.P., Hsu, L., Nunes, E.V., Peixoto, A.J., Lizarralde, F., Freitas, G., R.Costa, R., From, P., Galassi, M., Derks, W.J., AndersRøyrøy, P: The embedded electronics and software of DORIS offshore robot. In: 2Nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production ACOOGP, pp. 208–213. Florianopolis (Brazil) (2015) – reference: TandonNChoudhuryAA review of vibration and acoustic measurement methods for the detection of defects in rolling element bearingsTribol. Int.19993246948010.1016/S0301-679X(99)00077-8 – reference: Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014) – reference: FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692 – reference: SkoczylasAStefaniakPAnufriievSJachnikBBelt conveyors rollers diagnostics based on acoustic signal collected using autonomous legged inspection robotAppl. Sci.2021115229910.3390/app11052299 – reference: Mandow, A., Martinez, J.L., Morales, J., Blanco, J.L., Garcia-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1222–1227. IEEE (2007) – reference: HornungAWurmKMBennewitzMStachnissCBurgardWOctomap: an efficient probabilistic 3d mapping framework based on octreesAutonomous Robots201334318920610.1007/s10514-012-9321-0 – reference: Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation. Springer (2017) – reference: ChenDLiuQHeZPhase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDROptics Express20172578315832510.1364/OE.25.008315 – reference: D’Angelo, T., Mendes, M., Keller, B., Ferreira, R., Delabrida, S., Rabelo, R., Azpurua, H., Bianchi, A.: Deep learning-based object detection for digital inspection in the mining industry. In: 18Th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 633–640 (2019) – reference: Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems O’Reilly Media (2019) – reference: Staab, H.J., Rossano, G., Botelho, E., Fuhlbrigge, T., Zhang, G., Choi, S., Martinez, C.: Conveyor inspection with unmanned vehicle carying sensor structure (Apr 24th 2018). US Patent 9,950,873 B2 – reference: SantosAARochaFASdaRReisAJGuimarãesFGAutomatic system for visual detection of dirt buildup on conveyor belts using convolutional neural networksSensors20202020576210.3390/s20205762 – reference: CarvalhoRNascimentoRD’AngeloTDelabridaSGC BianchiAOliveiraRAAzpúruaHUzeda GarciaLGA UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industrySensors2020208224310.3390/s20082243 – reference: Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. 1st edn, Springer (2008) – reference: Yang, W., Zhang, X., Ma, H.: An inspection robot using infrared thermography for belt conveyor. In: Proc. of the 13Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 400–404 (2016) – reference: Aminossadati, S., Yang, B.: Fibre-optic conveyor monitoring system. Tech. rep. Australian Coal Research Limited (2014) – reference: Staab, H., Botelho, E., Lasko, D.T., Shah, H., Eakins, W., Richter, U.: A Robotic Vehicle System for Conveyor Inspection in Mining. In: IEEE International Conference on Mechatronics (ICM), Vol. 1. pp. 352–357 (2019) – reference: Faria, H.D., Lizarralde, F., Costa, R.R., Andrade, R.H.R., Silva, T.H., Pereira, R.F.S., Barbosa, E.S., Rocha, F., Franca, A., Freitas, G.M., Pessin, G.: ROSI: A mobile robot for inspection of belt conveyor. In: Proc. 21st IFAC World Congress, pp. 10166–10171. Berlin (Germany) (2020) – reference: Cruz, E., Reis, A., Guimaraes, F., Almeida, S.: Conveyor belt roller failure detection system based on machine learning. 7th International Congress on Automation in mining (Automining 2020) (2020) – reference: RezaeiADadoucheAWickramasingheVDmochowskiWA comparison study between acoustic sensors for bearing fault detection under different speed and load using a variety of signal processing techniquesTribol. Trans.201154217918610.1080/10402004.2010.533817 – reference: Freitas, G., nd Gabriel, C., Garcia, M.P.T., Rocha, F., Franca, A., Fonseca, F.R., Lizarralde, F., Costa, R.R., Neves, A.F., Monteiro, J.C.: Robot device, and method for inspection of components of a belt conveyor (Deposit, May 18th 2018). Patent: BR102018010213 - CA3100772 - CN112533845 - WO2019218035 – reference: Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A Lightweight YOLOv2: A Binarized CNN with a parallel support vector regression for an FPGA. In: Proc. of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 31–40 (2018) – reference: Nascimento, R., Carvalho, R., Delabrida, S., Bianchi, A.G.C., Oliveira, R.A.R., Garcia, L.G.U.: An integrated inspection system for belt conveyor rollers - advancing in an enterprise architecture. In: Proc. of the 19Th International Conference on Enterprise Information Systems (ICEIS), Vol. 2. INSTICC, pp. 190–200 (2017) – reference: Chan, D.K., Silva, R.K., Monteiro, J.C., Lizarralde, F.: Efficient stairway detection and modeling for autonomous robot climbing. In: Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5916–5921. Vancouver (Canada) (2017) – reference: SzrekJWodeckiJBlazejRZimrozRAn inspection robot for belt conveyor maintenance in underground mine—infrared thermography for overheated idlers detectionAppl. Sci.20201014498410.3390/app10144984 – ident: 1459_CR32 doi: 10.1007/978-3-319-57870-5 – ident: 1459_CR24 doi: 10.1007/978-1-84628-642-1 – ident: 1459_CR29 – volume: 32 start-page: 469 year: 1999 ident: 1459_CR31 publication-title: Tribol. Int. doi: 10.1016/S0301-679X(99)00077-8 – volume: 108 start-page: 163 issue: 3 year: 1986 ident: 1459_CR19 publication-title: Journal of Dynamic Systems, Measurement, and Control doi: 10.1115/1.3143764 – ident: 1459_CR25 – ident: 1459_CR11 doi: 10.1109/ICAR46387.2019.8981561 – ident: 1459_CR5 – ident: 1459_CR7 – ident: 1459_CR3 doi: 10.1109/IROS.2017.8206485 – ident: 1459_CR9 – volume: 34 start-page: 189 issue: 3 year: 2013 ident: 1459_CR14 publication-title: Autonomous Robots doi: 10.1007/s10514-012-9321-0 – ident: 1459_CR20 doi: 10.5220/0006369101900200 – ident: 1459_CR6 doi: 10.1109/ICMLA.2019.00116 – volume: 26 start-page: 21 issue: 1 year: 2018 ident: 1459_CR17 publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2018.2877189 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 1459_CR8 publication-title: Commun. ACM doi: 10.1145/358669.358692 – ident: 1459_CR12 – volume: 25 start-page: 8315 issue: 7 year: 2017 ident: 1459_CR4 publication-title: Optics Express doi: 10.1364/OE.25.008315 – volume: 11 start-page: 2299 issue: 5 year: 2021 ident: 1459_CR27 publication-title: Appl. Sci. doi: 10.3390/app11052299 – ident: 1459_CR28 doi: 10.1109/ICMECH.2019.8722900 – volume: 54 start-page: 179 issue: 2 year: 2011 ident: 1459_CR22 publication-title: Tribol. Trans. doi: 10.1080/10402004.2010.533817 – ident: 1459_CR26 – ident: 1459_CR1 – ident: 1459_CR18 doi: 10.1145/3174243.3174266 – ident: 1459_CR13 doi: 10.1109/CVPR.2016.90 – volume: 20 start-page: 5762 issue: 20 year: 2020 ident: 1459_CR23 publication-title: Sensors doi: 10.3390/s20205762 – volume: 24 start-page: 16 issue: 1 year: 2004 ident: 1459_CR15 publication-title: Bulk Solids Handling – volume: 20 start-page: 2243 issue: 8 year: 2020 ident: 1459_CR2 publication-title: Sensors doi: 10.3390/s20082243 – volume: 10 start-page: 4984 issue: 14 year: 2020 ident: 1459_CR30 publication-title: Appl. Sci. doi: 10.3390/app10144984 – ident: 1459_CR10 doi: 10.1016/j.ifacol.2015.08.033 – ident: 1459_CR21 doi: 10.1109/EESMS.2011.6067043 – ident: 1459_CR16 doi: 10.1109/IROS.2007.4399139 – ident: 1459_CR33 doi: 10.1109/URAI.2016.7734069 |
| SSID | ssj0009859 |
| Score | 2.4298432 |
| Snippet | Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 30 |
| SubjectTerms | Algorithms Artificial Intelligence Belt conveyors Cognition Contact force Control Conveying machinery Data mining Decoupling Electrical Engineering Energy conservation Energy consumption Engineering Fault detection Field tests Hybrid systems Innovations Inspection Locomotion Machine learning Mechanical Engineering Mechatronics Mineral industry Mining industry Regular Paper Robot arms Robot control Robot dynamics Robotics Robots Sensors Standardization Systems design Topical collection on ICAR 2019 Special Issue |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6ketCD1aoYrbIHwYMuNI_dZL0VtVSQVlotvS3ZZIOCJNKHv9_ZPGx9gt4SspssO8_NzHwDcIIeCHMTO6C-iB3qxZxTFbqCasYYV17Ei9qq0a3f6wXjsbgri8KmVbZ7FZLMNfVSsRvaSmpSCkwoTFBUvKto7gIjjoPhaAG1G7ACYc-MdAQvS2W-f8cHc_RZKX-JjuZGp1P_33K3YLN0Mkm74IptWNFpA-pVAwdSynMDNpbQCHdADvrDmwvSJoNMZTiTFGjmBN1a0sXz7yPpz2dxhneLfh94WdRqZimh1YSrPCuEhGlM2kvx8V146FzfX3Zp2X-BRi4LZpS5fuLZOkiUSGzH0cJgsYtYIDF5zJWrtI9Ha86Ur1quDoUdo0V0NPp8kdBebLt7UEuzVO8DYYlWSoXmD7TnJUEouBZoJkWoAt4KWWKBXZFBRiU4uemR8SwXsMpmPyXup8z3UzoWnL3PeSmgOX4dfWqoK43c4pujsCw_wPUZBCzZ9tG3Qd_X8S1oVgwgS4GeStRsNqpi9J8sOK8Ivnj883cP_jb8ENYdwzN5umATarPJXB_BWvQ6e5pOjnNGfwM4xPO0 priority: 102 providerName: Springer Nature |
| Title | ROSI: A Robotic System for Harsh Outdoor Industrial Inspection - System Design and Applications |
| URI | https://link.springer.com/article/10.1007/s10846-021-01459-2 https://www.proquest.com/docview/2571763819 |
| Volume | 103 |
| WOSCitedRecordID | wos000695210700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6KEcWMpDLCwrHyr10FoQJ3ZiLmh5iarVstptEeJixbEjkFAC7MLvZ5w4DS2CCxcrUWLHysx4xp6ZbwC-oAXCwzxIaCwNo5ERguo0lNRyzoWOMlHnVp3_iofD5OJCjvyB29SHVTZrYrVQmzJzZ-Q7yFoBygIqsP3bO-qqRjnvqi-h8QEWAsYCx-c_Y9qC7ia8xtpjuGVmUvikGZ86h5qXugAF51iTlP2jmP5fnl_4SSv1c9J578SXYckbnmRQc8pnmLPFCnSaog7Ey_gKLD5DKFwFNT6b_NgjAzIudYk9SY1wTtDUJae4J74iZw8zU-JdWwMEL-v8zbIgtOlwVEWKkLQwZPDMZ74Gf06Ofx-eUl-TgWYhT2aUh3EeBTbJtczxl1vp8NmlkUhgYYQOtY1xuy24jvVuaFMZGNSSzKIdmEkbmSBch_miLOwGEJ5brXXqTqWjKE9SKaxE1SlTnYjdlOddCBqCqMwDlru6GTeqhVp2RFRIRFURUbEufPvb57aG63jz7a-OzsrJMo6cpT4lAefnULHUIEZ7B-1hFneh1xBXeSGfqpayXfjesEf7-PXvbr492hZ8Yo4xq5DBHszP7h_sNnzMHmfX0_s-LBwcD0fjfsXqfRerOsF2xC-xHU_OnwAwQAJB |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RilQ4QEtBXaCtD0U9UAvixHaMhKpVAe1ql6WiUHFz49hRK1UJsAtV_xS_kXEeDaWCG4feEiV2nOTzPOyZbwDeoQXCwyyIqVSW0cgKQU0SKuo458JEqahyq74O5WgUn56qz1Nw3eTC-LDKRiaWgtoWqV8j30RoBTgXUIF9PDunvmqU311tSmhUsBi437_QZRvv9Hfx_64ztr93_KlH66oCNA15PKE8lFkUuDgzKgsYc8ozjCurcIjCChMaJ9FhFNxIsxW6RAUW5TxzaMmkykU2CLHfJ_A0CmPpufoHkrYkvzGvuP0YuuhMiTpJp07VQ01PfUCE38hTlP2lCO-qg3_2ZUt1t7_wv32o5zBfG9akW82EFzDl8kVYaIpWkFqGLcLcLQbGl6CPDr_0t0mXHBWmwJakYnAnaMqTHvr838nh5cQWeNbWOMHDKj-1yAltGuyWkTAkyS3p3ooJWIKTR3npZZjOi9y9AsIzZ4xJ_Kp7FGVxooRTaBqoxMRiK-FZB4IGADqtCdl9XZCfuqWS9qDRCBpdgkazDmz8aXNW0ZE8ePd7jyvtZRX2nCZ1ygWOz7N-6a5Eew7tfSY7sNaASddCbKxbJHXgQwPH9vL9z115uLe38Kx3fDDUw_5osAqzzE-KMjxyDaYnF5fuNcykV5Mf44s35fQi8O2xYXoDCvhZXw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFqH2QKFQsX2ADyAOYLVxYidGQtWKZdXVVtuqPNSbsWNHIKGk3d0W8df66xgnTlNA9NYDt0SJHSf55mF75huA5-iB8LiIMppKy2hihaBGx5I6zrkwSS6a3KrPB-lkkp2cyKMFuGxzYXxYZasTa0Vtq9yvke8gtCKUBTRgO0UIizgaDPdOz6ivIOV3WttyGg1Exu7nD5y-zd6OBvivXzA2fP_x3T4NFQZoHvNsTnmcFknkssLIImLMSc82Lq3E4QorTGxcipNHwU1qdmOnZWRR5zOHXk0uXWKjGPu9A0tohbmXsXFKO8LfjDc8fwyn60yKkLAT0vbQ6lMfHOE39SRlvxnFP03DX3u0tekbrv7PH-0B3A8ON-k3EvIQFly5BqttMQsSdNsarFxjZnwE6vjww-gN6ZPjylTYkjTM7gRdfLKvp7Ov5PB8bis862qf4GGTt1qVhLYNBnWEDNGlJf1rsQKP4dOtvPQ6LJZV6Z4A4YUzxmi_Gp8kRaalcBJdBqlNJnY1L3oQtWBQeSBq9_VCvquOYtoDSCGAVA0gxXrw6qrNaUNTcuPdLz3GlNdh2HOuQyoGjs-zgal-in4ezgNY2oOtFlgqKLeZ6lDVg9ctNLvL_37uxs29PYN7iE51MJqMN2GZefmooya3YHE-PXfbcDe_mH-bTZ_Wkkbgy22j9BdYemIZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROSI%3A+A+Robotic+System+for+Harsh+Outdoor+Industrial+Inspection%E2%80%93System+Design+and+Applications&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Rocha%2C+Filipe&rft.au=Garcia%2C+Gabriel&rft.au=Pereira%2C+Raphael+F.S&rft.au=Faria%2C+Henrique+D&rft.date=2021-10-01&rft.pub=Springer&rft.issn=0921-0296&rft.volume=103&rft.issue=2&rft_id=info:doi/10.1007%2Fs10846-021-01459-2&rft.externalDocID=A724053327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |