Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms

Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is wel...

Full description

Saved in:
Bibliographic Details
Published in:Forests Vol. 10; no. 12; p. 1073
Main Authors: Li, Yingchang, Li, Chao, Li, Mingyang, Liu, Zhenzhen
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2019
Subjects:
ISSN:1999-4907, 1999-4907
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is well developed and extensively used, improving the accuracy of biomass estimation remains challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8 Operational Land Imager data in combination with three algorithms, either the linear regression (LR), random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise regression and variable importance-base method, were used to select optimal variable subsets for LR and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of models was significantly improved, and thus the following conclusions were drawn: (1) Variable selection is very important for improving the performance of models, especially for machine learning algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF. (2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and the XGBoost and RF models significantly improved the estimation accuracy compared with the LR models. Despite that the problems of overestimation and underestimation were not fully eliminated, the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach of AGB modeling based on forest type is a very advantageous method for improving the performance at the lower and higher values of AGB. Some conclusions in this paper were probably different as the study area changed. The methods used in this paper provide an optional and useful approach for improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB was a reference basis for monitoring the forest ecosystem of the study area.
AbstractList Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is well developed and extensively used, improving the accuracy of biomass estimation remains challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8 Operational Land Imager data in combination with three algorithms, either the linear regression (LR), random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise regression and variable importance-base method, were used to select optimal variable subsets for LR and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of models was significantly improved, and thus the following conclusions were drawn: (1) Variable selection is very important for improving the performance of models, especially for machine learning algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF. (2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and the XGBoost and RF models significantly improved the estimation accuracy compared with the LR models. Despite that the problems of overestimation and underestimation were not fully eliminated, the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach of AGB modeling based on forest type is a very advantageous method for improving the performance at the lower and higher values of AGB. Some conclusions in this paper were probably different as the study area changed. The methods used in this paper provide an optional and useful approach for improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB was a reference basis for monitoring the forest ecosystem of the study area.
Author Li, Yingchang
Liu, Zhenzhen
Li, Chao
Li, Mingyang
Author_xml – sequence: 1
  givenname: Yingchang
  surname: Li
  fullname: Li, Yingchang
– sequence: 2
  givenname: Chao
  surname: Li
  fullname: Li, Chao
– sequence: 3
  givenname: Mingyang
  surname: Li
  fullname: Li, Mingyang
– sequence: 4
  givenname: Zhenzhen
  surname: Liu
  fullname: Liu, Zhenzhen
BookMark eNptkMtOwkAUhicGExFZ-AaTuHKBzK2ddokElATjQnDbTNtTGFJmcKY1wad3ADXGeDbnku8_t0vUMdYAQteU3HGekmFFCWWUSH6GujRN04FIiez8ii9Q3_sNCRbJJGWiiz5mpqpbMAVgW-FX5bTKa8AvUEPRaGuwMiWeWge-wYv9LlDmOx3l9h1WzraBuNd2q7zHE9_orToKl16bFX5SxVobwHNQzhwKo3plnW7WW3-FzitVe-h_-R5aTieL8eNg_vwwG4_mg4JHSTMQUcJLQiVQJkSR8DTneRnFCeQxU5KxCkQlOQgZx7wqhcyljEkpkriIcgaJ4j10c-q7c_atDZtnG9s6E0ZmLBKJiGMmaaCGJ6pw1nsHVVbo5nhJ45SuM0qyw4-znx8Hxe0fxc6F493-H_YTjR19pg
CitedBy_id crossref_primary_10_1080_17583004_2025_2504937
crossref_primary_10_1109_JSTARS_2021_3103754
crossref_primary_10_1007_s00477_022_02359_z
crossref_primary_10_3390_f11030302
crossref_primary_10_1016_j_scitotenv_2021_147335
crossref_primary_10_1109_ACCESS_2020_3008686
crossref_primary_10_3390_f14081688
crossref_primary_10_3390_su132111591
crossref_primary_10_3390_su142114222
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_3390_f15010215
crossref_primary_10_1016_j_jhydrol_2024_131493
crossref_primary_10_1080_01431161_2023_2277162
crossref_primary_10_2989_20702620_2023_2251946
crossref_primary_10_1109_JSTARS_2025_3559233
crossref_primary_10_1016_j_ecoinf_2025_103052
crossref_primary_10_1007_s10661_021_09524_x
crossref_primary_10_3390_fire6020076
crossref_primary_10_3390_f14030526
crossref_primary_10_1016_j_catena_2025_109282
crossref_primary_10_1080_17538947_2025_2525383
crossref_primary_10_3390_rs16122229
crossref_primary_10_3390_s20247248
crossref_primary_10_1016_j_engappai_2023_106135
crossref_primary_10_3390_rs12162534
crossref_primary_10_3390_f15091615
crossref_primary_10_1080_10095020_2024_2439399
crossref_primary_10_3390_f12060739
crossref_primary_10_1038_s41598_024_78615_9
crossref_primary_10_3390_agriculture13010098
crossref_primary_10_1016_j_scitotenv_2021_145292
crossref_primary_10_1016_j_jobe_2023_107187
crossref_primary_10_1016_j_resconrec_2025_108567
crossref_primary_10_3390_f15101734
crossref_primary_10_1007_s41748_025_00713_z
crossref_primary_10_3390_rs12050777
crossref_primary_10_1155_ijfr_9355771
crossref_primary_10_1016_j_still_2025_106629
crossref_primary_10_1080_01431161_2023_2210724
crossref_primary_10_3390_f12020216
crossref_primary_10_3390_f16071130
crossref_primary_10_1109_JSTARS_2025_3567505
crossref_primary_10_1139_cjfas_2022_0212
crossref_primary_10_1016_j_compag_2023_108144
crossref_primary_10_3390_rs12213609
crossref_primary_10_3390_rs14225734
crossref_primary_10_3390_f11020125
crossref_primary_10_1016_j_ecolind_2024_111554
crossref_primary_10_1007_s12145_025_01864_3
crossref_primary_10_1109_TGRS_2025_3537324
crossref_primary_10_1016_j_rsase_2022_100868
crossref_primary_10_3390_rs16203794
crossref_primary_10_3390_app12178654
crossref_primary_10_1016_j_indic_2025_100680
crossref_primary_10_1016_j_envsoft_2022_105326
crossref_primary_10_1007_s10653_025_02507_8
crossref_primary_10_1080_14942119_2024_2380230
crossref_primary_10_1016_j_foreco_2024_121927
crossref_primary_10_3390_rs14225741
crossref_primary_10_3390_su16167232
crossref_primary_10_3390_rs17162849
crossref_primary_10_3390_f16030449
crossref_primary_10_1080_10106049_2021_1952314
crossref_primary_10_3390_s21175974
crossref_primary_10_3390_f11080842
crossref_primary_10_3390_rs17162842
crossref_primary_10_3390_rs17162843
crossref_primary_10_1007_s10708_025_11374_w
crossref_primary_10_1080_01431161_2021_1975845
crossref_primary_10_1016_j_envsoft_2024_106071
crossref_primary_10_1111_btp_13348
crossref_primary_10_3390_f14061086
crossref_primary_10_3390_rs15082067
crossref_primary_10_3390_rs16122250
crossref_primary_10_1109_ACCESS_2020_3048416
crossref_primary_10_1080_10095020_2023_2169199
crossref_primary_10_3390_rs15143543
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1007_s12145_025_01744_w
crossref_primary_10_3390_rs17071228
crossref_primary_10_1080_10106049_2022_2071475
crossref_primary_10_3390_f16030477
crossref_primary_10_1080_10106049_2023_2207550
crossref_primary_10_3390_rs13081595
crossref_primary_10_1111_sum_12900
crossref_primary_10_3390_rs14143330
crossref_primary_10_3390_f14030602
crossref_primary_10_1016_j_oregeorev_2023_105652
crossref_primary_10_3390_rs15010284
crossref_primary_10_3390_rs12244015
crossref_primary_10_3390_rs13152885
crossref_primary_10_3390_rs13163081
crossref_primary_10_1016_j_envsoft_2021_105094
crossref_primary_10_1139_cjfr_2024_0293
crossref_primary_10_3390_rs14184434
crossref_primary_10_1016_j_rsase_2023_101123
crossref_primary_10_3390_f14071345
crossref_primary_10_1007_s11119_022_09915_1
crossref_primary_10_3390_f16040663
crossref_primary_10_1038_s41598_020_67024_3
crossref_primary_10_1007_s10661_021_08882_w
crossref_primary_10_3390_su141912187
crossref_primary_10_1016_j_ecoinf_2024_102796
crossref_primary_10_1080_15481603_2025_2477869
crossref_primary_10_3390_rs15143489
crossref_primary_10_1007_s12665_025_12302_4
crossref_primary_10_1016_j_ecoinf_2023_101973
crossref_primary_10_3389_fpls_2025_1532138
crossref_primary_10_1016_j_rsase_2024_101291
crossref_primary_10_3390_f16091381
crossref_primary_10_1007_s12524_024_01901_6
crossref_primary_10_1016_j_rsase_2025_101458
crossref_primary_10_3390_drones9010032
crossref_primary_10_1016_j_catena_2022_106189
crossref_primary_10_3390_f15111861
crossref_primary_10_3390_f15060975
crossref_primary_10_3390_f13050787
crossref_primary_10_1007_s12145_024_01657_0
crossref_primary_10_3390_rs12111884
crossref_primary_10_3390_rs13081535
crossref_primary_10_3390_land13020213
crossref_primary_10_1155_2024_6619263
crossref_primary_10_1007_s11629_024_9266_8
crossref_primary_10_1016_j_foreco_2024_121729
crossref_primary_10_3390_app112110139
crossref_primary_10_3390_rs13245030
crossref_primary_10_3390_rs14112541
crossref_primary_10_3390_rs16071276
crossref_primary_10_3390_rs14051066
crossref_primary_10_1002_eco_70101
crossref_primary_10_3390_f15040731
Cites_doi 10.1016/j.rse.2016.01.015
10.1016/S0168-1699(02)00118-7
10.3808/jei.200600078
10.1080/07038992.1982.10855028
10.3233/IDA-1997-1302
10.3390/rs9030241
10.1016/S0269-7491(01)00212-3
10.3390/rs6097878
10.1016/j.patrec.2010.03.014
10.1080/01431160500142145
10.3390/rs10040627
10.1016/j.rse.2016.03.012
10.1007/s00267-011-9716-2
10.1080/07038992.2014.987376
10.1088/1748-9326/3/4/045011
10.1016/j.foreco.2005.10.014
10.1023/A:1007607513941
10.1146/annurev.energy.28.050302.105515
10.1111/j.1365-2656.2008.01390.x
10.1016/j.eswa.2018.01.012
10.1016/S0034-4257(02)00130-X
10.1109/TGRS.2002.804725
10.1016/j.rse.2017.07.018
10.1109/TSMC.1973.4309314
10.1021/acs.jcim.6b00591
10.1109/LGRS.2018.2803259
10.3390/rs6076407
10.1023/A:1010933404324
10.1145/2939672.2939785
10.1080/01431160110107806
10.1016/j.rse.2019.02.015
10.1016/j.agrformet.2018.04.005
10.1109/LGRS.2010.2094179
10.1111/j.1365-2486.2005.00955.x
10.5589/m08-066
10.1016/j.iref.2018.03.008
10.1080/014311698216152
10.1080/01431160310001654923
10.3390/f10020104
10.1016/S0167-9473(01)00065-2
10.1111/gcb.13139
10.1016/j.rse.2014.02.001
10.1126/science.1058629
10.1007/s13748-015-0080-y
10.1016/S0034-4257(01)00289-9
10.3390/rs71215841
10.1016/j.rse.2008.11.010
10.1186/s40663-015-0047-2
10.3390/rs70810017
10.3390/rs61010232
10.1080/01431160500486732
10.1080/014311697218593
10.1029/2009JG000935
10.1007/s11676-017-0530-4
10.1016/j.rse.2007.08.021
10.1007/s10310-008-0077-5
10.1080/17538947.2014.990526
10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
10.1145/2821513
10.1139/cjfr-2014-0562
10.1016/j.jhydrol.2019.04.070
10.1016/j.rse.2016.07.033
10.14358/PERS.71.8.967
10.1007/978-3-319-14708-6
10.1590/S0044-59672005000200015
10.1109/JSTARS.2016.2597762
10.1016/j.rse.2012.02.012
10.1016/j.rse.2011.09.022
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOI 10.3390/f10121073
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID 10_3390_f10121073
GeographicLocations China
Hunan China
GeographicLocations_xml – name: China
– name: Hunan China
GroupedDBID 5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BANNL
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAO
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c358t-4583d017e1244c839b3bd568eb62a722fe4f73e47663fd47b7760d486c5b2e8a3
IEDL.DBID BENPR
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507288400082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4907
IngestDate Mon Jun 30 13:30:05 EDT 2025
Sat Nov 29 07:12:08 EST 2025
Tue Nov 18 22:22:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-4583d017e1244c839b3bd568eb62a722fe4f73e47663fd47b7760d486c5b2e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2548466271?pq-origsite=%requestingapplication%
PQID 2548466271
PQPubID 2032398
ParticipantIDs proquest_journals_2548466271
crossref_citationtrail_10_3390_f10121073
crossref_primary_10_3390_f10121073
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Loveland (ref_13) 2016; 185
ref_50
Shen (ref_25) 2018; 259
Baccini (ref_32) 2008; 3
Dietterich (ref_74) 2000; 40
ref_58
Nelson (ref_33) 2009; 113
Ali (ref_79) 2015; 7
Reese (ref_31) 2002; 37
ref_54
Loveland (ref_15) 2012; 122
Blackard (ref_35) 2008; 112
Lu (ref_64) 2016; 9
Wulder (ref_14) 2019; 225
Wulder (ref_17) 2008; 34
ref_59
Sheridan (ref_76) 2016; 56
Lu (ref_9) 2006; 27
Dash (ref_60) 1997; 1
Brown (ref_1) 2002; 116
Zald (ref_38) 2016; 176
Lei (ref_40) 2009; 11
ref_69
Barsi (ref_70) 2014; 6
Freeman (ref_65) 2016; 46
ref_66
Lu (ref_5) 2005; 71
Karlson (ref_37) 2015; 7
Kelsey (ref_73) 2014; 6
Banskota (ref_20) 2014; 40
ref_62
Kajisa (ref_67) 2008; 13
Deng (ref_11) 2014; 6
Zeng (ref_41) 2015; 2
Teillet (ref_48) 1982; 8
Houghton (ref_4) 2009; 114
ref_27
Yu (ref_52) 2018; 29
Tyralis (ref_53) 2019; 574
Cao (ref_12) 2016; 178
Chrysafis (ref_21) 2017; 199
Georganos (ref_77) 2018; 15
Carmona (ref_39) 2019; 61
Suganuma (ref_63) 2006; 222
He (ref_55) 2018; 98
Xie (ref_42) 2011; 48
Friedman (ref_56) 2002; 38
Haralick (ref_49) 1973; SMC-3
Gitelson (ref_72) 2002; 80
Lehmann (ref_18) 2013; 21
Ouma (ref_23) 2006; 8
Shimabukuro (ref_19) 1998; 19
Elith (ref_61) 2008; 77
Houghton (ref_3) 2005; 11
Breiman (ref_51) 2001; 45
Mutanga (ref_81) 2004; 25
ref_30
Crosby (ref_8) 2017; 10
Carreiras (ref_36) 2012; 121
Gitelson (ref_71) 2002; 23
Guyon (ref_57) 2003; 3
(ref_75) 2006; 7
Yu (ref_26) 2016; 11
Roy (ref_16) 2014; 145
Richter (ref_47) 1997; 18
Moghaddam (ref_80) 2002; 40
Ustin (ref_68) 2004; 54
Avitabile (ref_10) 2016; 22
Gower (ref_2) 2003; 28
Lu (ref_24) 2005; 35
Monnet (ref_34) 2011; 8
Dong (ref_78) 2003; 84
ref_46
ref_44
Zeng (ref_45) 2018; 7
Genuer (ref_28) 2010; 31
(ref_29) 2016; 5
Lu (ref_22) 2005; 26
Fang (ref_43) 2001; 292
ref_7
ref_6
References_xml – volume: 7
  start-page: 1
  year: 2018
  ident: ref_45
  article-title: Developing one-variable individual tree biomass models based on wood density for 34 tree species in China
  publication-title: For. Res. Open Access
– volume: 176
  start-page: 188
  year: 2016
  ident: ref_38
  article-title: Integrating landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.015
– volume: 37
  start-page: 37
  year: 2002
  ident: ref_31
  article-title: Applications using estimates of forest parameters derived from satellite and forest inventory data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(02)00118-7
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_57
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 70
  year: 2006
  ident: ref_23
  article-title: Optimization of second-order grey-level texture in high-resolution imagery for statistical estimation of above-ground biomass
  publication-title: J. Environ. Inf.
  doi: 10.3808/jei.200600078
– volume: 8
  start-page: 84
  year: 1982
  ident: ref_48
  article-title: On the slope-aspect correction of multispectral scanner data
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1982.10855028
– volume: 1
  start-page: 131
  year: 1997
  ident: ref_60
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– ident: ref_6
  doi: 10.3390/rs9030241
– volume: 116
  start-page: 363
  year: 2002
  ident: ref_1
  article-title: Measuring carbon in forests: Current status and future challenges
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00212-3
– volume: 6
  start-page: 7878
  year: 2014
  ident: ref_11
  article-title: Estimating forest aboveground biomass by combining ALOS PALSAR and WorldView-2 data: A case study at Purple Mountain National Park, Nanjing, China
  publication-title: Remote Sens.
  doi: 10.3390/rs6097878
– volume: 31
  start-page: 2225
  year: 2010
  ident: ref_28
  article-title: Variable selection using random forests
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 26
  start-page: 2509
  year: 2005
  ident: ref_22
  article-title: Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500142145
– ident: ref_66
  doi: 10.3390/rs10040627
– volume: 178
  start-page: 158
  year: 2016
  ident: ref_12
  article-title: Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.012
– volume: 48
  start-page: 1095
  year: 2011
  ident: ref_42
  article-title: Application of China’s National Forest Continuous Inventory Database
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-011-9716-2
– ident: ref_58
– volume: 40
  start-page: 362
  year: 2014
  ident: ref_20
  article-title: Forest monitoring using landsat time series data: A review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2014.987376
– volume: 3
  start-page: 1
  year: 2008
  ident: ref_32
  article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/3/4/045011
– volume: 222
  start-page: 75
  year: 2006
  ident: ref_63
  article-title: Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.10.014
– volume: 40
  start-page: 139
  year: 2000
  ident: ref_74
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007607513941
– volume: 28
  start-page: 169
  year: 2003
  ident: ref_2
  article-title: Patterns and mechanisms of the forest carbon cycle
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev.energy.28.050302.105515
– volume: 77
  start-page: 802
  year: 2008
  ident: ref_61
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 11
  start-page: 52
  year: 2009
  ident: ref_40
  article-title: Forest inventory in China: Status and challenges
  publication-title: Int. For. Rev.
– ident: ref_27
– volume: 98
  start-page: 105
  year: 2018
  ident: ref_55
  article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.01.012
– volume: 84
  start-page: 393
  year: 2003
  ident: ref_78
  article-title: Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00130-X
– volume: 40
  start-page: 2176
  year: 2002
  ident: ref_80
  article-title: Forest variable estimation from fusion of SAR and multispectral optical data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.804725
– volume: 199
  start-page: 154
  year: 2017
  ident: ref_21
  article-title: Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.018
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: ref_49
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1973.4309314
– ident: ref_69
– volume: 56
  start-page: 2353
  year: 2016
  ident: ref_76
  article-title: Extreme gradient boosting as a method for quantitative structure—Activity relationships
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00591
– volume: 15
  start-page: 607
  year: 2018
  ident: ref_77
  article-title: Very high resolution object-based land use–land cover urban classification using extreme gradient boosting
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2803259
– volume: 6
  start-page: 6407
  year: 2014
  ident: ref_73
  article-title: Estimates of aboveground biomass from texture analysis of landsat imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs6076407
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_51
  article-title: Random forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_54
  doi: 10.1145/2939672.2939785
– volume: 23
  start-page: 2537
  year: 2002
  ident: ref_71
  article-title: Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110107806
– volume: 225
  start-page: 127
  year: 2019
  ident: ref_14
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 259
  start-page: 23
  year: 2018
  ident: ref_25
  article-title: Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.04.005
– volume: 8
  start-page: 580
  year: 2011
  ident: ref_34
  article-title: Support vector regression for the estimation of forest stand parameters using airborne laser scanning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2094179
– ident: ref_62
– volume: 11
  start-page: 945
  year: 2005
  ident: ref_3
  article-title: Aboveground forest biomass and the global carbon balance
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.00955.x
– volume: 34
  start-page: 549
  year: 2008
  ident: ref_17
  article-title: Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-066
– volume: 61
  start-page: 304
  year: 2019
  ident: ref_39
  article-title: Predicting failure in the U.S. banking sector: An extreme gradient boosting approach
  publication-title: Int. Rev. Econ. Financ.
  doi: 10.1016/j.iref.2018.03.008
– volume: 19
  start-page: 535
  year: 1998
  ident: ref_19
  article-title: Using shade fraction image segmentation to evaluate deforestation in landsat thematic mapper images of the Amazon Region
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698216152
– ident: ref_59
– volume: 25
  start-page: 3999
  year: 2004
  ident: ref_81
  article-title: Narrow band vegetation indices overcome the saturation problem in biomass estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001654923
– ident: ref_30
  doi: 10.3390/f10020104
– volume: 38
  start-page: 367
  year: 2002
  ident: ref_56
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 22
  start-page: 1406
  year: 2016
  ident: ref_10
  article-title: An integrated pan-tropical biomass map using multiple reference datasets
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13139
– volume: 145
  start-page: 154
  year: 2014
  ident: ref_16
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
– volume: 292
  start-page: 2320
  year: 2001
  ident: ref_43
  article-title: Changes in forest biomass carbon storage in China between 1949 and 1998
  publication-title: Science
  doi: 10.1126/science.1058629
– volume: 5
  start-page: 65
  year: 2016
  ident: ref_29
  article-title: Feature selection for high-dimensional data
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-015-0080-y
– volume: 80
  start-page: 76
  year: 2002
  ident: ref_72
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00289-9
– volume: 7
  start-page: 16398
  year: 2015
  ident: ref_79
  article-title: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215841
– volume: 113
  start-page: 691
  year: 2009
  ident: ref_33
  article-title: Estimating Siberian timber volume using MODIS and ICESat/GLAS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.11.010
– volume: 2
  start-page: 23
  year: 2015
  ident: ref_41
  article-title: The national forest inventory in China: History—Results—International context
  publication-title: For. Ecosyst.
  doi: 10.1186/s40663-015-0047-2
– volume: 7
  start-page: 10017
  year: 2015
  ident: ref_37
  article-title: Mapping tree canopy cover and aboveground biomass in sudano-sahelian woodlands using landsat 8 and random forest
  publication-title: Remote Sens.
  doi: 10.3390/rs70810017
– volume: 6
  start-page: 10232
  year: 2014
  ident: ref_70
  article-title: The spectral response of the Landsat-8 operational land imager
  publication-title: Remote Sens.
  doi: 10.3390/rs61010232
– volume: 27
  start-page: 1297
  year: 2006
  ident: ref_9
  article-title: The potential and challenge of remote sensing-based biomass estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500486732
– ident: ref_44
– volume: 18
  start-page: 1099
  year: 1997
  ident: ref_47
  article-title: Correction of Atmospheric and Topographic Effects for High Spatial Resolution Satellite Imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218593
– volume: 114
  start-page: 1
  year: 2009
  ident: ref_4
  article-title: Importance of biomass in the global carbon cycle
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2009JG000935
– volume: 29
  start-page: 1407
  year: 2018
  ident: ref_52
  article-title: Forest type identification by random forest classification combined with SPOT and multitemporal SAR data
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0530-4
– volume: 112
  start-page: 1658
  year: 2008
  ident: ref_35
  article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.021
– volume: 13
  start-page: 249
  year: 2008
  ident: ref_67
  article-title: Estimation of stand volumes using the k-nearest neighbors method in Kyushu, Japan
  publication-title: J. For. Res.
  doi: 10.1007/s10310-008-0077-5
– volume: 21
  start-page: 453
  year: 2013
  ident: ref_18
  article-title: Forest cover trends from time series Landsat data for the Australian continent
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_50
– volume: 9
  start-page: 63
  year: 2016
  ident: ref_64
  article-title: A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2014.990526
– volume: 54
  start-page: 523
  year: 2004
  ident: ref_68
  article-title: Using imaging spectroscopy to study ecosystem processes and properties
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
– volume: 11
  start-page: 1
  year: 2016
  ident: ref_26
  article-title: Scalable and accurate online feature selection for big data
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2821513
– volume: 46
  start-page: 323
  year: 2016
  ident: ref_65
  article-title: Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2014-0562
– ident: ref_46
– volume: 574
  start-page: 628
  year: 2019
  ident: ref_53
  article-title: How to explain and predict the shape parameter of the generalized extreme value distribution of streamflow extremes using a big dataset
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.070
– volume: 185
  start-page: 1
  year: 2016
  ident: ref_13
  article-title: Landsat 8: The plans, the reality, and the legacy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.033
– volume: 7
  start-page: 1
  year: 2006
  ident: ref_75
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf.
– volume: 71
  start-page: 967
  year: 2005
  ident: ref_5
  article-title: Satellite estimation of aboveground biomass and impacts of forest stand structure
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.71.8.967
– ident: ref_7
  doi: 10.1007/978-3-319-14708-6
– volume: 35
  start-page: 249
  year: 2005
  ident: ref_24
  article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon
  publication-title: Acta Amaz.
  doi: 10.1590/S0044-59672005000200015
– volume: 10
  start-page: 243
  year: 2017
  ident: ref_8
  article-title: Consequences of landsat image strata classification errors on bias and variance of inventory estimates: A forest inventory case study
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2597762
– volume: 121
  start-page: 426
  year: 2012
  ident: ref_36
  article-title: Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.012
– volume: 122
  start-page: 22
  year: 2012
  ident: ref_15
  article-title: Landsat: Building a strong future
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.022
SSID ssj0000578924
Score 2.537153
Snippet Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1073
SubjectTerms Algorithms
Biodiversity
Biomass
Carbon
Carbon cycle
Decision trees
Ecological monitoring
Ecosystems
Feature selection
Forest biomass
Forest ecosystems
Landsat
Landsat satellites
Learning algorithms
Machine learning
Model accuracy
Modelling
National forests
Regression analysis
Remote sensing
Remote sensing systems
Satellites
Terrestrial ecosystems
Timber
Variables
Title Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms
URI https://www.proquest.com/docview/2548466271
Volume 10
WOSCitedRecordID wos000507288400082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M0K
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PCBAR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PATMY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4IGOPFtxFFsjEevDRAX7s9GTAQiYE0voKnptvdIgkCUuTgwd_uTLvFkBgvXpq0ncMmszsz3-7s9xFyaaNOiF3nRmw3FAAUZRmCe7ZhuaEnhQtxU_BUbIL1-3ww8Hy94Zbotso8JqaBWk4j3COvAZCBVOmarHE9ezdQNQpPV7WERoGUkKkM5nmp1e7796tdFqhGOCCMjFLIAnxfi5HQCjCPtZ6I1uNwmlw6u_8d1h7Z0WUlbWbzYJ9sqMkB2ULdTRRzOySf3VyMhE5j-gwAGa9M0YdUBQdcQ8OJpJk5RWhK4ZN-bYrpUuHlD7BojbCdKKFtCAzZnUea9hzQXtqTqaimax3S5ngIw1y8viVH5KnTfry5NbTsghFZDl8YeJIqYaEqTP0RFFDCEtJxuRKuGTLTjJUdM0vZDIqVWNpMMObWpc3dyBGm4qF1TIqT6USdEBoyJ2TI0A8rHSo_J2xwT0IIcRuRdKC0KJOr3AdBpDnJURpjHAA2QXcFK3eVycXKdJYRcfxmVMm9FOi1mAQ_Ljr9-_cZ2YZyyMuaVSqkuJh_qHOyGS0Xo2Re1VOrSgq9-h0-v9rwze_2_JdvM-_byw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VBEEvUKCohUJXFUhcrMTetXd9QFVaUiXKhyJRUDi5Xu86jZQmpQ5F8KP4jZ3xR1AkxC2HHm2PLHn3-c3M7uw8gHeCdEJEUzmpcC0mKJY7WoXC4UEcGh0gb2qVi03I4VCNx-FoC_5UZ2GorLLixJyozSKhNfIGJjLoKgNPusfX3x1SjaLd1UpCo4BFz_76iSlb9rH7Cef3veedtc9PO06pKuAk3FdLhzYKDeLQkmdLMD7QXBs_UFYHXiw9L7UildwKib44NUJqKYOmESpIfO1ZFXN87wOoCwJ7Deqj7mD0bbWqg9GPwoymaGHEedhspNRAC3Msvu741nk_d2ZnT-_bMOzAkzJsZq0C589gy86fwyPSFSWxuhfwu1uJrbBFyr7G-FvpmWWfc5UfhB6L54YV5oxSb4a3ysuWXtxaOtyCFidTKpfKWBuJrzjTyfKaCjbIa04tK9vRTlhrNsFhWV5eZbvwZSNf_hJq88Xc7gGLpR9LUiBAJsPI1o9dFRqkyMBNjI-h0z58qOY8Ssqe6yT9MYsw9yJ4RCt47MPRyvS6aDTyL6ODChVRyTVZ9BcSr_7_-BAed84H_ajfHfZewzaGfmFRmHMAteXND_sGHia3y2l287aENYOLTUPoDnldM3U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qK-LFt_h2EQUvoW12k90cRKq1WKql4AM9xWx2U4XaqqmK_jR_nbN5VATx5sFjkiGQ3S8z8-3OzgewzYxOCKsIK2JVjQRFU0sKj1nUDTwlXfSbUiRiE7zdFldXXqcAH_lZGFNWmfvExFGrQWjWyMtIZDBUujavlqOsLKJTb-w_PFpGQcrstOZyGilEWvrtFelbvNes41zv2Hbj6Pzw2MoUBqyQOmJomU1DhZjUJsqFmCtIKpXjCi1dO-C2HWkWcaoZx7gcKcYl525FMeGGjrS1CCi-dwxKmJIzuwilTvO0cz1a4cFMSCC7SdsZUepVypFppoV8i34Pgt9jQBLYGtP_eUhmYCpLp0ktxf8sFHR_DiaM3qgRsZuH92YuwkIGEbkM8HeTPU3OEvUfhCQJ-oqk5sRQcoK3ssuaHLxoc-gFLQ7uTBlVTI7QIaZnPUlSa0FOk1pUTbI2tV1S63VxWIa39_ECXPzJly9CsT_o6yUgAXcCbpQJ0MNhxusEVeEpdJ1uNVQOplTLsJvPvx9mvdiNJEjPR05moOKPoLIMWyPTh7QByU9GazlC_MwHxf4XPFZ-f7wJE4gb_6TZbq3CJGaEXlqvswbF4dOzXofx8GV4Fz9tZAgncPPXCPoEfiI8NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Variable+Selection+and+Forest+Type+on+Forest+Aboveground+Biomass+Estimation+Using+Machine+Learning+Algorithms&rft.jtitle=Forests&rft.au=Li%2C+Yingchang&rft.au=Li%2C+Chao&rft.au=Li%2C+Mingyang&rft.au=Liu%2C+Zhenzhen&rft.date=2019-12-01&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=10&rft.issue=12&rft.spage=1073&rft_id=info:doi/10.3390%2Ff10121073&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon