Detecting tree mortality with Landsat-derived spectral indices: Improving ecological accuracy by examining uncertainty

Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 237; p. 111497
Main Authors: Furniss, Tucker J., Kane, Van R., Larson, Andrew J., Lutz, James A.
Format: Journal Article
Language:English
Published: New York Elsevier Inc 01.02.2020
Elsevier BV
Subjects:
ISSN:0034-4257, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices. The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy. There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (>50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects. This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest;2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale. [Display omitted] •Various spectral indices detect different aspects of fire-related tree mortality.•dNBR was not the best index, but it was well suited for general use.•Relativized versions of dNBR did not consistently improve performance.•Range in observed mortality was as high as ±40% around the predicted mean.
AbstractList Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices.The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy.There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (>50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects.This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest;2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale.
Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices. The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy. There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (>50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects. This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest;2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale. [Display omitted] •Various spectral indices detect different aspects of fire-related tree mortality.•dNBR was not the best index, but it was well suited for general use.•Relativized versions of dNBR did not consistently improve performance.•Range in observed mortality was as high as ±40% around the predicted mean.
ArticleNumber 111497
Author Larson, Andrew J.
Kane, Van R.
Furniss, Tucker J.
Lutz, James A.
Author_xml – sequence: 1
  givenname: Tucker J.
  surname: Furniss
  fullname: Furniss, Tucker J.
  email: tucker.furniss@usu.edu
  organization: Wildland Resources Department and Ecology Center, Utah State University, Logan, UT, 84322, USA
– sequence: 2
  givenname: Van R.
  surname: Kane
  fullname: Kane, Van R.
  organization: School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
– sequence: 3
  givenname: Andrew J.
  surname: Larson
  fullname: Larson, Andrew J.
  organization: Wilderness Institute and Department of Forest Management, University of Montana, Missoula, MT, 59812, USA
– sequence: 4
  givenname: James A.
  surname: Lutz
  fullname: Lutz, James A.
  organization: Wildland Resources Department and Ecology Center, Utah State University, Logan, UT, 84322, USA
BookMark eNp9kcFu1DAQhi3USmwLD8DNEhcuWezYiR04oZZCpZW4lLPlOJMyq8RebGchb4-3y6mHnuYw3_drNP8VufDBAyHvONtyxtuP-21MsK0Z77acc9mpV2TDteoqppi8IBvGhKxk3ajX5CqlPWO80YpvyPEWMriM_pHmCEDnELOdMK_0D-ZfdGf9kGyuBoh4hIGmQ4GjnSj6AR2kT_R-PsRwPPngwhQe0ZWtdW6J1q20Xyn8tTP6E7B4ByUdfV7fkMvRTgne_p_X5Ofd14eb79Xux7f7my-7yolG50oK6PSohlGyGjR3vZLKtkxr0bV9Da7rO1WX9eha0WnR943TfT0KLpTUUo_imnw455Yjfy-QspkxOZgm6yEsydSiqWUJV6yg75-h-7BEX657okSrClYodaZcDClFGI3DbDMGX96Ck-HMnPowe1P6MKc-zLmPYvJn5iHibOP6ovP57ED50REhmuQQyhsHjKUIMwR8wf4HAJGmtQ
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_127431
crossref_primary_10_1016_j_scs_2023_104532
crossref_primary_10_1038_s41467_024_44991_z
crossref_primary_10_3390_rs14092195
crossref_primary_10_1071_WF22050
crossref_primary_10_3390_rs14133122
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1186_s42408_023_00219_x
crossref_primary_10_3390_fire6110423
crossref_primary_10_3390_rs17132307
crossref_primary_10_1002_eco_2414
crossref_primary_10_3390_rs12172753
crossref_primary_10_1016_j_foreco_2022_120620
crossref_primary_10_1016_j_rse_2023_113842
crossref_primary_10_1016_j_rse_2025_115007
crossref_primary_10_1071_WF22010
crossref_primary_10_1371_journal_pone_0281927
crossref_primary_10_3390_rs14205249
crossref_primary_10_1111_geb_13526
crossref_primary_10_1016_j_foreco_2023_121190
crossref_primary_10_1016_j_rse_2021_112569
crossref_primary_10_1016_j_rse_2021_112800
crossref_primary_10_1186_s13717_020_00243_8
crossref_primary_10_1002_ece3_70736
crossref_primary_10_1016_j_jag_2024_103673
crossref_primary_10_1016_j_foreco_2021_119796
crossref_primary_10_1016_j_jag_2025_104488
crossref_primary_10_1002_eap_2507
crossref_primary_10_1016_j_foreco_2021_119764
crossref_primary_10_1016_j_ecolmodel_2022_110099
crossref_primary_10_1093_treephys_tpad051
crossref_primary_10_1016_j_foreco_2023_121246
crossref_primary_10_1002_ecs2_3199
crossref_primary_10_1186_s42408_023_00223_1
crossref_primary_10_1002_ecs2_3214
crossref_primary_10_1111_nph_17539
crossref_primary_10_1186_s42408_020_00079_9
crossref_primary_10_3390_f16020194
Cites_doi 10.1016/j.rse.2016.04.008
10.1080/014311698214587
10.1016/0034-4257(88)90106-X
10.1002/ecs2.2600
10.1016/j.foreco.2015.06.030
10.1016/j.rse.2016.08.023
10.1016/S0034-4257(02)00071-8
10.1002/ecs2.1484
10.1371/journal.pone.0036131
10.1071/WF15082
10.1109/LGRS.2005.858485
10.1029/1999GB900042
10.1016/j.foreco.2018.10.038
10.1016/j.rse.2017.01.016
10.1016/j.foreco.2019.04.024
10.1071/WF12168
10.1071/WF13058
10.1016/j.rse.2003.12.015
10.1071/WF05097
10.1890/ES14-00235.1
10.1371/journal.pone.0082784
10.1139/cjfr-2013-0524
10.1016/S0034-4257(96)00067-3
10.1080/01431160600954704
10.3955/046.089.0306
10.3390/fire1010005
10.1071/WF18031
10.1016/j.rse.2008.11.009
10.1038/nature12914
10.1016/j.foreco.2012.08.020
10.1890/07-0539.1
10.1071/WF07148
10.1002/ecs2.2029
10.1016/j.rse.2013.04.017
10.1016/j.foreco.2017.08.051
10.1002/ecs2.2128
10.1016/j.csda.2011.05.006
10.3390/rs10060879
10.1002/ecs2.1847
10.1186/s42408-019-0035-y
10.1080/01431160110053185
10.4996/fireecology.1301104
10.1007/s10021-015-9890-9
10.1071/WF18137
10.1007/s10980-017-0528-5
10.1016/0034-4257(94)90046-9
10.4996/fireecology.0702051
10.4996/fireecology.0302034
10.1071/WF17137
10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2
10.3390/land6010010
10.3390/rs6031827
10.1016/S0034-4257(01)00318-2
10.1088/1748-9326/aae934
10.3390/rs4020456
10.1016/j.rse.2005.03.002
10.1080/01431169008955175
10.1111/gcb.14716
10.1111/geb.12747
10.1016/j.foreco.2019.01.033
10.1080/2150704X.2014.915434
10.1071/WF08117
10.1016/j.rse.2014.03.038
10.3955/046.089.0305
10.1016/j.foreco.2016.06.038
10.4996/fireecology.0502116
10.4996/fireecology.0301003
10.1016/j.rse.2006.12.006
10.1016/j.foreco.2015.09.001
10.1002/ecs2.2091
10.1016/j.foreco.2017.02.015
10.1016/j.rse.2013.07.041
10.1016/j.foreco.2014.06.005
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.111497
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2019_111497
S0034425719305164
GeographicLocations California
GeographicLocations_xml – name: California
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-43e98f7df402e81cb747a6088396b2ec9b9727dffc63983bb5c8b2f31374848f3
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509819300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Wed Oct 01 13:44:30 EDT 2025
Wed Aug 13 06:31:47 EDT 2025
Tue Nov 18 21:50:23 EST 2025
Sat Nov 29 07:30:06 EST 2025
Fri Feb 23 02:48:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differenced Normalized Burn Ratio
Smithsonian ForestGEO
Fire severity
Landsat 8
Yosemite Forest Dynamics Plot
Monitoring trends in burn severity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-43e98f7df402e81cb747a6088396b2ec9b9727dffc63983bb5c8b2f31374848f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2352367027
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2352440270
proquest_journals_2352367027
crossref_citationtrail_10_1016_j_rse_2019_111497
crossref_primary_10_1016_j_rse_2019_111497
elsevier_sciencedirect_doi_10_1016_j_rse_2019_111497
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Miller, Knapp, Key, Skinner, Isbell, Creasy, Sherlock (bib60) 2009; 113
Lutz, Schwindt, Furniss, Freund, Swanson, Hogan, Kenagy, Larson (bib49) 2014; 44
Jeronimo, S., Lutz, J.A., Kane, V.R., Larson, A.J., Franklin, J.F., in review. Burn weather and three-dimensional fuel structure determine post-fire tree mortality. Landscape Ecology. Submitted for publication.
Lutz, Furniss, Germain, Becker, Blomdahl, Jeronimo, Cansler, Freund, Swanson, Larson (bib41) 2017; 13
Macriss, Furniss, Jeronimo, Crowley, Germain, Germain, Kane, Larson, Lutz (bib52) 2019
Lutz, Halpern (bib43) 2006; 76
Kushla, Ripple (bib36) 1998; 19
Tucker (bib75) 1979; 24
Baig, HA, Zhang, Shuai, Tong (bib1) 2014; 5
Harmon, Fasth, Halpern, Lutz (bib20) 2015; 6
Lutz (bib40) 2015; 89
van Wagtendonk, Root, Key (bib83) 2004; 92
USGS (bib76) 2007
Barbosa, Stroppiana, Grégoire, Cardoso Pereira (bib2) 1999; 13
Hijmans (bib23) 2016
McCarley, Smith, Kolden, Kreitler (bib55) 2018; 27
Harris, Taylor (bib21) 2015; 18
Collins, Stevens, Miller, Stephens, Brown, North (bib90) 2017; 32
USGS (bib77) 2016
Scrucca (bib69) 2011; 5
Lentile, Holden, Smith, Falkowski, Hudak, Morgan, Lewis, Gessler, Benson (bib38) 2006; 15
Harvey, Andrus, Anderson (bib22) 2019; 10
Liaw, Wiener (bib39) 2002; 2
Parks, Dillon, Miller (bib64) 2014; 6
Collins, Miller, Knapp, Sapsis (bib12) 2019; 28
Meddens, Kolden, Lutz (bib56) 2016; 186
van Wagtendonk, Lutz (bib82) 2007; 3
Funtowicz, Ravetz (bib16) 1990
Lutz, Matchett, Tarnay, Smith, Becker, Furniss, Brooks (bib48) 2017; 6
Lutz, Larson, Freund, Swanson, Bible (bib45) 2013; 8
Becker, Lutz (bib4) 2016; 7
CAL FIRE (bib8) 2018
Keane, Agee, Fulé, Keeley, Key, Kitchen, Miller, Schulte (bib31) 2008; 17
Kolden, Abatzoglou, Lutz, Cansler, Kane, Wagtendonk, Key (bib33) 2015; 89
McCarley, Kolden, Vaillant, Hudak, Smith, Kreitler (bib54) 2017; 391
Stevens, Collins, Miller, North, Stephens (bib89) 2017; 406
Kolden, Smith, Abatzoglou (bib35) 2015; 24
Blomdahl, Thompson, Kane, Kane, Churchill, Moskal, Lutz (bib6) 2019; 444
Kane, North, Lutz, Churchill, Roberts, Smith, McGaughey, Kane, Brooks (bib30) 2014; 151
Miller, Yool (bib62) 2002; 82
Hood, Varner, van Mantgem, Cansler (bib24) 2018; 13
Vermote, Justice, Claverie, Franch (bib80) 2016; 185
Brewer, Winne, Redmond, Opitz, Mangrich (bib7) 2005; 10
Lutz, van Wagtendonk, Thode, Miller, Franklin (bib50) 2009; 18
Kolden, Lutz, Key, Kane, van Wagtendonk (bib34) 2012; 286
Gao (bib19) 1996; 58
Larson, Cansler, Cowdery, Hiebert, Furniss, Swanson, Lutz (bib37) 2016; 377
Parks, Holsinger, Voss, Loehman, Robinson (bib63) 2018; 10
Cutler, Edwards, Beard, Cutler, Hess, Gibson, Lawler (bib13) 2007; 88
Marceau, Howarth, Gratton (bib53) 1994; 49
Blomdahl, Kolden, Meddens, Lutz (bib5) 2019; 432
Rouse, Haas (bib67) 1974; vol. 9
Cansler, McKenzie (bib9) 2012; 4
van Mantgem, Schwilk (bib78) 2009; 5
Lutz, Key, Kolden, Kane, van Wagtendonk (bib44) 2011; 7
Miller, Thode (bib61) 2007; 109
Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bib14) 2007; 3
Meddens, Kolden, Lutz, Smith, Cansler, Abatzoglou, Meigs, Downing, Krawchuk (bib58) 2018; 68
Lutz, Furniss, Johnson, Davies, Allen, Alonso, Anderson-Teixeira, Andrade, Baltzer, Becker, Blomdahl, Bourg, Bunyavejchewin, Burslem, Cansler, Cao, Cao, Cárdenas, Chang, Chao, Chao, Chiang, Chu, Chuyong, Clay, Condit, Cordell, Dattaraja, Duque, Ewango, Fischer, Fletcher, Freund, Giardina, Germain, Gilbert, Hao, Hart, Hau, He, Hector, Howe, Hsieh, Hu, Hubbell, Inman-Narahari, Itoh, Janík, Kassim, Kenfack, Korte, Král, Larson, Li, Lin, Liu, Lum, Ma, Makana, Malhi, McMahon, McShea, Memiaghe, Mi, Morecroft, Musili, Myers, Novotny, de Oliveira, Ong, Orwig, Ostertag, Parker, Patankar, Phillips, Reynolds, Sack, Song, Su, Sukumar, Sun, Suresh, Swanson, Tan, Thomas, Thompson, Uriarte, Valencia, Vicentini, Vrška, Wang, Weiblen, Wolf, Wu, Xu, Yamakura, Yap, Zimmerman (bib42) 2018; 27
Epting, Verbyla, Sorbel (bib15) 2005; 96
Van Pelt (bib79) 2001
Furniss, Larson, Lutz (bib17) 2017; 8
Cansler, McKenzie, Halpern (bib10) 2018; 9
Lutz, Larson, Swanson (bib47) 2018; 1
Smith, Kolden, Tinkham, Talhelm, Marshall, Hudak, Boschetti, Falkowski, Greenberg, Anderson, Kliskey, Alessa, Keefe, Gosz (bib71) 2014; 154
Meddens, Kolden, Lutz, Abatzoglou, Hudak (bib57) 2018; 9
Morgan, Keane, Dillon, Jain, Hudak, Karau, Sikkink, Holden, Strand (bib88) 2014; 23
Key, Benson (bib32) 2006
Veraverbeke, Hook (bib84) 2013; 22
Whitman, Parisien, Thompson, Hall, Skakun, Flannigan (bib85) 2018; 9
Cansler, Swanson, Furniss, Larson, Lutz (bib11) 2019; 15
Huete (bib25) 1988; 25
Lutz, Larson, Swanson, Freund (bib46) 2012; 7
Meng, Wu, Schwager, Zhao, Dennison, Cook, Brewster, Green, Serbin (bib59) 2017; 191
Kane, Cansler, Povak, Kane, McGaughey, Lutz, Churchill, North (bib29) 2015; 358
(bib26) 2013
Roy, Boschetti, Trigg (bib68) 2006; 3
Trigg, Flasse (bib74) 2001; 22
R Core Team (bib66) 2018
Stephenson, Das, Condit, Russo, Baker, Beckman, Coomes, Lines, Morris, Rüger, Álvarez, Blundo, Bunyavejchewin, Chuyong, Davies, Duque, Ewango, Flores, Franklin, Grau, Hao, Harmon, Hubbell, Kenfack, Lin, Makana, Malizia, Malizia, Pabst, Pongpattananurak, Su, Sun, Tan, Thomas, van Mantgem, Wang, Wiser, Zavala (bib73) 2014; 507
Jeronimo, Kane, Churchill, Lutz, North, Asner, Franklin (bib27) 2019; 437
Smith, Drake, Wooster, Hudak, Holden, Gibbons (bib70) 2007; 28
Wu, Jones, Li, Loucks (bib87) 2006
Stenzel, Bartowitz, Hartman, Lutz, Kolden, Smith, Swanson, Larson, Parton, Hudibug (bib72) 2019; 25
Furniss, Larson, Kane, Lutz (bib18) 2019; 28
Quintano, Fernández-Manso, Roberts (bib65) 2013; 136
Wilson, Sader (bib86) 2002; 80
Lydersen, North, Collins (bib51) 2014; 328
Barth, Larson, Lutz (bib3) 2015; 354
Vogelmann (bib81) 1990; 11
Harmon (10.1016/j.rse.2019.111497_bib20) 2015; 6
Blomdahl (10.1016/j.rse.2019.111497_bib6) 2019; 444
McCarley (10.1016/j.rse.2019.111497_bib55) 2018; 27
Furniss (10.1016/j.rse.2019.111497_bib18) 2019; 28
Meddens (10.1016/j.rse.2019.111497_bib57) 2018; 9
Cansler (10.1016/j.rse.2019.111497_bib11) 2019; 15
Harvey (10.1016/j.rse.2019.111497_bib22) 2019; 10
Larson (10.1016/j.rse.2019.111497_bib37) 2016; 377
Lutz (10.1016/j.rse.2019.111497_bib50) 2009; 18
Tucker (10.1016/j.rse.2019.111497_bib75) 1979; 24
Stephenson (10.1016/j.rse.2019.111497_bib73) 2014; 507
Harris (10.1016/j.rse.2019.111497_bib21) 2015; 18
Lutz (10.1016/j.rse.2019.111497_bib47) 2018; 1
Kane (10.1016/j.rse.2019.111497_bib30) 2014; 151
Gao (10.1016/j.rse.2019.111497_bib19) 1996; 58
Jeronimo (10.1016/j.rse.2019.111497_bib27) 2019; 437
Stenzel (10.1016/j.rse.2019.111497_bib72) 2019; 25
Cansler (10.1016/j.rse.2019.111497_bib9) 2012; 4
Kane (10.1016/j.rse.2019.111497_bib29) 2015; 358
Parks (10.1016/j.rse.2019.111497_bib63) 2018; 10
van Wagtendonk (10.1016/j.rse.2019.111497_bib83) 2004; 92
Hood (10.1016/j.rse.2019.111497_bib24) 2018; 13
Key (10.1016/j.rse.2019.111497_bib32) 2006
Scrucca (10.1016/j.rse.2019.111497_bib69) 2011; 5
Vogelmann (10.1016/j.rse.2019.111497_bib81) 1990; 11
Cansler (10.1016/j.rse.2019.111497_bib10) 2018; 9
Becker (10.1016/j.rse.2019.111497_bib4) 2016; 7
Van Pelt (10.1016/j.rse.2019.111497_bib79) 2001
Miller (10.1016/j.rse.2019.111497_bib61) 2007; 109
10.1016/j.rse.2019.111497_bib91
Funtowicz (10.1016/j.rse.2019.111497_bib16) 1990
Huete (10.1016/j.rse.2019.111497_bib25) 1988; 25
Smith (10.1016/j.rse.2019.111497_bib70) 2007; 28
Stevens (10.1016/j.rse.2019.111497_bib89) 2017; 406
Parks (10.1016/j.rse.2019.111497_bib64) 2014; 6
Lutz (10.1016/j.rse.2019.111497_bib45) 2013; 8
Vermote (10.1016/j.rse.2019.111497_bib80) 2016; 185
Whitman (10.1016/j.rse.2019.111497_bib85) 2018; 9
Marceau (10.1016/j.rse.2019.111497_bib53) 1994; 49
Trigg (10.1016/j.rse.2019.111497_bib74) 2001; 22
Baig (10.1016/j.rse.2019.111497_bib1) 2014; 5
Lutz (10.1016/j.rse.2019.111497_bib43) 2006; 76
Lutz (10.1016/j.rse.2019.111497_bib46) 2012; 7
Lentile (10.1016/j.rse.2019.111497_bib38) 2006; 15
Wu (10.1016/j.rse.2019.111497_bib87) 2006
Meng (10.1016/j.rse.2019.111497_bib59) 2017; 191
Kolden (10.1016/j.rse.2019.111497_bib35) 2015; 24
Kolden (10.1016/j.rse.2019.111497_bib33) 2015; 89
Quintano (10.1016/j.rse.2019.111497_bib65) 2013; 136
(10.1016/j.rse.2019.111497_bib26) 2013
Rouse (10.1016/j.rse.2019.111497_bib67) 1974; vol. 9
van Mantgem (10.1016/j.rse.2019.111497_bib78) 2009; 5
van Wagtendonk (10.1016/j.rse.2019.111497_bib82) 2007; 3
Hijmans (10.1016/j.rse.2019.111497_bib23) 2016
Lutz (10.1016/j.rse.2019.111497_bib41) 2017; 13
Smith (10.1016/j.rse.2019.111497_bib71) 2014; 154
Collins (10.1016/j.rse.2019.111497_bib12) 2019; 28
Furniss (10.1016/j.rse.2019.111497_bib17) 2017; 8
Lutz (10.1016/j.rse.2019.111497_bib40) 2015; 89
Meddens (10.1016/j.rse.2019.111497_bib56) 2016; 186
USGS (10.1016/j.rse.2019.111497_bib76) 2007
Blomdahl (10.1016/j.rse.2019.111497_bib5) 2019; 432
Kushla (10.1016/j.rse.2019.111497_bib36) 1998; 19
Epting (10.1016/j.rse.2019.111497_bib15) 2005; 96
Lydersen (10.1016/j.rse.2019.111497_bib51) 2014; 328
CAL FIRE (10.1016/j.rse.2019.111497_bib8) 2018
Collins (10.1016/j.rse.2019.111497_bib90) 2017; 32
McCarley (10.1016/j.rse.2019.111497_bib54) 2017; 391
Cutler (10.1016/j.rse.2019.111497_bib13) 2007; 88
USGS (10.1016/j.rse.2019.111497_bib77) 2016
Lutz (10.1016/j.rse.2019.111497_bib44) 2011; 7
Meddens (10.1016/j.rse.2019.111497_bib58) 2018; 68
Miller (10.1016/j.rse.2019.111497_bib62) 2002; 82
Wilson (10.1016/j.rse.2019.111497_bib86) 2002; 80
Veraverbeke (10.1016/j.rse.2019.111497_bib84) 2013; 22
Macriss (10.1016/j.rse.2019.111497_bib52)
Lutz (10.1016/j.rse.2019.111497_bib42) 2018; 27
Liaw (10.1016/j.rse.2019.111497_bib39) 2002; 2
Lutz (10.1016/j.rse.2019.111497_bib48) 2017; 6
Lutz (10.1016/j.rse.2019.111497_bib49) 2014; 44
Morgan (10.1016/j.rse.2019.111497_bib88) 2014; 23
Barbosa (10.1016/j.rse.2019.111497_bib2) 1999; 13
Brewer (10.1016/j.rse.2019.111497_bib7) 2005; 10
Keane (10.1016/j.rse.2019.111497_bib31) 2008; 17
Miller (10.1016/j.rse.2019.111497_bib60) 2009; 113
Eidenshink (10.1016/j.rse.2019.111497_bib14) 2007; 3
R Core Team (10.1016/j.rse.2019.111497_bib66) 2018
Roy (10.1016/j.rse.2019.111497_bib68) 2006; 3
Barth (10.1016/j.rse.2019.111497_bib3) 2015; 354
Kolden (10.1016/j.rse.2019.111497_bib34) 2012; 286
References_xml – volume: 5
  start-page: 10
  year: 2009
  ident: bib78
  article-title: Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest
  publication-title: Fire Ecol.
– volume: 11
  start-page: 2281
  year: 1990
  end-page: 2297
  ident: bib81
  article-title: Comparison between two vegetation indices for measuring different types of forest damage in the north-eastern United States
  publication-title: Int. J. Remote Sens.
– volume: 286
  start-page: 38
  year: 2012
  end-page: 47
  ident: bib34
  article-title: Mapped versus actual burned area within wildfire perimeters: characterizing the unburned
  publication-title: For. Ecol. Manag.
– year: 2006
  ident: bib87
  article-title: Scaling and Uncertainty Analysis in Ecology
– volume: 82
  start-page: 481
  year: 2002
  end-page: 496
  ident: bib62
  article-title: Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 34
  year: 2007
  end-page: 52
  ident: bib82
  article-title: Fire regime attributes of wildland fires in Yosemite National Park, USA
  publication-title: Fire Ecol.
– volume: 28
  start-page: 46
  year: 2019
  end-page: 61
  ident: bib18
  article-title: Multi-scale assessment of post-fire tree mortality models
  publication-title: Int. J. Wildland Fire
– volume: 6
  start-page: 1827
  year: 2014
  end-page: 1844
  ident: bib64
  article-title: A new metric for quantifying burn severity: the relativized burn ratio
  publication-title: Remote Sens.
– volume: 136
  start-page: 76
  year: 2013
  end-page: 88
  ident: bib65
  article-title: Multiple endmember spectral mixture analysis (MESMA) to map burn severity levels from Landsat images in mediterranean countries
  publication-title: Remote Sens. Environ.
– volume: 154
  start-page: 322
  year: 2014
  end-page: 337
  ident: bib71
  article-title: Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems
  publication-title: Remote Sens. Environ.
– volume: 432
  start-page: 1041
  year: 2019
  end-page: 1052
  ident: bib5
  article-title: The importance of small fire refugia in the central Sierra Nevada, California, USA
  publication-title: For. Ecol. Manag.
– volume: 96
  start-page: 328
  year: 2005
  end-page: 339
  ident: bib15
  article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 3010
  year: 2011
  end-page: 3026
  ident: bib69
  article-title: Model-based SIR for dimension reduction
  publication-title: Comput. Stat. Data Anal.
– volume: 358
  start-page: 62
  year: 2015
  end-page: 79
  ident: bib29
  article-title: Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure
  publication-title: For. Ecol. Manag.
– volume: 89
  start-page: 255
  year: 2015
  end-page: 269
  ident: bib40
  article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change
  publication-title: Northwest Sci.
– volume: 186
  start-page: 275
  year: 2016
  end-page: 285
  ident: bib56
  article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States
  publication-title: Remote Sens. Environ.
– volume: 76
  start-page: 257
  year: 2006
  end-page: 275
  ident: bib43
  article-title: Tree mortality during early forest development: a long-term study of rates, causes, and consequences
  publication-title: Ecol. Monogr.
– volume: 49
  start-page: 93
  year: 1994
  end-page: 104
  ident: bib53
  article-title: Remote sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem
  publication-title: Remote Sens. Environ.
– volume: 377
  start-page: 16
  year: 2016
  end-page: 25
  ident: bib37
  article-title: Post-fire morel (
  publication-title: For. Ecol. Manag.
– volume: 9
  year: 2018
  ident: bib57
  article-title: Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014
  publication-title: Ecosphere
– volume: 8
  year: 2013
  ident: bib45
  article-title: The importance of large-diameter trees to forest structural heterogeneity
  publication-title: PLoS One
– volume: 15
  start-page: 16
  year: 2019
  ident: bib11
  article-title: Fuel dynamics after reintroduced fire in an old-growth Sierra Nevada mixed-conifer forest
  publication-title: Fire Ecol.
– volume: 7
  year: 2012
  ident: bib46
  article-title: Ecological importance of large-diameter trees in a temperate mixed-conifer forest
  publication-title: PLoS One
– volume: 6
  start-page: 10
  year: 2017
  ident: bib48
  article-title: Fire and the distribution and uncertainty of carbon sequestered as aboveground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks
  publication-title: Land
– volume: 10
  start-page: 879
  year: 2018
  ident: bib63
  article-title: Mean composite fire severity metrics computed with google Earth engine offer improved accuracy and expanded mapping potential
  publication-title: Remote Sens.
– year: 2007
  ident: bib76
  article-title: 10m Digital Elevation Model for Yosemite National Park
– volume: 391
  start-page: 164
  year: 2017
  end-page: 175
  ident: bib54
  article-title: Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest
  publication-title: For. Ecol. Manag.
– volume: 113
  start-page: 645
  year: 2009
  end-page: 656
  ident: bib60
  article-title: Calibration and validation of the relative differenced normalized burn ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and klamath Mountains, California, USA
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bib66
  article-title: R: A Language and Environment for Statistical Computing
– reference: Jeronimo, S., Lutz, J.A., Kane, V.R., Larson, A.J., Franklin, J.F., in review. Burn weather and three-dimensional fuel structure determine post-fire tree mortality. Landscape Ecology. Submitted for publication.
– volume: 22
  start-page: 707
  year: 2013
  end-page: 720
  ident: bib84
  article-title: Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions
  publication-title: Int. J. Wildland Fire
– volume: 80
  start-page: 385
  year: 2002
  end-page: 396
  ident: bib86
  article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery
  publication-title: Remote Sens. Environ.
– volume: 437
  start-page: 70
  year: 2019
  end-page: 86
  ident: bib27
  article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada
  publication-title: For. Ecol. Manag.
– volume: 10
  year: 2019
  ident: bib22
  article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region
  publication-title: Ecosphere
– volume: 109
  start-page: 66
  year: 2007
  end-page: 80
  ident: bib61
  article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 1192
  year: 2015
  end-page: 1208
  ident: bib21
  article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim fire in an old-growth mixed-conifer forest, Yosemite National Park, USA.
  publication-title: Ecosystems
– volume: 25
  start-page: 3985
  year: 2019
  end-page: 3994
  ident: bib72
  article-title: Hitting a snag in estimating carbon emissions from wildfires
  publication-title: Glob. Chang. Biol.
– volume: 13
  start-page: 104
  year: 2017
  end-page: 126
  ident: bib41
  article-title: Shrub communities, spatial patterns, and shrub-mediated tree mortality following reintroduced fire in Yosemite National Park, California, USA
  publication-title: Fire Ecol.
– volume: 28
  start-page: 2753
  year: 2007
  end-page: 2775
  ident: bib70
  article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS
  publication-title: Int. J. Remote Sens.
– volume: 1
  start-page: 5
  year: 2018
  ident: bib47
  article-title: Advancing fire science with large forest plots and a long-term multidisciplinary approach
  publication-title: Fire
– volume: 3
  start-page: 112
  year: 2006
  end-page: 116
  ident: bib68
  article-title: Remote sensing of fire severity: assessing the performance of the normalized burn ratio
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 7
  year: 2016
  ident: bib4
  article-title: Can low-severity fire reverse overstory compositional change in montane forests of the Sierra Nevada, USA?
  publication-title: Ecosphere
– volume: 92
  start-page: 397
  year: 2004
  end-page: 408
  ident: bib83
  article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity
  publication-title: Remote Sens. Environ.
– volume: 88
  start-page: 2783
  year: 2007
  end-page: 2792
  ident: bib13
  article-title: Random Forests for classification in ecology
  publication-title: Ecology
– volume: 13
  start-page: 933
  year: 1999
  end-page: 950
  ident: bib2
  article-title: An assessment of vegetation fire in Africa (1981-1991): burned areas, burned biomass, and atmospheric emissions
  publication-title: Glob. Biogeochem. Cycles
– volume: 44
  start-page: 677
  year: 2014
  end-page: 683
  ident: bib49
  article-title: Community composition and allometry of
  publication-title: Can. J. For. Res.
– volume: 68
  start-page: 944
  year: 2018
  end-page: 954
  ident: bib58
  article-title: Fire refugia: what are they, and why do they matter for global change?
  publication-title: Bioscience
– year: 2013
  ident: bib26
  publication-title: Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications
– volume: 5
  start-page: 423
  year: 2014
  end-page: 431
  ident: bib1
  article-title: Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance
  publication-title: Remote Sens. Lett.
– volume: 406
  start-page: 28
  year: 2017
  end-page: 36
  ident: bib89
  article-title: Changing spatial patterns of stand-replacing fire in California conifer forests
  publication-title: Forest Ecology and Management
– volume: 24
  year: 1979
  ident: bib75
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2005
  ident: bib7
  article-title: Classifying and mapping wildfire severity: a comparison of methods
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 6
  year: 2015
  ident: bib20
  article-title: Uncertainty analysis: an evaluation metric for synthesis science
  publication-title: Ecosphere
– volume: 328
  start-page: 326
  year: 2014
  end-page: 334
  ident: bib51
  article-title: Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
  publication-title: For. Ecol. Manag.
– volume: 151
  start-page: 89
  year: 2014
  end-page: 101
  ident: bib30
  article-title: Assessing fire-mediated change to forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 113004
  year: 2018
  ident: bib24
  article-title: Fire and tree death: understanding and improving modeling of fire-induced tree mortality
  publication-title: Environ. Res. Lett.
– volume: 19
  start-page: 2493
  year: 1998
  end-page: 2507
  ident: bib36
  article-title: Assessing wildfire effects with Landsat thematic mapper data
  publication-title: Int. J. Remote Sens.
– year: 2001
  ident: bib79
  article-title: Forest Giants of the Pacific Coast
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bib25
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 191
  start-page: 95
  year: 2017
  end-page: 109
  ident: bib59
  article-title: Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 3
  year: 2007
  end-page: 21
  ident: bib14
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecol.
– volume: 444
  start-page: 174
  year: 2019
  end-page: 186
  ident: bib6
  article-title: Forest structure predictive of Fisher (
  publication-title: For. Ecol. Manag.
– volume: 8
  year: 2017
  ident: bib17
  article-title: Reconciling niches and neutrality in a subalpine temperate forest
  publication-title: Ecosphere
– volume: 24
  start-page: 1023
  year: 2015
  end-page: 1028
  ident: bib35
  article-title: Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA
  publication-title: Int. J. Wildland Fire
– year: 2006
  ident: bib32
  article-title: Landscape assessment (LA)
  publication-title: Gen. Tech. Rep. RMRS-GTR-164-CD
– year: 2019
  ident: bib52
  article-title: Data for tree mortality calibration of satellite and LiDAR-derived fire severity estimates
– volume: 9
  year: 2018
  ident: bib10
  article-title: Fire enhances the complexity of forest structure in alpine treeline ecotones
  publication-title: Ecosphere
– volume: 7
  start-page: 51
  year: 2011
  end-page: 65
  ident: bib44
  article-title: Fire frequency, area burned, and severity: a quantitative approach to defining a normal fire year
  publication-title: Fire Ecol.
– volume: 27
  start-page: 407
  year: 2018
  end-page: 412
  ident: bib55
  article-title: Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest
  publication-title: Int. J. Wildland Fire
– volume: 15
  start-page: 319
  year: 2006
  ident: bib38
  article-title: Remote sensing techniques to assess active fire characteristics and post-fire effects
  publication-title: Int. J. Wildland Fire
– volume: 27
  start-page: 849
  year: 2018
  end-page: 864
  ident: bib42
  article-title: Global importance of large-diameter trees
  publication-title: Glob. Ecol. Biogeogr.
– volume: vol. 9
  year: 1974
  ident: bib67
  publication-title: Monitoring Vegetation Systems in the Great Plains with ERTS
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: bib19
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 2641
  year: 2001
  end-page: 2647
  ident: bib74
  article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah
  publication-title: Int. J. Remote Sens.
– volume: 354
  start-page: 104
  year: 2015
  end-page: 118
  ident: bib3
  article-title: A forest reconstruction model to assess changes to Sierra Nevada mixed-conifer forest during the fire suppression era
  publication-title: For. Ecol. Manag.
– volume: 32
  year: 2017
  ident: bib90
  article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns
  publication-title: Landscape Ecology
– volume: 4
  start-page: 456
  year: 2012
  end-page: 483
  ident: bib9
  article-title: How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods
  publication-title: Remote Sens.
– volume: 9
  year: 2018
  ident: bib85
  article-title: Variability and drivers of burn severity in the northwestern Canadian boreal forest
  publication-title: Ecosphere
– start-page: 5
  year: 2016
  end-page: 8
  ident: bib23
  article-title: Raster: Geographic Data Analysis and Modeling. R Package Version 2
– year: 2018
  ident: bib8
  article-title: Top 20 Largest California Wildfires
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  ident: bib80
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 696
  year: 2008
  ident: bib31
  article-title: Ecological effects of large fires on US landscapes: benefit or catastrophe?
  publication-title: Int. J. Wildland Fire
– volume: 23
  year: 2014
  ident: bib88
  article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
  publication-title: International Journal of Wildland Fire
– volume: 18
  start-page: 765
  year: 2009
  end-page: 774
  ident: bib50
  article-title: Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
  publication-title: Int. J. Wildland Fire
– year: 1990
  ident: bib16
  article-title: Uncertainty and Quality in Science for Policy
– volume: 28
  year: 2019
  ident: bib12
  article-title: A quantitative comparison of forest fires in central and northern California under early (1911–1924) and contemporary (2002–2015) fire suppression
  publication-title: Int. J. Wildland Fire
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib39
  article-title: Classification and regression by randomForest
  publication-title: R. News
– start-page: 106
  year: 2016
  ident: bib77
  article-title: LANDSAT 8 (L8) Data Users Handbook Version 2.0
– volume: 507
  start-page: 90
  year: 2014
  end-page: 93
  ident: bib73
  article-title: Rate of tree carbon accumulation increases continuously with tree size
  publication-title: Nature
– volume: 89
  start-page: 219
  year: 2015
  end-page: 238
  ident: bib33
  article-title: Climate contributors to forest mosaics: ecological persistence following wildfire
  publication-title: Northwest Sci.
– volume: 10
  year: 2005
  ident: 10.1016/j.rse.2019.111497_bib7
  article-title: Classifying and mapping wildfire severity: a comparison of methods
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 185
  start-page: 46
  year: 2016
  ident: 10.1016/j.rse.2019.111497_bib80
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– volume: 24
  year: 1979
  ident: 10.1016/j.rse.2019.111497_bib75
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 2493
  year: 1998
  ident: 10.1016/j.rse.2019.111497_bib36
  article-title: Assessing wildfire effects with Landsat thematic mapper data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698214587
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.rse.2019.111497_bib25
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 10
  issue: 2
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib22
  article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2600
– volume: 68
  start-page: 944
  issue: 12
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib58
  article-title: Fire refugia: what are they, and why do they matter for global change?
  publication-title: Bioscience
– volume: 354
  start-page: 104
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib3
  article-title: A forest reconstruction model to assess changes to Sierra Nevada mixed-conifer forest during the fire suppression era
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.06.030
– volume: 186
  start-page: 275
  year: 2016
  ident: 10.1016/j.rse.2019.111497_bib56
  article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.023
– volume: 82
  start-page: 481
  year: 2002
  ident: 10.1016/j.rse.2019.111497_bib62
  article-title: Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00071-8
– volume: 7
  issue: 12
  year: 2016
  ident: 10.1016/j.rse.2019.111497_bib4
  article-title: Can low-severity fire reverse overstory compositional change in montane forests of the Sierra Nevada, USA?
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1484
– volume: 7
  year: 2012
  ident: 10.1016/j.rse.2019.111497_bib46
  article-title: Ecological importance of large-diameter trees in a temperate mixed-conifer forest
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036131
– ident: 10.1016/j.rse.2019.111497_bib91
– year: 2001
  ident: 10.1016/j.rse.2019.111497_bib79
– volume: 24
  start-page: 1023
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib35
  article-title: Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15082
– volume: 3
  start-page: 112
  year: 2006
  ident: 10.1016/j.rse.2019.111497_bib68
  article-title: Remote sensing of fire severity: assessing the performance of the normalized burn ratio
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.858485
– volume: 13
  start-page: 933
  year: 1999
  ident: 10.1016/j.rse.2019.111497_bib2
  article-title: An assessment of vegetation fire in Africa (1981-1991): burned areas, burned biomass, and atmospheric emissions
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/1999GB900042
– volume: 432
  start-page: 1041
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib5
  article-title: The importance of small fire refugia in the central Sierra Nevada, California, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2018.10.038
– start-page: 106
  year: 2016
  ident: 10.1016/j.rse.2019.111497_bib77
– year: 2018
  ident: 10.1016/j.rse.2019.111497_bib8
– volume: 191
  start-page: 95
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib59
  article-title: Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.016
– volume: 444
  start-page: 174
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib6
  article-title: Forest structure predictive of Fisher (Pekania pennanti) dens exists in recently burned forest in Yosemite, California, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.04.024
– volume: 22
  start-page: 707
  year: 2013
  ident: 10.1016/j.rse.2019.111497_bib84
  article-title: Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF12168
– volume: 23
  issue: 8
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib88
  article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF13058
– volume: 92
  start-page: 397
  year: 2004
  ident: 10.1016/j.rse.2019.111497_bib83
  article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.015
– volume: 15
  start-page: 319
  year: 2006
  ident: 10.1016/j.rse.2019.111497_bib38
  article-title: Remote sensing techniques to assess active fire characteristics and post-fire effects
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF05097
– volume: 6
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib20
  article-title: Uncertainty analysis: an evaluation metric for synthesis science
  publication-title: Ecosphere
  doi: 10.1890/ES14-00235.1
– volume: 8
  year: 2013
  ident: 10.1016/j.rse.2019.111497_bib45
  article-title: The importance of large-diameter trees to forest structural heterogeneity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082784
– volume: 44
  start-page: 677
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib49
  article-title: Community composition and allometry of Leucothoe davisiae, Cornus sericea, and Chrysolepis sempervirens
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2013-0524
– volume: 58
  start-page: 257
  year: 1996
  ident: 10.1016/j.rse.2019.111497_bib19
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– year: 2006
  ident: 10.1016/j.rse.2019.111497_bib32
  article-title: Landscape assessment (LA)
– year: 2018
  ident: 10.1016/j.rse.2019.111497_bib66
– volume: 28
  start-page: 2753
  year: 2007
  ident: 10.1016/j.rse.2019.111497_bib70
  article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600954704
– volume: 89
  start-page: 255
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib40
  article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change
  publication-title: Northwest Sci.
  doi: 10.3955/046.089.0306
– volume: 1
  start-page: 5
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib47
  article-title: Advancing fire science with large forest plots and a long-term multidisciplinary approach
  publication-title: Fire
  doi: 10.3390/fire1010005
– year: 2007
  ident: 10.1016/j.rse.2019.111497_bib76
– volume: 28
  start-page: 46
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib18
  article-title: Multi-scale assessment of post-fire tree mortality models
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF18031
– volume: 113
  start-page: 645
  year: 2009
  ident: 10.1016/j.rse.2019.111497_bib60
  article-title: Calibration and validation of the relative differenced normalized burn ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and klamath Mountains, California, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.11.009
– volume: 507
  start-page: 90
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib73
  article-title: Rate of tree carbon accumulation increases continuously with tree size
  publication-title: Nature
  doi: 10.1038/nature12914
– volume: 286
  start-page: 38
  year: 2012
  ident: 10.1016/j.rse.2019.111497_bib34
  article-title: Mapped versus actual burned area within wildfire perimeters: characterizing the unburned
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.08.020
– volume: 88
  start-page: 2783
  year: 2007
  ident: 10.1016/j.rse.2019.111497_bib13
  article-title: Random Forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: 17
  start-page: 696
  year: 2008
  ident: 10.1016/j.rse.2019.111497_bib31
  article-title: Ecological effects of large fires on US landscapes: benefit or catastrophe?
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07148
– volume: 9
  issue: 2
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib57
  article-title: Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2029
– volume: 136
  start-page: 76
  year: 2013
  ident: 10.1016/j.rse.2019.111497_bib65
  article-title: Multiple endmember spectral mixture analysis (MESMA) to map burn severity levels from Landsat images in mediterranean countries
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.017
– volume: 406
  start-page: 28
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib89
  article-title: Changing spatial patterns of stand-replacing fire in California conifer forests
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2017.08.051
– volume: 9
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib85
  article-title: Variability and drivers of burn severity in the northwestern Canadian boreal forest
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2128
– volume: 5
  start-page: 3010
  year: 2011
  ident: 10.1016/j.rse.2019.111497_bib69
  article-title: Model-based SIR for dimension reduction
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.05.006
– volume: 10
  start-page: 879
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib63
  article-title: Mean composite fire severity metrics computed with google Earth engine offer improved accuracy and expanded mapping potential
  publication-title: Remote Sens.
  doi: 10.3390/rs10060879
– volume: 8
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib17
  article-title: Reconciling niches and neutrality in a subalpine temperate forest
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1847
– ident: 10.1016/j.rse.2019.111497_bib52
– volume: 15
  start-page: 16
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib11
  article-title: Fuel dynamics after reintroduced fire in an old-growth Sierra Nevada mixed-conifer forest
  publication-title: Fire Ecol.
  doi: 10.1186/s42408-019-0035-y
– volume: 22
  start-page: 2641
  year: 2001
  ident: 10.1016/j.rse.2019.111497_bib74
  article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110053185
– volume: 13
  start-page: 104
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib41
  article-title: Shrub communities, spatial patterns, and shrub-mediated tree mortality following reintroduced fire in Yosemite National Park, California, USA
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.1301104
– volume: 18
  start-page: 1192
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib21
  article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim fire in an old-growth mixed-conifer forest, Yosemite National Park, USA.
  publication-title: Ecosystems
  doi: 10.1007/s10021-015-9890-9
– year: 1990
  ident: 10.1016/j.rse.2019.111497_bib16
– volume: 28
  issue: 2
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib12
  article-title: A quantitative comparison of forest fires in central and northern California under early (1911–1924) and contemporary (2002–2015) fire suppression
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF18137
– volume: 32
  issue: 8
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib90
  article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns
  publication-title: Landscape Ecology
  doi: 10.1007/s10980-017-0528-5
– volume: 49
  start-page: 93
  year: 1994
  ident: 10.1016/j.rse.2019.111497_bib53
  article-title: Remote sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90046-9
– volume: 7
  start-page: 51
  year: 2011
  ident: 10.1016/j.rse.2019.111497_bib44
  article-title: Fire frequency, area burned, and severity: a quantitative approach to defining a normal fire year
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0702051
– volume: 3
  start-page: 34
  year: 2007
  ident: 10.1016/j.rse.2019.111497_bib82
  article-title: Fire regime attributes of wildland fires in Yosemite National Park, USA
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0302034
– volume: 27
  start-page: 407
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib55
  article-title: Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF17137
– volume: 76
  start-page: 257
  issue: 2
  year: 2006
  ident: 10.1016/j.rse.2019.111497_bib43
  article-title: Tree mortality during early forest development: a long-term study of rates, causes, and consequences
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2
– volume: 6
  start-page: 10
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib48
  article-title: Fire and the distribution and uncertainty of carbon sequestered as aboveground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks
  publication-title: Land
  doi: 10.3390/land6010010
– year: 2013
  ident: 10.1016/j.rse.2019.111497_bib26
– volume: 6
  start-page: 1827
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib64
  article-title: A new metric for quantifying burn severity: the relativized burn ratio
  publication-title: Remote Sens.
  doi: 10.3390/rs6031827
– volume: 80
  start-page: 385
  year: 2002
  ident: 10.1016/j.rse.2019.111497_bib86
  article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00318-2
– volume: 13
  start-page: 113004
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib24
  article-title: Fire and tree death: understanding and improving modeling of fire-induced tree mortality
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aae934
– volume: 4
  start-page: 456
  year: 2012
  ident: 10.1016/j.rse.2019.111497_bib9
  article-title: How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods
  publication-title: Remote Sens.
  doi: 10.3390/rs4020456
– volume: 96
  start-page: 328
  year: 2005
  ident: 10.1016/j.rse.2019.111497_bib15
  article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.002
– volume: 11
  start-page: 2281
  year: 1990
  ident: 10.1016/j.rse.2019.111497_bib81
  article-title: Comparison between two vegetation indices for measuring different types of forest damage in the north-eastern United States
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955175
– volume: vol. 9
  year: 1974
  ident: 10.1016/j.rse.2019.111497_bib67
– volume: 25
  start-page: 3985
  issue: 11
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib72
  article-title: Hitting a snag in estimating carbon emissions from wildfires
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14716
– volume: 27
  start-page: 849
  issue: 7
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib42
  article-title: Global importance of large-diameter trees
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12747
– volume: 437
  start-page: 70
  year: 2019
  ident: 10.1016/j.rse.2019.111497_bib27
  article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.01.033
– volume: 5
  start-page: 423
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib1
  article-title: Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2014.915434
– year: 2006
  ident: 10.1016/j.rse.2019.111497_bib87
– start-page: 5
  year: 2016
  ident: 10.1016/j.rse.2019.111497_bib23
– volume: 18
  start-page: 765
  year: 2009
  ident: 10.1016/j.rse.2019.111497_bib50
  article-title: Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08117
– volume: 154
  start-page: 322
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib71
  article-title: Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.038
– volume: 89
  start-page: 219
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib33
  article-title: Climate contributors to forest mosaics: ecological persistence following wildfire
  publication-title: Northwest Sci.
  doi: 10.3955/046.089.0305
– volume: 377
  start-page: 16
  year: 2016
  ident: 10.1016/j.rse.2019.111497_bib37
  article-title: Post-fire morel (Morchella) mushroom abundance, spatial structure, and harvest sustainability
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.06.038
– volume: 5
  start-page: 10
  year: 2009
  ident: 10.1016/j.rse.2019.111497_bib78
  article-title: Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0502116
– volume: 3
  start-page: 3
  year: 2007
  ident: 10.1016/j.rse.2019.111497_bib14
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0301003
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.rse.2019.111497_bib39
  article-title: Classification and regression by randomForest
  publication-title: R. News
– volume: 109
  start-page: 66
  year: 2007
  ident: 10.1016/j.rse.2019.111497_bib61
  article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.12.006
– volume: 358
  start-page: 62
  year: 2015
  ident: 10.1016/j.rse.2019.111497_bib29
  article-title: Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.09.001
– volume: 9
  year: 2018
  ident: 10.1016/j.rse.2019.111497_bib10
  article-title: Fire enhances the complexity of forest structure in alpine treeline ecotones
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2091
– volume: 391
  start-page: 164
  year: 2017
  ident: 10.1016/j.rse.2019.111497_bib54
  article-title: Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.02.015
– volume: 151
  start-page: 89
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib30
  article-title: Assessing fire-mediated change to forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.041
– volume: 328
  start-page: 326
  year: 2014
  ident: 10.1016/j.rse.2019.111497_bib51
  article-title: Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2014.06.005
SSID ssj0015871
Score 2.5164163
Snippet Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111497
SubjectTerms Accuracy
burn severity
California
Climatic conditions
climatic factors
Confidence
Diameters
Differenced Normalized Burn Ratio
Ecological effects
Ecological monitoring
Fire effects
Fire severity
georeferencing
Landsat
Landsat 8
Landsat satellites
Landscape
landscapes
Monitoring trends in burn severity
Mortality
refuge habitats
Refugia
Remote sensing
Smithsonian ForestGEO
Spectra
stems
Surface properties
tree and stand measurements
tree mortality
Trees
Uncertainty
Variability
variance
Vegetation index
Yosemite Forest Dynamics Plot
Title Detecting tree mortality with Landsat-derived spectral indices: Improving ecological accuracy by examining uncertainty
URI https://dx.doi.org/10.1016/j.rse.2019.111497
https://www.proquest.com/docview/2352367027
https://www.proquest.com/docview/2352440270
Volume 237
WOSCitedRecordID wos000509819300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBoIXBIWJwUBG4okoVRs7jc1bBWUwVRNCQ-pbFCe2tGnLpiatun_DT-X4mq5oE3vgJap8k5vz5ZxjnxtCH5RKQMwJFVdU0JgqVsSMkixWIGwVL3TFbVO1ZJYdH7P5nP_o9X77WJjVeVbXbL3mV_-V1NAGxNahs_cgd1gUGuA3EB2eQHZ4_hPhv0htF7DlH6SMLox-rXVtc-U606G9RRtXsJUVKJsm0tJm3qgMzyCTqLtokGXgjUVZLhe6Njzoq3JdXJjCEhFIRetT0N4wD_-UgAAZNdo73npVbwTUBcjAnzm1Ndutd0d0NAj837vgagtDaJ0VCxcgZv0wNybMlqYwrfX6jSaDzdsMOLoOg2eI49AEIJPYpNWeQyc2L4zjscCdqfXp_Yv925uIs8Gi0RlQR3zQjb2ZantLBAbHRO_zdpbDErleIrdLPEC7SZZy4Ju7k-_T-VGwVKUss1UZ3b695dz4EG7t4zbdZ0sLMKrNyTP01J1J8MRi6TnqybqP9qYdxaDTyYCmjx4fSpfmvI8eHZrC0Ncv0CrADmvY4QA7rGGHt2CHPeywg90nHECHO9BhDzosrnEAHd4A3Uv06-v05PO32NX0iEuSsjamRHKmskrRYSLZqBRwnC3GIOoIH4tEllxw0KgrpUpQnRkRIi2ZSBQZ6TRJlCmyh3bqy1q-QpixtEqrTKgRUVSBos0zlkoyZlSlMJruo6F_23npEt7ruivn-a1U3kcfw5Qrm-3lrsHUkzB36qpVQ3OA413TDjy5c8c2mjyBc5BOpZhA9_vQDZxem-_gi7tc2jEUXls2fH2fbb5BT7oP7QDttIulfIselqv2tFm8c3D-Axr-zpg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+tree+mortality+with+Landsat-derived+spectral+indices%3A+Improving+ecological+accuracy+by+examining+uncertainty&rft.jtitle=Remote+sensing+of+environment&rft.au=Furniss%2C+Tucker+J.&rft.au=Kane%2C+Van+R.&rft.au=Larson%2C+Andrew+J.&rft.au=Lutz%2C+James+A.&rft.date=2020-02-01&rft.issn=0034-4257&rft.volume=237&rft.spage=111497&rft_id=info:doi/10.1016%2Fj.rse.2019.111497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2019_111497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon