Detecting tree mortality with Landsat-derived spectral indices: Improving ecological accuracy by examining uncertainty
Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging...
Saved in:
| Published in: | Remote sensing of environment Vol. 237; p. 111497 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Inc
01.02.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0034-4257, 1879-0704 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices.
The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy.
There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (>50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects.
This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest;2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale.
[Display omitted]
•Various spectral indices detect different aspects of fire-related tree mortality.•dNBR was not the best index, but it was well suited for general use.•Relativized versions of dNBR did not consistently improve performance.•Range in observed mortality was as high as ±40% around the predicted mean. |
|---|---|
| AbstractList | Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices.The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy.There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (>50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects.This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest;2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale. Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices. The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy. There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (>50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects. This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest;2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale. [Display omitted] •Various spectral indices detect different aspects of fire-related tree mortality.•dNBR was not the best index, but it was well suited for general use.•Relativized versions of dNBR did not consistently improve performance.•Range in observed mortality was as high as ±40% around the predicted mean. |
| ArticleNumber | 111497 |
| Author | Larson, Andrew J. Kane, Van R. Furniss, Tucker J. Lutz, James A. |
| Author_xml | – sequence: 1 givenname: Tucker J. surname: Furniss fullname: Furniss, Tucker J. email: tucker.furniss@usu.edu organization: Wildland Resources Department and Ecology Center, Utah State University, Logan, UT, 84322, USA – sequence: 2 givenname: Van R. surname: Kane fullname: Kane, Van R. organization: School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA – sequence: 3 givenname: Andrew J. surname: Larson fullname: Larson, Andrew J. organization: Wilderness Institute and Department of Forest Management, University of Montana, Missoula, MT, 59812, USA – sequence: 4 givenname: James A. surname: Lutz fullname: Lutz, James A. organization: Wildland Resources Department and Ecology Center, Utah State University, Logan, UT, 84322, USA |
| BookMark | eNp9kcFu1DAQhi3USmwLD8DNEhcuWezYiR04oZZCpZW4lLPlOJMyq8RebGchb4-3y6mHnuYw3_drNP8VufDBAyHvONtyxtuP-21MsK0Z77acc9mpV2TDteoqppi8IBvGhKxk3ajX5CqlPWO80YpvyPEWMriM_pHmCEDnELOdMK_0D-ZfdGf9kGyuBoh4hIGmQ4GjnSj6AR2kT_R-PsRwPPngwhQe0ZWtdW6J1q20Xyn8tTP6E7B4ByUdfV7fkMvRTgne_p_X5Ofd14eb79Xux7f7my-7yolG50oK6PSohlGyGjR3vZLKtkxr0bV9Da7rO1WX9eha0WnR943TfT0KLpTUUo_imnw455Yjfy-QspkxOZgm6yEsydSiqWUJV6yg75-h-7BEX657okSrClYodaZcDClFGI3DbDMGX96Ck-HMnPowe1P6MKc-zLmPYvJn5iHibOP6ovP57ED50REhmuQQyhsHjKUIMwR8wf4HAJGmtQ |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_127431 crossref_primary_10_1016_j_scs_2023_104532 crossref_primary_10_1038_s41467_024_44991_z crossref_primary_10_3390_rs14092195 crossref_primary_10_1071_WF22050 crossref_primary_10_3390_rs14133122 crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1186_s42408_023_00219_x crossref_primary_10_3390_fire6110423 crossref_primary_10_3390_rs17132307 crossref_primary_10_1002_eco_2414 crossref_primary_10_3390_rs12172753 crossref_primary_10_1016_j_foreco_2022_120620 crossref_primary_10_1016_j_rse_2023_113842 crossref_primary_10_1016_j_rse_2025_115007 crossref_primary_10_1071_WF22010 crossref_primary_10_1371_journal_pone_0281927 crossref_primary_10_3390_rs14205249 crossref_primary_10_1111_geb_13526 crossref_primary_10_1016_j_foreco_2023_121190 crossref_primary_10_1016_j_rse_2021_112569 crossref_primary_10_1016_j_rse_2021_112800 crossref_primary_10_1186_s13717_020_00243_8 crossref_primary_10_1002_ece3_70736 crossref_primary_10_1016_j_jag_2024_103673 crossref_primary_10_1016_j_foreco_2021_119796 crossref_primary_10_1016_j_jag_2025_104488 crossref_primary_10_1002_eap_2507 crossref_primary_10_1016_j_foreco_2021_119764 crossref_primary_10_1016_j_ecolmodel_2022_110099 crossref_primary_10_1093_treephys_tpad051 crossref_primary_10_1016_j_foreco_2023_121246 crossref_primary_10_1002_ecs2_3199 crossref_primary_10_1186_s42408_023_00223_1 crossref_primary_10_1002_ecs2_3214 crossref_primary_10_1111_nph_17539 crossref_primary_10_1186_s42408_020_00079_9 crossref_primary_10_3390_f16020194 |
| Cites_doi | 10.1016/j.rse.2016.04.008 10.1080/014311698214587 10.1016/0034-4257(88)90106-X 10.1002/ecs2.2600 10.1016/j.foreco.2015.06.030 10.1016/j.rse.2016.08.023 10.1016/S0034-4257(02)00071-8 10.1002/ecs2.1484 10.1371/journal.pone.0036131 10.1071/WF15082 10.1109/LGRS.2005.858485 10.1029/1999GB900042 10.1016/j.foreco.2018.10.038 10.1016/j.rse.2017.01.016 10.1016/j.foreco.2019.04.024 10.1071/WF12168 10.1071/WF13058 10.1016/j.rse.2003.12.015 10.1071/WF05097 10.1890/ES14-00235.1 10.1371/journal.pone.0082784 10.1139/cjfr-2013-0524 10.1016/S0034-4257(96)00067-3 10.1080/01431160600954704 10.3955/046.089.0306 10.3390/fire1010005 10.1071/WF18031 10.1016/j.rse.2008.11.009 10.1038/nature12914 10.1016/j.foreco.2012.08.020 10.1890/07-0539.1 10.1071/WF07148 10.1002/ecs2.2029 10.1016/j.rse.2013.04.017 10.1016/j.foreco.2017.08.051 10.1002/ecs2.2128 10.1016/j.csda.2011.05.006 10.3390/rs10060879 10.1002/ecs2.1847 10.1186/s42408-019-0035-y 10.1080/01431160110053185 10.4996/fireecology.1301104 10.1007/s10021-015-9890-9 10.1071/WF18137 10.1007/s10980-017-0528-5 10.1016/0034-4257(94)90046-9 10.4996/fireecology.0702051 10.4996/fireecology.0302034 10.1071/WF17137 10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2 10.3390/land6010010 10.3390/rs6031827 10.1016/S0034-4257(01)00318-2 10.1088/1748-9326/aae934 10.3390/rs4020456 10.1016/j.rse.2005.03.002 10.1080/01431169008955175 10.1111/gcb.14716 10.1111/geb.12747 10.1016/j.foreco.2019.01.033 10.1080/2150704X.2014.915434 10.1071/WF08117 10.1016/j.rse.2014.03.038 10.3955/046.089.0305 10.1016/j.foreco.2016.06.038 10.4996/fireecology.0502116 10.4996/fireecology.0301003 10.1016/j.rse.2006.12.006 10.1016/j.foreco.2015.09.001 10.1002/ecs2.2091 10.1016/j.foreco.2017.02.015 10.1016/j.rse.2013.07.041 10.1016/j.foreco.2014.06.005 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Feb 2020 |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Feb 2020 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| DOI | 10.1016/j.rse.2019.111497 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2019_111497 S0034425719305164 |
| GeographicLocations | California |
| GeographicLocations_xml | – name: California |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c358t-43e98f7df402e81cb747a6088396b2ec9b9727dffc63983bb5c8b2f31374848f3 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509819300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Wed Oct 01 13:44:30 EDT 2025 Wed Aug 13 06:31:47 EDT 2025 Tue Nov 18 21:50:23 EST 2025 Sat Nov 29 07:30:06 EST 2025 Fri Feb 23 02:48:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differenced Normalized Burn Ratio Smithsonian ForestGEO Fire severity Landsat 8 Yosemite Forest Dynamics Plot Monitoring trends in burn severity |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c358t-43e98f7df402e81cb747a6088396b2ec9b9727dffc63983bb5c8b2f31374848f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2352367027 |
| PQPubID | 2045405 |
| ParticipantIDs | proquest_miscellaneous_2352440270 proquest_journals_2352367027 crossref_citationtrail_10_1016_j_rse_2019_111497 crossref_primary_10_1016_j_rse_2019_111497 elsevier_sciencedirect_doi_10_1016_j_rse_2019_111497 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Miller, Knapp, Key, Skinner, Isbell, Creasy, Sherlock (bib60) 2009; 113 Lutz, Schwindt, Furniss, Freund, Swanson, Hogan, Kenagy, Larson (bib49) 2014; 44 Jeronimo, S., Lutz, J.A., Kane, V.R., Larson, A.J., Franklin, J.F., in review. Burn weather and three-dimensional fuel structure determine post-fire tree mortality. Landscape Ecology. Submitted for publication. Lutz, Furniss, Germain, Becker, Blomdahl, Jeronimo, Cansler, Freund, Swanson, Larson (bib41) 2017; 13 Macriss, Furniss, Jeronimo, Crowley, Germain, Germain, Kane, Larson, Lutz (bib52) 2019 Lutz, Halpern (bib43) 2006; 76 Kushla, Ripple (bib36) 1998; 19 Tucker (bib75) 1979; 24 Baig, HA, Zhang, Shuai, Tong (bib1) 2014; 5 Harmon, Fasth, Halpern, Lutz (bib20) 2015; 6 Lutz (bib40) 2015; 89 van Wagtendonk, Root, Key (bib83) 2004; 92 USGS (bib76) 2007 Barbosa, Stroppiana, Grégoire, Cardoso Pereira (bib2) 1999; 13 Hijmans (bib23) 2016 McCarley, Smith, Kolden, Kreitler (bib55) 2018; 27 Harris, Taylor (bib21) 2015; 18 Collins, Stevens, Miller, Stephens, Brown, North (bib90) 2017; 32 USGS (bib77) 2016 Scrucca (bib69) 2011; 5 Lentile, Holden, Smith, Falkowski, Hudak, Morgan, Lewis, Gessler, Benson (bib38) 2006; 15 Harvey, Andrus, Anderson (bib22) 2019; 10 Liaw, Wiener (bib39) 2002; 2 Parks, Dillon, Miller (bib64) 2014; 6 Collins, Miller, Knapp, Sapsis (bib12) 2019; 28 Meddens, Kolden, Lutz (bib56) 2016; 186 van Wagtendonk, Lutz (bib82) 2007; 3 Funtowicz, Ravetz (bib16) 1990 Lutz, Matchett, Tarnay, Smith, Becker, Furniss, Brooks (bib48) 2017; 6 Lutz, Larson, Freund, Swanson, Bible (bib45) 2013; 8 Becker, Lutz (bib4) 2016; 7 CAL FIRE (bib8) 2018 Keane, Agee, Fulé, Keeley, Key, Kitchen, Miller, Schulte (bib31) 2008; 17 Kolden, Abatzoglou, Lutz, Cansler, Kane, Wagtendonk, Key (bib33) 2015; 89 McCarley, Kolden, Vaillant, Hudak, Smith, Kreitler (bib54) 2017; 391 Stevens, Collins, Miller, North, Stephens (bib89) 2017; 406 Kolden, Smith, Abatzoglou (bib35) 2015; 24 Blomdahl, Thompson, Kane, Kane, Churchill, Moskal, Lutz (bib6) 2019; 444 Kane, North, Lutz, Churchill, Roberts, Smith, McGaughey, Kane, Brooks (bib30) 2014; 151 Miller, Yool (bib62) 2002; 82 Hood, Varner, van Mantgem, Cansler (bib24) 2018; 13 Vermote, Justice, Claverie, Franch (bib80) 2016; 185 Brewer, Winne, Redmond, Opitz, Mangrich (bib7) 2005; 10 Lutz, van Wagtendonk, Thode, Miller, Franklin (bib50) 2009; 18 Kolden, Lutz, Key, Kane, van Wagtendonk (bib34) 2012; 286 Gao (bib19) 1996; 58 Larson, Cansler, Cowdery, Hiebert, Furniss, Swanson, Lutz (bib37) 2016; 377 Parks, Holsinger, Voss, Loehman, Robinson (bib63) 2018; 10 Cutler, Edwards, Beard, Cutler, Hess, Gibson, Lawler (bib13) 2007; 88 Marceau, Howarth, Gratton (bib53) 1994; 49 Blomdahl, Kolden, Meddens, Lutz (bib5) 2019; 432 Rouse, Haas (bib67) 1974; vol. 9 Cansler, McKenzie (bib9) 2012; 4 van Mantgem, Schwilk (bib78) 2009; 5 Lutz, Key, Kolden, Kane, van Wagtendonk (bib44) 2011; 7 Miller, Thode (bib61) 2007; 109 Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bib14) 2007; 3 Meddens, Kolden, Lutz, Smith, Cansler, Abatzoglou, Meigs, Downing, Krawchuk (bib58) 2018; 68 Lutz, Furniss, Johnson, Davies, Allen, Alonso, Anderson-Teixeira, Andrade, Baltzer, Becker, Blomdahl, Bourg, Bunyavejchewin, Burslem, Cansler, Cao, Cao, Cárdenas, Chang, Chao, Chao, Chiang, Chu, Chuyong, Clay, Condit, Cordell, Dattaraja, Duque, Ewango, Fischer, Fletcher, Freund, Giardina, Germain, Gilbert, Hao, Hart, Hau, He, Hector, Howe, Hsieh, Hu, Hubbell, Inman-Narahari, Itoh, Janík, Kassim, Kenfack, Korte, Král, Larson, Li, Lin, Liu, Lum, Ma, Makana, Malhi, McMahon, McShea, Memiaghe, Mi, Morecroft, Musili, Myers, Novotny, de Oliveira, Ong, Orwig, Ostertag, Parker, Patankar, Phillips, Reynolds, Sack, Song, Su, Sukumar, Sun, Suresh, Swanson, Tan, Thomas, Thompson, Uriarte, Valencia, Vicentini, Vrška, Wang, Weiblen, Wolf, Wu, Xu, Yamakura, Yap, Zimmerman (bib42) 2018; 27 Epting, Verbyla, Sorbel (bib15) 2005; 96 Van Pelt (bib79) 2001 Furniss, Larson, Lutz (bib17) 2017; 8 Cansler, McKenzie, Halpern (bib10) 2018; 9 Lutz, Larson, Swanson (bib47) 2018; 1 Smith, Kolden, Tinkham, Talhelm, Marshall, Hudak, Boschetti, Falkowski, Greenberg, Anderson, Kliskey, Alessa, Keefe, Gosz (bib71) 2014; 154 Meddens, Kolden, Lutz, Abatzoglou, Hudak (bib57) 2018; 9 Morgan, Keane, Dillon, Jain, Hudak, Karau, Sikkink, Holden, Strand (bib88) 2014; 23 Key, Benson (bib32) 2006 Veraverbeke, Hook (bib84) 2013; 22 Whitman, Parisien, Thompson, Hall, Skakun, Flannigan (bib85) 2018; 9 Cansler, Swanson, Furniss, Larson, Lutz (bib11) 2019; 15 Huete (bib25) 1988; 25 Lutz, Larson, Swanson, Freund (bib46) 2012; 7 Meng, Wu, Schwager, Zhao, Dennison, Cook, Brewster, Green, Serbin (bib59) 2017; 191 Kane, Cansler, Povak, Kane, McGaughey, Lutz, Churchill, North (bib29) 2015; 358 (bib26) 2013 Roy, Boschetti, Trigg (bib68) 2006; 3 Trigg, Flasse (bib74) 2001; 22 R Core Team (bib66) 2018 Stephenson, Das, Condit, Russo, Baker, Beckman, Coomes, Lines, Morris, Rüger, Álvarez, Blundo, Bunyavejchewin, Chuyong, Davies, Duque, Ewango, Flores, Franklin, Grau, Hao, Harmon, Hubbell, Kenfack, Lin, Makana, Malizia, Malizia, Pabst, Pongpattananurak, Su, Sun, Tan, Thomas, van Mantgem, Wang, Wiser, Zavala (bib73) 2014; 507 Jeronimo, Kane, Churchill, Lutz, North, Asner, Franklin (bib27) 2019; 437 Smith, Drake, Wooster, Hudak, Holden, Gibbons (bib70) 2007; 28 Wu, Jones, Li, Loucks (bib87) 2006 Stenzel, Bartowitz, Hartman, Lutz, Kolden, Smith, Swanson, Larson, Parton, Hudibug (bib72) 2019; 25 Furniss, Larson, Kane, Lutz (bib18) 2019; 28 Quintano, Fernández-Manso, Roberts (bib65) 2013; 136 Wilson, Sader (bib86) 2002; 80 Lydersen, North, Collins (bib51) 2014; 328 Barth, Larson, Lutz (bib3) 2015; 354 Vogelmann (bib81) 1990; 11 Harmon (10.1016/j.rse.2019.111497_bib20) 2015; 6 Blomdahl (10.1016/j.rse.2019.111497_bib6) 2019; 444 McCarley (10.1016/j.rse.2019.111497_bib55) 2018; 27 Furniss (10.1016/j.rse.2019.111497_bib18) 2019; 28 Meddens (10.1016/j.rse.2019.111497_bib57) 2018; 9 Cansler (10.1016/j.rse.2019.111497_bib11) 2019; 15 Harvey (10.1016/j.rse.2019.111497_bib22) 2019; 10 Larson (10.1016/j.rse.2019.111497_bib37) 2016; 377 Lutz (10.1016/j.rse.2019.111497_bib50) 2009; 18 Tucker (10.1016/j.rse.2019.111497_bib75) 1979; 24 Stephenson (10.1016/j.rse.2019.111497_bib73) 2014; 507 Harris (10.1016/j.rse.2019.111497_bib21) 2015; 18 Lutz (10.1016/j.rse.2019.111497_bib47) 2018; 1 Kane (10.1016/j.rse.2019.111497_bib30) 2014; 151 Gao (10.1016/j.rse.2019.111497_bib19) 1996; 58 Jeronimo (10.1016/j.rse.2019.111497_bib27) 2019; 437 Stenzel (10.1016/j.rse.2019.111497_bib72) 2019; 25 Cansler (10.1016/j.rse.2019.111497_bib9) 2012; 4 Kane (10.1016/j.rse.2019.111497_bib29) 2015; 358 Parks (10.1016/j.rse.2019.111497_bib63) 2018; 10 van Wagtendonk (10.1016/j.rse.2019.111497_bib83) 2004; 92 Hood (10.1016/j.rse.2019.111497_bib24) 2018; 13 Key (10.1016/j.rse.2019.111497_bib32) 2006 Scrucca (10.1016/j.rse.2019.111497_bib69) 2011; 5 Vogelmann (10.1016/j.rse.2019.111497_bib81) 1990; 11 Cansler (10.1016/j.rse.2019.111497_bib10) 2018; 9 Becker (10.1016/j.rse.2019.111497_bib4) 2016; 7 Van Pelt (10.1016/j.rse.2019.111497_bib79) 2001 Miller (10.1016/j.rse.2019.111497_bib61) 2007; 109 10.1016/j.rse.2019.111497_bib91 Funtowicz (10.1016/j.rse.2019.111497_bib16) 1990 Huete (10.1016/j.rse.2019.111497_bib25) 1988; 25 Smith (10.1016/j.rse.2019.111497_bib70) 2007; 28 Stevens (10.1016/j.rse.2019.111497_bib89) 2017; 406 Parks (10.1016/j.rse.2019.111497_bib64) 2014; 6 Lutz (10.1016/j.rse.2019.111497_bib45) 2013; 8 Vermote (10.1016/j.rse.2019.111497_bib80) 2016; 185 Whitman (10.1016/j.rse.2019.111497_bib85) 2018; 9 Marceau (10.1016/j.rse.2019.111497_bib53) 1994; 49 Trigg (10.1016/j.rse.2019.111497_bib74) 2001; 22 Baig (10.1016/j.rse.2019.111497_bib1) 2014; 5 Lutz (10.1016/j.rse.2019.111497_bib43) 2006; 76 Lutz (10.1016/j.rse.2019.111497_bib46) 2012; 7 Lentile (10.1016/j.rse.2019.111497_bib38) 2006; 15 Wu (10.1016/j.rse.2019.111497_bib87) 2006 Meng (10.1016/j.rse.2019.111497_bib59) 2017; 191 Kolden (10.1016/j.rse.2019.111497_bib35) 2015; 24 Kolden (10.1016/j.rse.2019.111497_bib33) 2015; 89 Quintano (10.1016/j.rse.2019.111497_bib65) 2013; 136 (10.1016/j.rse.2019.111497_bib26) 2013 Rouse (10.1016/j.rse.2019.111497_bib67) 1974; vol. 9 van Mantgem (10.1016/j.rse.2019.111497_bib78) 2009; 5 van Wagtendonk (10.1016/j.rse.2019.111497_bib82) 2007; 3 Hijmans (10.1016/j.rse.2019.111497_bib23) 2016 Lutz (10.1016/j.rse.2019.111497_bib41) 2017; 13 Smith (10.1016/j.rse.2019.111497_bib71) 2014; 154 Collins (10.1016/j.rse.2019.111497_bib12) 2019; 28 Furniss (10.1016/j.rse.2019.111497_bib17) 2017; 8 Lutz (10.1016/j.rse.2019.111497_bib40) 2015; 89 Meddens (10.1016/j.rse.2019.111497_bib56) 2016; 186 USGS (10.1016/j.rse.2019.111497_bib76) 2007 Blomdahl (10.1016/j.rse.2019.111497_bib5) 2019; 432 Kushla (10.1016/j.rse.2019.111497_bib36) 1998; 19 Epting (10.1016/j.rse.2019.111497_bib15) 2005; 96 Lydersen (10.1016/j.rse.2019.111497_bib51) 2014; 328 CAL FIRE (10.1016/j.rse.2019.111497_bib8) 2018 Collins (10.1016/j.rse.2019.111497_bib90) 2017; 32 McCarley (10.1016/j.rse.2019.111497_bib54) 2017; 391 Cutler (10.1016/j.rse.2019.111497_bib13) 2007; 88 USGS (10.1016/j.rse.2019.111497_bib77) 2016 Lutz (10.1016/j.rse.2019.111497_bib44) 2011; 7 Meddens (10.1016/j.rse.2019.111497_bib58) 2018; 68 Miller (10.1016/j.rse.2019.111497_bib62) 2002; 82 Wilson (10.1016/j.rse.2019.111497_bib86) 2002; 80 Veraverbeke (10.1016/j.rse.2019.111497_bib84) 2013; 22 Macriss (10.1016/j.rse.2019.111497_bib52) Lutz (10.1016/j.rse.2019.111497_bib42) 2018; 27 Liaw (10.1016/j.rse.2019.111497_bib39) 2002; 2 Lutz (10.1016/j.rse.2019.111497_bib48) 2017; 6 Lutz (10.1016/j.rse.2019.111497_bib49) 2014; 44 Morgan (10.1016/j.rse.2019.111497_bib88) 2014; 23 Barbosa (10.1016/j.rse.2019.111497_bib2) 1999; 13 Brewer (10.1016/j.rse.2019.111497_bib7) 2005; 10 Keane (10.1016/j.rse.2019.111497_bib31) 2008; 17 Miller (10.1016/j.rse.2019.111497_bib60) 2009; 113 Eidenshink (10.1016/j.rse.2019.111497_bib14) 2007; 3 R Core Team (10.1016/j.rse.2019.111497_bib66) 2018 Roy (10.1016/j.rse.2019.111497_bib68) 2006; 3 Barth (10.1016/j.rse.2019.111497_bib3) 2015; 354 Kolden (10.1016/j.rse.2019.111497_bib34) 2012; 286 |
| References_xml | – volume: 5 start-page: 10 year: 2009 ident: bib78 article-title: Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest publication-title: Fire Ecol. – volume: 11 start-page: 2281 year: 1990 end-page: 2297 ident: bib81 article-title: Comparison between two vegetation indices for measuring different types of forest damage in the north-eastern United States publication-title: Int. J. Remote Sens. – volume: 286 start-page: 38 year: 2012 end-page: 47 ident: bib34 article-title: Mapped versus actual burned area within wildfire perimeters: characterizing the unburned publication-title: For. Ecol. Manag. – year: 2006 ident: bib87 article-title: Scaling and Uncertainty Analysis in Ecology – volume: 82 start-page: 481 year: 2002 end-page: 496 ident: bib62 article-title: Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data publication-title: Remote Sens. Environ. – volume: 3 start-page: 34 year: 2007 end-page: 52 ident: bib82 article-title: Fire regime attributes of wildland fires in Yosemite National Park, USA publication-title: Fire Ecol. – volume: 28 start-page: 46 year: 2019 end-page: 61 ident: bib18 article-title: Multi-scale assessment of post-fire tree mortality models publication-title: Int. J. Wildland Fire – volume: 6 start-page: 1827 year: 2014 end-page: 1844 ident: bib64 article-title: A new metric for quantifying burn severity: the relativized burn ratio publication-title: Remote Sens. – volume: 136 start-page: 76 year: 2013 end-page: 88 ident: bib65 article-title: Multiple endmember spectral mixture analysis (MESMA) to map burn severity levels from Landsat images in mediterranean countries publication-title: Remote Sens. Environ. – volume: 154 start-page: 322 year: 2014 end-page: 337 ident: bib71 article-title: Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems publication-title: Remote Sens. Environ. – volume: 432 start-page: 1041 year: 2019 end-page: 1052 ident: bib5 article-title: The importance of small fire refugia in the central Sierra Nevada, California, USA publication-title: For. Ecol. Manag. – volume: 96 start-page: 328 year: 2005 end-page: 339 ident: bib15 article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+ publication-title: Remote Sens. Environ. – volume: 5 start-page: 3010 year: 2011 end-page: 3026 ident: bib69 article-title: Model-based SIR for dimension reduction publication-title: Comput. Stat. Data Anal. – volume: 358 start-page: 62 year: 2015 end-page: 79 ident: bib29 article-title: Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure publication-title: For. Ecol. Manag. – volume: 89 start-page: 255 year: 2015 end-page: 269 ident: bib40 article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change publication-title: Northwest Sci. – volume: 186 start-page: 275 year: 2016 end-page: 285 ident: bib56 article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States publication-title: Remote Sens. Environ. – volume: 76 start-page: 257 year: 2006 end-page: 275 ident: bib43 article-title: Tree mortality during early forest development: a long-term study of rates, causes, and consequences publication-title: Ecol. Monogr. – volume: 49 start-page: 93 year: 1994 end-page: 104 ident: bib53 article-title: Remote sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem publication-title: Remote Sens. Environ. – volume: 377 start-page: 16 year: 2016 end-page: 25 ident: bib37 article-title: Post-fire morel ( publication-title: For. Ecol. Manag. – volume: 9 year: 2018 ident: bib57 article-title: Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014 publication-title: Ecosphere – volume: 8 year: 2013 ident: bib45 article-title: The importance of large-diameter trees to forest structural heterogeneity publication-title: PLoS One – volume: 15 start-page: 16 year: 2019 ident: bib11 article-title: Fuel dynamics after reintroduced fire in an old-growth Sierra Nevada mixed-conifer forest publication-title: Fire Ecol. – volume: 7 year: 2012 ident: bib46 article-title: Ecological importance of large-diameter trees in a temperate mixed-conifer forest publication-title: PLoS One – volume: 6 start-page: 10 year: 2017 ident: bib48 article-title: Fire and the distribution and uncertainty of carbon sequestered as aboveground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks publication-title: Land – volume: 10 start-page: 879 year: 2018 ident: bib63 article-title: Mean composite fire severity metrics computed with google Earth engine offer improved accuracy and expanded mapping potential publication-title: Remote Sens. – year: 2007 ident: bib76 article-title: 10m Digital Elevation Model for Yosemite National Park – volume: 391 start-page: 164 year: 2017 end-page: 175 ident: bib54 article-title: Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest publication-title: For. Ecol. Manag. – volume: 113 start-page: 645 year: 2009 end-page: 656 ident: bib60 article-title: Calibration and validation of the relative differenced normalized burn ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and klamath Mountains, California, USA publication-title: Remote Sens. Environ. – year: 2018 ident: bib66 article-title: R: A Language and Environment for Statistical Computing – reference: Jeronimo, S., Lutz, J.A., Kane, V.R., Larson, A.J., Franklin, J.F., in review. Burn weather and three-dimensional fuel structure determine post-fire tree mortality. Landscape Ecology. Submitted for publication. – volume: 22 start-page: 707 year: 2013 end-page: 720 ident: bib84 article-title: Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions publication-title: Int. J. Wildland Fire – volume: 80 start-page: 385 year: 2002 end-page: 396 ident: bib86 article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery publication-title: Remote Sens. Environ. – volume: 437 start-page: 70 year: 2019 end-page: 86 ident: bib27 article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada publication-title: For. Ecol. Manag. – volume: 10 year: 2019 ident: bib22 article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region publication-title: Ecosphere – volume: 109 start-page: 66 year: 2007 end-page: 80 ident: bib61 article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) publication-title: Remote Sens. Environ. – volume: 18 start-page: 1192 year: 2015 end-page: 1208 ident: bib21 article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. publication-title: Ecosystems – volume: 25 start-page: 3985 year: 2019 end-page: 3994 ident: bib72 article-title: Hitting a snag in estimating carbon emissions from wildfires publication-title: Glob. Chang. Biol. – volume: 13 start-page: 104 year: 2017 end-page: 126 ident: bib41 article-title: Shrub communities, spatial patterns, and shrub-mediated tree mortality following reintroduced fire in Yosemite National Park, California, USA publication-title: Fire Ecol. – volume: 28 start-page: 2753 year: 2007 end-page: 2775 ident: bib70 article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS publication-title: Int. J. Remote Sens. – volume: 1 start-page: 5 year: 2018 ident: bib47 article-title: Advancing fire science with large forest plots and a long-term multidisciplinary approach publication-title: Fire – volume: 3 start-page: 112 year: 2006 end-page: 116 ident: bib68 article-title: Remote sensing of fire severity: assessing the performance of the normalized burn ratio publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 7 year: 2016 ident: bib4 article-title: Can low-severity fire reverse overstory compositional change in montane forests of the Sierra Nevada, USA? publication-title: Ecosphere – volume: 92 start-page: 397 year: 2004 end-page: 408 ident: bib83 article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity publication-title: Remote Sens. Environ. – volume: 88 start-page: 2783 year: 2007 end-page: 2792 ident: bib13 article-title: Random Forests for classification in ecology publication-title: Ecology – volume: 13 start-page: 933 year: 1999 end-page: 950 ident: bib2 article-title: An assessment of vegetation fire in Africa (1981-1991): burned areas, burned biomass, and atmospheric emissions publication-title: Glob. Biogeochem. Cycles – volume: 44 start-page: 677 year: 2014 end-page: 683 ident: bib49 article-title: Community composition and allometry of publication-title: Can. J. For. Res. – volume: 68 start-page: 944 year: 2018 end-page: 954 ident: bib58 article-title: Fire refugia: what are they, and why do they matter for global change? publication-title: Bioscience – year: 2013 ident: bib26 publication-title: Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications – volume: 5 start-page: 423 year: 2014 end-page: 431 ident: bib1 article-title: Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance publication-title: Remote Sens. Lett. – volume: 406 start-page: 28 year: 2017 end-page: 36 ident: bib89 article-title: Changing spatial patterns of stand-replacing fire in California conifer forests publication-title: Forest Ecology and Management – volume: 24 year: 1979 ident: bib75 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 10 year: 2005 ident: bib7 article-title: Classifying and mapping wildfire severity: a comparison of methods publication-title: Photogramm. Eng. Remote Sens. – volume: 6 year: 2015 ident: bib20 article-title: Uncertainty analysis: an evaluation metric for synthesis science publication-title: Ecosphere – volume: 328 start-page: 326 year: 2014 end-page: 334 ident: bib51 article-title: Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes publication-title: For. Ecol. Manag. – volume: 151 start-page: 89 year: 2014 end-page: 101 ident: bib30 article-title: Assessing fire-mediated change to forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park publication-title: Remote Sens. Environ. – volume: 13 start-page: 113004 year: 2018 ident: bib24 article-title: Fire and tree death: understanding and improving modeling of fire-induced tree mortality publication-title: Environ. Res. Lett. – volume: 19 start-page: 2493 year: 1998 end-page: 2507 ident: bib36 article-title: Assessing wildfire effects with Landsat thematic mapper data publication-title: Int. J. Remote Sens. – year: 2001 ident: bib79 article-title: Forest Giants of the Pacific Coast – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bib25 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 191 start-page: 95 year: 2017 end-page: 109 ident: bib59 article-title: Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem publication-title: Remote Sens. Environ. – volume: 3 start-page: 3 year: 2007 end-page: 21 ident: bib14 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecol. – volume: 444 start-page: 174 year: 2019 end-page: 186 ident: bib6 article-title: Forest structure predictive of Fisher ( publication-title: For. Ecol. Manag. – volume: 8 year: 2017 ident: bib17 article-title: Reconciling niches and neutrality in a subalpine temperate forest publication-title: Ecosphere – volume: 24 start-page: 1023 year: 2015 end-page: 1028 ident: bib35 article-title: Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA publication-title: Int. J. Wildland Fire – year: 2006 ident: bib32 article-title: Landscape assessment (LA) publication-title: Gen. Tech. Rep. RMRS-GTR-164-CD – year: 2019 ident: bib52 article-title: Data for tree mortality calibration of satellite and LiDAR-derived fire severity estimates – volume: 9 year: 2018 ident: bib10 article-title: Fire enhances the complexity of forest structure in alpine treeline ecotones publication-title: Ecosphere – volume: 7 start-page: 51 year: 2011 end-page: 65 ident: bib44 article-title: Fire frequency, area burned, and severity: a quantitative approach to defining a normal fire year publication-title: Fire Ecol. – volume: 27 start-page: 407 year: 2018 end-page: 412 ident: bib55 article-title: Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest publication-title: Int. J. Wildland Fire – volume: 15 start-page: 319 year: 2006 ident: bib38 article-title: Remote sensing techniques to assess active fire characteristics and post-fire effects publication-title: Int. J. Wildland Fire – volume: 27 start-page: 849 year: 2018 end-page: 864 ident: bib42 article-title: Global importance of large-diameter trees publication-title: Glob. Ecol. Biogeogr. – volume: vol. 9 year: 1974 ident: bib67 publication-title: Monitoring Vegetation Systems in the Great Plains with ERTS – volume: 58 start-page: 257 year: 1996 end-page: 266 ident: bib19 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 22 start-page: 2641 year: 2001 end-page: 2647 ident: bib74 article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah publication-title: Int. J. Remote Sens. – volume: 354 start-page: 104 year: 2015 end-page: 118 ident: bib3 article-title: A forest reconstruction model to assess changes to Sierra Nevada mixed-conifer forest during the fire suppression era publication-title: For. Ecol. Manag. – volume: 32 year: 2017 ident: bib90 article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns publication-title: Landscape Ecology – volume: 4 start-page: 456 year: 2012 end-page: 483 ident: bib9 article-title: How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods publication-title: Remote Sens. – volume: 9 year: 2018 ident: bib85 article-title: Variability and drivers of burn severity in the northwestern Canadian boreal forest publication-title: Ecosphere – start-page: 5 year: 2016 end-page: 8 ident: bib23 article-title: Raster: Geographic Data Analysis and Modeling. R Package Version 2 – year: 2018 ident: bib8 article-title: Top 20 Largest California Wildfires – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: bib80 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 17 start-page: 696 year: 2008 ident: bib31 article-title: Ecological effects of large fires on US landscapes: benefit or catastrophe? publication-title: Int. J. Wildland Fire – volume: 23 year: 2014 ident: bib88 article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling publication-title: International Journal of Wildland Fire – volume: 18 start-page: 765 year: 2009 end-page: 774 ident: bib50 article-title: Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA publication-title: Int. J. Wildland Fire – year: 1990 ident: bib16 article-title: Uncertainty and Quality in Science for Policy – volume: 28 year: 2019 ident: bib12 article-title: A quantitative comparison of forest fires in central and northern California under early (1911–1924) and contemporary (2002–2015) fire suppression publication-title: Int. J. Wildland Fire – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib39 article-title: Classification and regression by randomForest publication-title: R. News – start-page: 106 year: 2016 ident: bib77 article-title: LANDSAT 8 (L8) Data Users Handbook Version 2.0 – volume: 507 start-page: 90 year: 2014 end-page: 93 ident: bib73 article-title: Rate of tree carbon accumulation increases continuously with tree size publication-title: Nature – volume: 89 start-page: 219 year: 2015 end-page: 238 ident: bib33 article-title: Climate contributors to forest mosaics: ecological persistence following wildfire publication-title: Northwest Sci. – volume: 10 year: 2005 ident: 10.1016/j.rse.2019.111497_bib7 article-title: Classifying and mapping wildfire severity: a comparison of methods publication-title: Photogramm. Eng. Remote Sens. – volume: 185 start-page: 46 year: 2016 ident: 10.1016/j.rse.2019.111497_bib80 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 – volume: 24 year: 1979 ident: 10.1016/j.rse.2019.111497_bib75 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 19 start-page: 2493 year: 1998 ident: 10.1016/j.rse.2019.111497_bib36 article-title: Assessing wildfire effects with Landsat thematic mapper data publication-title: Int. J. Remote Sens. doi: 10.1080/014311698214587 – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.rse.2019.111497_bib25 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 10 issue: 2 year: 2019 ident: 10.1016/j.rse.2019.111497_bib22 article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region publication-title: Ecosphere doi: 10.1002/ecs2.2600 – volume: 68 start-page: 944 issue: 12 year: 2018 ident: 10.1016/j.rse.2019.111497_bib58 article-title: Fire refugia: what are they, and why do they matter for global change? publication-title: Bioscience – volume: 354 start-page: 104 year: 2015 ident: 10.1016/j.rse.2019.111497_bib3 article-title: A forest reconstruction model to assess changes to Sierra Nevada mixed-conifer forest during the fire suppression era publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.06.030 – volume: 186 start-page: 275 year: 2016 ident: 10.1016/j.rse.2019.111497_bib56 article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.023 – volume: 82 start-page: 481 year: 2002 ident: 10.1016/j.rse.2019.111497_bib62 article-title: Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00071-8 – volume: 7 issue: 12 year: 2016 ident: 10.1016/j.rse.2019.111497_bib4 article-title: Can low-severity fire reverse overstory compositional change in montane forests of the Sierra Nevada, USA? publication-title: Ecosphere doi: 10.1002/ecs2.1484 – volume: 7 year: 2012 ident: 10.1016/j.rse.2019.111497_bib46 article-title: Ecological importance of large-diameter trees in a temperate mixed-conifer forest publication-title: PLoS One doi: 10.1371/journal.pone.0036131 – ident: 10.1016/j.rse.2019.111497_bib91 – year: 2001 ident: 10.1016/j.rse.2019.111497_bib79 – volume: 24 start-page: 1023 year: 2015 ident: 10.1016/j.rse.2019.111497_bib35 article-title: Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA publication-title: Int. J. Wildland Fire doi: 10.1071/WF15082 – volume: 3 start-page: 112 year: 2006 ident: 10.1016/j.rse.2019.111497_bib68 article-title: Remote sensing of fire severity: assessing the performance of the normalized burn ratio publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.858485 – volume: 13 start-page: 933 year: 1999 ident: 10.1016/j.rse.2019.111497_bib2 article-title: An assessment of vegetation fire in Africa (1981-1991): burned areas, burned biomass, and atmospheric emissions publication-title: Glob. Biogeochem. Cycles doi: 10.1029/1999GB900042 – volume: 432 start-page: 1041 year: 2019 ident: 10.1016/j.rse.2019.111497_bib5 article-title: The importance of small fire refugia in the central Sierra Nevada, California, USA publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.10.038 – start-page: 106 year: 2016 ident: 10.1016/j.rse.2019.111497_bib77 – year: 2018 ident: 10.1016/j.rse.2019.111497_bib8 – volume: 191 start-page: 95 year: 2017 ident: 10.1016/j.rse.2019.111497_bib59 article-title: Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.016 – volume: 444 start-page: 174 year: 2019 ident: 10.1016/j.rse.2019.111497_bib6 article-title: Forest structure predictive of Fisher (Pekania pennanti) dens exists in recently burned forest in Yosemite, California, USA publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.04.024 – volume: 22 start-page: 707 year: 2013 ident: 10.1016/j.rse.2019.111497_bib84 article-title: Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions publication-title: Int. J. Wildland Fire doi: 10.1071/WF12168 – volume: 23 issue: 8 year: 2014 ident: 10.1016/j.rse.2019.111497_bib88 article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling publication-title: International Journal of Wildland Fire doi: 10.1071/WF13058 – volume: 92 start-page: 397 year: 2004 ident: 10.1016/j.rse.2019.111497_bib83 article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.015 – volume: 15 start-page: 319 year: 2006 ident: 10.1016/j.rse.2019.111497_bib38 article-title: Remote sensing techniques to assess active fire characteristics and post-fire effects publication-title: Int. J. Wildland Fire doi: 10.1071/WF05097 – volume: 6 year: 2015 ident: 10.1016/j.rse.2019.111497_bib20 article-title: Uncertainty analysis: an evaluation metric for synthesis science publication-title: Ecosphere doi: 10.1890/ES14-00235.1 – volume: 8 year: 2013 ident: 10.1016/j.rse.2019.111497_bib45 article-title: The importance of large-diameter trees to forest structural heterogeneity publication-title: PLoS One doi: 10.1371/journal.pone.0082784 – volume: 44 start-page: 677 year: 2014 ident: 10.1016/j.rse.2019.111497_bib49 article-title: Community composition and allometry of Leucothoe davisiae, Cornus sericea, and Chrysolepis sempervirens publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2013-0524 – volume: 58 start-page: 257 year: 1996 ident: 10.1016/j.rse.2019.111497_bib19 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – year: 2006 ident: 10.1016/j.rse.2019.111497_bib32 article-title: Landscape assessment (LA) – year: 2018 ident: 10.1016/j.rse.2019.111497_bib66 – volume: 28 start-page: 2753 year: 2007 ident: 10.1016/j.rse.2019.111497_bib70 article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600954704 – volume: 89 start-page: 255 year: 2015 ident: 10.1016/j.rse.2019.111497_bib40 article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change publication-title: Northwest Sci. doi: 10.3955/046.089.0306 – volume: 1 start-page: 5 year: 2018 ident: 10.1016/j.rse.2019.111497_bib47 article-title: Advancing fire science with large forest plots and a long-term multidisciplinary approach publication-title: Fire doi: 10.3390/fire1010005 – year: 2007 ident: 10.1016/j.rse.2019.111497_bib76 – volume: 28 start-page: 46 year: 2019 ident: 10.1016/j.rse.2019.111497_bib18 article-title: Multi-scale assessment of post-fire tree mortality models publication-title: Int. J. Wildland Fire doi: 10.1071/WF18031 – volume: 113 start-page: 645 year: 2009 ident: 10.1016/j.rse.2019.111497_bib60 article-title: Calibration and validation of the relative differenced normalized burn ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and klamath Mountains, California, USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.11.009 – volume: 507 start-page: 90 year: 2014 ident: 10.1016/j.rse.2019.111497_bib73 article-title: Rate of tree carbon accumulation increases continuously with tree size publication-title: Nature doi: 10.1038/nature12914 – volume: 286 start-page: 38 year: 2012 ident: 10.1016/j.rse.2019.111497_bib34 article-title: Mapped versus actual burned area within wildfire perimeters: characterizing the unburned publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.08.020 – volume: 88 start-page: 2783 year: 2007 ident: 10.1016/j.rse.2019.111497_bib13 article-title: Random Forests for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – volume: 17 start-page: 696 year: 2008 ident: 10.1016/j.rse.2019.111497_bib31 article-title: Ecological effects of large fires on US landscapes: benefit or catastrophe? publication-title: Int. J. Wildland Fire doi: 10.1071/WF07148 – volume: 9 issue: 2 year: 2018 ident: 10.1016/j.rse.2019.111497_bib57 article-title: Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014 publication-title: Ecosphere doi: 10.1002/ecs2.2029 – volume: 136 start-page: 76 year: 2013 ident: 10.1016/j.rse.2019.111497_bib65 article-title: Multiple endmember spectral mixture analysis (MESMA) to map burn severity levels from Landsat images in mediterranean countries publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.017 – volume: 406 start-page: 28 year: 2017 ident: 10.1016/j.rse.2019.111497_bib89 article-title: Changing spatial patterns of stand-replacing fire in California conifer forests publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2017.08.051 – volume: 9 year: 2018 ident: 10.1016/j.rse.2019.111497_bib85 article-title: Variability and drivers of burn severity in the northwestern Canadian boreal forest publication-title: Ecosphere doi: 10.1002/ecs2.2128 – volume: 5 start-page: 3010 year: 2011 ident: 10.1016/j.rse.2019.111497_bib69 article-title: Model-based SIR for dimension reduction publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.05.006 – volume: 10 start-page: 879 year: 2018 ident: 10.1016/j.rse.2019.111497_bib63 article-title: Mean composite fire severity metrics computed with google Earth engine offer improved accuracy and expanded mapping potential publication-title: Remote Sens. doi: 10.3390/rs10060879 – volume: 8 issue: 6 year: 2017 ident: 10.1016/j.rse.2019.111497_bib17 article-title: Reconciling niches and neutrality in a subalpine temperate forest publication-title: Ecosphere doi: 10.1002/ecs2.1847 – ident: 10.1016/j.rse.2019.111497_bib52 – volume: 15 start-page: 16 year: 2019 ident: 10.1016/j.rse.2019.111497_bib11 article-title: Fuel dynamics after reintroduced fire in an old-growth Sierra Nevada mixed-conifer forest publication-title: Fire Ecol. doi: 10.1186/s42408-019-0035-y – volume: 22 start-page: 2641 year: 2001 ident: 10.1016/j.rse.2019.111497_bib74 article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110053185 – volume: 13 start-page: 104 year: 2017 ident: 10.1016/j.rse.2019.111497_bib41 article-title: Shrub communities, spatial patterns, and shrub-mediated tree mortality following reintroduced fire in Yosemite National Park, California, USA publication-title: Fire Ecol. doi: 10.4996/fireecology.1301104 – volume: 18 start-page: 1192 year: 2015 ident: 10.1016/j.rse.2019.111497_bib21 article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. publication-title: Ecosystems doi: 10.1007/s10021-015-9890-9 – year: 1990 ident: 10.1016/j.rse.2019.111497_bib16 – volume: 28 issue: 2 year: 2019 ident: 10.1016/j.rse.2019.111497_bib12 article-title: A quantitative comparison of forest fires in central and northern California under early (1911–1924) and contemporary (2002–2015) fire suppression publication-title: Int. J. Wildland Fire doi: 10.1071/WF18137 – volume: 32 issue: 8 year: 2017 ident: 10.1016/j.rse.2019.111497_bib90 article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns publication-title: Landscape Ecology doi: 10.1007/s10980-017-0528-5 – volume: 49 start-page: 93 year: 1994 ident: 10.1016/j.rse.2019.111497_bib53 article-title: Remote sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90046-9 – volume: 7 start-page: 51 year: 2011 ident: 10.1016/j.rse.2019.111497_bib44 article-title: Fire frequency, area burned, and severity: a quantitative approach to defining a normal fire year publication-title: Fire Ecol. doi: 10.4996/fireecology.0702051 – volume: 3 start-page: 34 year: 2007 ident: 10.1016/j.rse.2019.111497_bib82 article-title: Fire regime attributes of wildland fires in Yosemite National Park, USA publication-title: Fire Ecol. doi: 10.4996/fireecology.0302034 – volume: 27 start-page: 407 year: 2018 ident: 10.1016/j.rse.2019.111497_bib55 article-title: Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest publication-title: Int. J. Wildland Fire doi: 10.1071/WF17137 – volume: 76 start-page: 257 issue: 2 year: 2006 ident: 10.1016/j.rse.2019.111497_bib43 article-title: Tree mortality during early forest development: a long-term study of rates, causes, and consequences publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2 – volume: 6 start-page: 10 year: 2017 ident: 10.1016/j.rse.2019.111497_bib48 article-title: Fire and the distribution and uncertainty of carbon sequestered as aboveground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks publication-title: Land doi: 10.3390/land6010010 – year: 2013 ident: 10.1016/j.rse.2019.111497_bib26 – volume: 6 start-page: 1827 year: 2014 ident: 10.1016/j.rse.2019.111497_bib64 article-title: A new metric for quantifying burn severity: the relativized burn ratio publication-title: Remote Sens. doi: 10.3390/rs6031827 – volume: 80 start-page: 385 year: 2002 ident: 10.1016/j.rse.2019.111497_bib86 article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00318-2 – volume: 13 start-page: 113004 year: 2018 ident: 10.1016/j.rse.2019.111497_bib24 article-title: Fire and tree death: understanding and improving modeling of fire-induced tree mortality publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aae934 – volume: 4 start-page: 456 year: 2012 ident: 10.1016/j.rse.2019.111497_bib9 article-title: How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods publication-title: Remote Sens. doi: 10.3390/rs4020456 – volume: 96 start-page: 328 year: 2005 ident: 10.1016/j.rse.2019.111497_bib15 article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+ publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.002 – volume: 11 start-page: 2281 year: 1990 ident: 10.1016/j.rse.2019.111497_bib81 article-title: Comparison between two vegetation indices for measuring different types of forest damage in the north-eastern United States publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955175 – volume: vol. 9 year: 1974 ident: 10.1016/j.rse.2019.111497_bib67 – volume: 25 start-page: 3985 issue: 11 year: 2019 ident: 10.1016/j.rse.2019.111497_bib72 article-title: Hitting a snag in estimating carbon emissions from wildfires publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14716 – volume: 27 start-page: 849 issue: 7 year: 2018 ident: 10.1016/j.rse.2019.111497_bib42 article-title: Global importance of large-diameter trees publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12747 – volume: 437 start-page: 70 year: 2019 ident: 10.1016/j.rse.2019.111497_bib27 article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.01.033 – volume: 5 start-page: 423 year: 2014 ident: 10.1016/j.rse.2019.111497_bib1 article-title: Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2014.915434 – year: 2006 ident: 10.1016/j.rse.2019.111497_bib87 – start-page: 5 year: 2016 ident: 10.1016/j.rse.2019.111497_bib23 – volume: 18 start-page: 765 year: 2009 ident: 10.1016/j.rse.2019.111497_bib50 article-title: Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA publication-title: Int. J. Wildland Fire doi: 10.1071/WF08117 – volume: 154 start-page: 322 year: 2014 ident: 10.1016/j.rse.2019.111497_bib71 article-title: Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.038 – volume: 89 start-page: 219 year: 2015 ident: 10.1016/j.rse.2019.111497_bib33 article-title: Climate contributors to forest mosaics: ecological persistence following wildfire publication-title: Northwest Sci. doi: 10.3955/046.089.0305 – volume: 377 start-page: 16 year: 2016 ident: 10.1016/j.rse.2019.111497_bib37 article-title: Post-fire morel (Morchella) mushroom abundance, spatial structure, and harvest sustainability publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.06.038 – volume: 5 start-page: 10 year: 2009 ident: 10.1016/j.rse.2019.111497_bib78 article-title: Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest publication-title: Fire Ecol. doi: 10.4996/fireecology.0502116 – volume: 3 start-page: 3 year: 2007 ident: 10.1016/j.rse.2019.111497_bib14 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecol. doi: 10.4996/fireecology.0301003 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.rse.2019.111497_bib39 article-title: Classification and regression by randomForest publication-title: R. News – volume: 109 start-page: 66 year: 2007 ident: 10.1016/j.rse.2019.111497_bib61 article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.12.006 – volume: 358 start-page: 62 year: 2015 ident: 10.1016/j.rse.2019.111497_bib29 article-title: Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.09.001 – volume: 9 year: 2018 ident: 10.1016/j.rse.2019.111497_bib10 article-title: Fire enhances the complexity of forest structure in alpine treeline ecotones publication-title: Ecosphere doi: 10.1002/ecs2.2091 – volume: 391 start-page: 164 year: 2017 ident: 10.1016/j.rse.2019.111497_bib54 article-title: Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.02.015 – volume: 151 start-page: 89 year: 2014 ident: 10.1016/j.rse.2019.111497_bib30 article-title: Assessing fire-mediated change to forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.041 – volume: 328 start-page: 326 year: 2014 ident: 10.1016/j.rse.2019.111497_bib51 article-title: Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.06.005 |
| SSID | ssj0015871 |
| Score | 2.5164163 |
| Snippet | Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111497 |
| SubjectTerms | Accuracy burn severity California Climatic conditions climatic factors Confidence Diameters Differenced Normalized Burn Ratio Ecological effects Ecological monitoring Fire effects Fire severity georeferencing Landsat Landsat 8 Landsat satellites Landscape landscapes Monitoring trends in burn severity Mortality refuge habitats Refugia Remote sensing Smithsonian ForestGEO Spectra stems Surface properties tree and stand measurements tree mortality Trees Uncertainty Variability variance Vegetation index Yosemite Forest Dynamics Plot |
| Title | Detecting tree mortality with Landsat-derived spectral indices: Improving ecological accuracy by examining uncertainty |
| URI | https://dx.doi.org/10.1016/j.rse.2019.111497 https://www.proquest.com/docview/2352367027 https://www.proquest.com/docview/2352440270 |
| Volume | 237 |
| WOSCitedRecordID | wos000509819300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBoIXBIWJwUBG4okoVRs7jc1bBWUwVRNCQ-pbFCe2tGnLpiatun_DT-X4mq5oE3vgJap8k5vz5ZxjnxtCH5RKQMwJFVdU0JgqVsSMkixWIGwVL3TFbVO1ZJYdH7P5nP_o9X77WJjVeVbXbL3mV_-V1NAGxNahs_cgd1gUGuA3EB2eQHZ4_hPhv0htF7DlH6SMLox-rXVtc-U606G9RRtXsJUVKJsm0tJm3qgMzyCTqLtokGXgjUVZLhe6Njzoq3JdXJjCEhFIRetT0N4wD_-UgAAZNdo73npVbwTUBcjAnzm1Ndutd0d0NAj837vgagtDaJ0VCxcgZv0wNybMlqYwrfX6jSaDzdsMOLoOg2eI49AEIJPYpNWeQyc2L4zjscCdqfXp_Yv925uIs8Gi0RlQR3zQjb2ZantLBAbHRO_zdpbDErleIrdLPEC7SZZy4Ju7k-_T-VGwVKUss1UZ3b695dz4EG7t4zbdZ0sLMKrNyTP01J1J8MRi6TnqybqP9qYdxaDTyYCmjx4fSpfmvI8eHZrC0Ncv0CrADmvY4QA7rGGHt2CHPeywg90nHECHO9BhDzosrnEAHd4A3Uv06-v05PO32NX0iEuSsjamRHKmskrRYSLZqBRwnC3GIOoIH4tEllxw0KgrpUpQnRkRIi2ZSBQZ6TRJlCmyh3bqy1q-QpixtEqrTKgRUVSBos0zlkoyZlSlMJruo6F_23npEt7ruivn-a1U3kcfw5Qrm-3lrsHUkzB36qpVQ3OA413TDjy5c8c2mjyBc5BOpZhA9_vQDZxem-_gi7tc2jEUXls2fH2fbb5BT7oP7QDttIulfIselqv2tFm8c3D-Axr-zpg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+tree+mortality+with+Landsat-derived+spectral+indices%3A+Improving+ecological+accuracy+by+examining+uncertainty&rft.jtitle=Remote+sensing+of+environment&rft.au=Furniss%2C+Tucker+J.&rft.au=Kane%2C+Van+R.&rft.au=Larson%2C+Andrew+J.&rft.au=Lutz%2C+James+A.&rft.date=2020-02-01&rft.issn=0034-4257&rft.volume=237&rft.spage=111497&rft_id=info:doi/10.1016%2Fj.rse.2019.111497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2019_111497 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |