On regression adjustments to experimental data

Regression adjustments are often made to experimental data. Since randomization does not justify the models, almost anything can happen. Here, we evaluate results using Neyman's non-parametric model, where each subject has two potential responses, one if treated and the other if untreated. Only...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in applied mathematics Ročník 40; číslo 2; s. 180 - 193
Hlavní autor: Freedman, David A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.02.2008
Elsevier
Témata:
ISSN:0196-8858, 1090-2074
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Regression adjustments are often made to experimental data. Since randomization does not justify the models, almost anything can happen. Here, we evaluate results using Neyman's non-parametric model, where each subject has two potential responses, one if treated and the other if untreated. Only one of the two responses is observed. Regression estimates are generally biased, but the bias is small with large samples. Adjustment may improve precision, or make precision worse; standard errors computed according to usual procedures may overstate the precision, or understate, by quite large factors. Asymptotic expansions make these ideas more precise.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2006.12.003