Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR Ship Detection

Synthetic aperture radar (SAR) ship detection has been playing an increasingly essential role in marine monitoring in recent years. The lack of detailed information about ships in wide swath SAR imagery poses difficulty for traditional methods in exploring effective features for ship discrimination....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 9; číslo 8; s. 860
Hlavní autori: Kang, Miao, Ji, Kefeng, Leng, Xiangguang, Lin, Zhao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2017
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Synthetic aperture radar (SAR) ship detection has been playing an increasingly essential role in marine monitoring in recent years. The lack of detailed information about ships in wide swath SAR imagery poses difficulty for traditional methods in exploring effective features for ship discrimination. Being capable of feature representation, deep neural networks have achieved dramatic progress in object detection recently. However, most of them suffer from the missing detection of small-sized targets, which means that few of them are able to be employed directly in SAR ship detection tasks. This paper discloses an elaborately designed deep hierarchical network, namely a contextual region-based convolutional neural network with multilayer fusion, for SAR ship detection, which is composed of a region proposal network (RPN) with high network resolution and an object detection network with contextual features. Instead of using low-resolution feature maps from a single layer for proposal generation in a RPN, the proposed method employs an intermediate layer combined with a downscaled shallow layer and an up-sampled deep layer to produce region proposals. In the object detection network, the region proposals are projected onto multiple layers with region of interest (ROI) pooling to extract the corresponding ROI features and contextual features around the ROI. After normalization and rescaling, they are subsequently concatenated into an integrated feature vector for final outputs. The proposed framework fuses the deep semantic and shallow high-resolution features, improving the detection performance for small-sized ships. The additional contextual features provide complementary information for classification and help to rule out false alarms. Experiments based on the Sentinel-1 dataset, which contains twenty-seven SAR images with 7986 labeled ships, verify that the proposed method achieves an excellent performance in SAR ship detection.
AbstractList Synthetic aperture radar (SAR) ship detection has been playing an increasingly essential role in marine monitoring in recent years. The lack of detailed information about ships in wide swath SAR imagery poses difficulty for traditional methods in exploring effective features for ship discrimination. Being capable of feature representation, deep neural networks have achieved dramatic progress in object detection recently. However, most of them suffer from the missing detection of small-sized targets, which means that few of them are able to be employed directly in SAR ship detection tasks. This paper discloses an elaborately designed deep hierarchical network, namely a contextual region-based convolutional neural network with multilayer fusion, for SAR ship detection, which is composed of a region proposal network (RPN) with high network resolution and an object detection network with contextual features. Instead of using low-resolution feature maps from a single layer for proposal generation in a RPN, the proposed method employs an intermediate layer combined with a downscaled shallow layer and an up-sampled deep layer to produce region proposals. In the object detection network, the region proposals are projected onto multiple layers with region of interest (ROI) pooling to extract the corresponding ROI features and contextual features around the ROI. After normalization and rescaling, they are subsequently concatenated into an integrated feature vector for final outputs. The proposed framework fuses the deep semantic and shallow high-resolution features, improving the detection performance for small-sized ships. The additional contextual features provide complementary information for classification and help to rule out false alarms. Experiments based on the Sentinel-1 dataset, which contains twenty-seven SAR images with 7986 labeled ships, verify that the proposed method achieves an excellent performance in SAR ship detection.
Author Ji, Kefeng
Lin, Zhao
Kang, Miao
Leng, Xiangguang
Author_xml – sequence: 1
  givenname: Miao
  surname: Kang
  fullname: Kang, Miao
– sequence: 2
  givenname: Kefeng
  surname: Ji
  fullname: Ji, Kefeng
– sequence: 3
  givenname: Xiangguang
  orcidid: 0000-0002-9372-8118
  surname: Leng
  fullname: Leng, Xiangguang
– sequence: 4
  givenname: Zhao
  surname: Lin
  fullname: Lin, Zhao
BookMark eNplUcFOGzEQtRCVoJRD_8BSTxwWvOtdr32ElAASbSVoz9asd5w4XeJgewn5exzSoor6Mtab955m3nwk-0u_REI-l-yUc8XOQlRMMinYHjmsWFsVdaWq_X_-B-Q4xgXLj_NSsfqQdBO_TPicRhjoHc6cXxYXELGnGX_yw5gyklvfcQyvJa19-E3XLs3pt3FIboANBjodY-ZR6wO9P7-j93O3ol8xodnKP5EPFoaIx3_qEfk1vfw5uS5uf1zdTM5vC8MbmYq6lNaaFoSxKFSD0KDkPQOmsOuha01ZNxwsN52xveGCyY6BZGh7phTUgh-Rm51v72GhV8E9QNhoD06_Aj7MNITkzIC66huLUogSu6ZG4FIokNCXVVPLnFOdvb7svFbBP44Yk174MeQkoq4q3oi2zZlm1tmOZYKPMaDVxiXY7pwCuEGXTG_vot_ukhUn7xR_5_yf-wIgEZAk
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3419786
crossref_primary_10_3390_rs11010047
crossref_primary_10_1109_ACCESS_2021_3056663
crossref_primary_10_1109_JSTARS_2025_3580747
crossref_primary_10_3390_rs13183690
crossref_primary_10_1016_j_dt_2019_11_014
crossref_primary_10_1109_JSTARS_2019_2919382
crossref_primary_10_1109_LGRS_2020_2999506
crossref_primary_10_3390_rs13245104
crossref_primary_10_1049_joe_2019_0555
crossref_primary_10_3390_jmse13020191
crossref_primary_10_1080_2150704X_2024_2440660
crossref_primary_10_3390_app14125322
crossref_primary_10_1109_ACCESS_2021_3053956
crossref_primary_10_1109_ACCESS_2024_3358684
crossref_primary_10_3390_rs10050776
crossref_primary_10_3390_rs13101925
crossref_primary_10_1109_LGRS_2020_3038901
crossref_primary_10_1007_s00500_022_06772_y
crossref_primary_10_1109_JSEN_2024_3397731
crossref_primary_10_1109_JSTARS_2025_3582808
crossref_primary_10_1109_JSTARS_2024_3358058
crossref_primary_10_3390_rs11182171
crossref_primary_10_1109_TGRS_2019_2923988
crossref_primary_10_1109_JSTARS_2019_2949006
crossref_primary_10_1109_JSTARS_2023_3241395
crossref_primary_10_3390_rs11091068
crossref_primary_10_3390_s19112479
crossref_primary_10_1016_j_neucom_2018_12_050
crossref_primary_10_1109_JSTARS_2020_2997081
crossref_primary_10_1109_TAES_2023_3308096
crossref_primary_10_1109_TGRS_2021_3073053
crossref_primary_10_1109_MIS_2024_3412750
crossref_primary_10_1109_JSEN_2024_3361084
crossref_primary_10_3390_s20092547
crossref_primary_10_1109_JSTARS_2022_3230859
crossref_primary_10_3390_rs13040660
crossref_primary_10_1155_2020_7194342
crossref_primary_10_3390_s23167027
crossref_primary_10_3390_rs14030755
crossref_primary_10_3390_rs9121244
crossref_primary_10_1016_j_jestch_2024_101893
crossref_primary_10_1109_JSTARS_2024_3370722
crossref_primary_10_1109_TGRS_2019_2942103
crossref_primary_10_1080_01431161_2020_1826059
crossref_primary_10_1109_JSTARS_2025_3547234
crossref_primary_10_1007_s11554_025_01757_0
crossref_primary_10_1016_j_physa_2024_130276
crossref_primary_10_1109_TGRS_2024_3375069
crossref_primary_10_3390_jmse9121408
crossref_primary_10_1109_JSTARS_2021_3109469
crossref_primary_10_1109_JSTARS_2024_3399021
crossref_primary_10_3390_rs11050531
crossref_primary_10_3390_rs17183254
crossref_primary_10_1109_ACCESS_2020_2964540
crossref_primary_10_3390_rs15082008
crossref_primary_10_1109_MGRS_2020_3046356
crossref_primary_10_1007_s13131_021_1980_2
crossref_primary_10_1109_JSTARS_2025_3561516
crossref_primary_10_3390_s21175693
crossref_primary_10_1109_ACCESS_2018_2869884
crossref_primary_10_1109_JSEN_2024_3359702
crossref_primary_10_1109_LGRS_2022_3166387
crossref_primary_10_3390_s18041196
crossref_primary_10_3390_s21248478
crossref_primary_10_3390_s19051124
crossref_primary_10_1016_j_asr_2023_06_055
crossref_primary_10_1109_JSTARS_2024_3426288
crossref_primary_10_3390_rs13112171
crossref_primary_10_1109_ACCESS_2020_3020363
crossref_primary_10_3390_s20102896
crossref_primary_10_3390_rs14051079
crossref_primary_10_3390_rs16020237
crossref_primary_10_1109_TGRS_2019_2920534
crossref_primary_10_3390_rs14112712
crossref_primary_10_1109_JSTARS_2023_3327344
crossref_primary_10_3390_rs12162619
crossref_primary_10_1109_ACCESS_2022_3193669
crossref_primary_10_3390_rs15123001
crossref_primary_10_1109_TGRS_2021_3104907
crossref_primary_10_1080_01431161_2023_2173030
crossref_primary_10_1109_JSTARS_2025_3543531
crossref_primary_10_1109_JSTARS_2024_3437187
crossref_primary_10_1109_TGRS_2022_3162235
crossref_primary_10_3390_rs14041018
crossref_primary_10_1109_TIM_2025_3573019
crossref_primary_10_3390_rs15010203
crossref_primary_10_3390_rs14195048
crossref_primary_10_1109_TGRS_2020_2997200
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1109_ACCESS_2020_2973755
crossref_primary_10_1109_JSEN_2023_3317060
crossref_primary_10_1109_TGRS_2020_3043252
crossref_primary_10_1007_s11760_021_02044_8
crossref_primary_10_3390_rs14225761
crossref_primary_10_1109_ACCESS_2024_3436591
crossref_primary_10_3390_rs13081487
crossref_primary_10_1108_EC_08_2020_0428
crossref_primary_10_1109_LSENS_2018_2878908
crossref_primary_10_1109_JSTARS_2023_3316309
crossref_primary_10_3390_rs14143441
crossref_primary_10_3390_rs14143321
crossref_primary_10_1109_ACCESS_2020_2989758
crossref_primary_10_1109_ACCESS_2019_2930939
crossref_primary_10_3390_rs10010132
crossref_primary_10_1029_2023RG000821
crossref_primary_10_1080_2150704X_2021_1987574
crossref_primary_10_1109_JSTARS_2024_3392433
crossref_primary_10_3390_rs10111799
crossref_primary_10_1109_JSTARS_2024_3520956
crossref_primary_10_3390_rs11091078
crossref_primary_10_1007_s10708_024_11279_0
crossref_primary_10_3390_rs17111948
crossref_primary_10_1109_ACCESS_2019_2951030
crossref_primary_10_3390_rs12193115
crossref_primary_10_1117_1_JEI_34_2_023035
crossref_primary_10_1049_ipr2_12787
crossref_primary_10_1109_JSTARS_2023_3348269
crossref_primary_10_3390_rs15102589
crossref_primary_10_1016_j_dsp_2024_104810
crossref_primary_10_1109_JSTARS_2022_3157749
crossref_primary_10_1007_s11042_020_09574_2
crossref_primary_10_3390_rs10060820
crossref_primary_10_3390_rs12060901
crossref_primary_10_3390_rs16203877
crossref_primary_10_3390_rs13132558
crossref_primary_10_1109_JMASS_2022_3211256
crossref_primary_10_3390_rs13101955
crossref_primary_10_3390_rs14225788
crossref_primary_10_1109_TGRS_2023_3317143
crossref_primary_10_1016_j_ins_2024_121005
crossref_primary_10_1109_TGRS_2023_3289878
crossref_primary_10_3390_rs12162509
crossref_primary_10_3390_rs11040419
crossref_primary_10_3390_rs12030389
crossref_primary_10_1109_TGRS_2023_3268330
crossref_primary_10_1080_2150704X_2020_1837988
crossref_primary_10_1109_MAES_2021_3117369
crossref_primary_10_1109_TGRS_2022_3159035
crossref_primary_10_1109_TGRS_2024_3350712
crossref_primary_10_3390_s19010063
crossref_primary_10_1109_TGRS_2023_3251694
crossref_primary_10_3390_rs13112091
crossref_primary_10_1080_2150704X_2019_1681599
crossref_primary_10_1109_JSTARS_2022_3216623
crossref_primary_10_1109_JSTARS_2021_3089238
crossref_primary_10_3390_app13042488
crossref_primary_10_3390_app11125569
crossref_primary_10_3390_rs14205148
crossref_primary_10_3390_rs13214202
crossref_primary_10_1109_ACCESS_2020_3012701
crossref_primary_10_1109_ACCESS_2019_2943241
crossref_primary_10_1109_TMTT_2023_3231371
crossref_primary_10_1109_LGRS_2023_3310206
crossref_primary_10_3390_rs11050594
crossref_primary_10_1109_JSTARS_2020_3015049
crossref_primary_10_1007_s12517_022_10089_3
crossref_primary_10_1109_JSTARS_2022_3206247
crossref_primary_10_3390_s19102271
crossref_primary_10_1016_j_future_2022_01_016
crossref_primary_10_1109_JSTARS_2022_3221784
crossref_primary_10_3390_rs13030492
crossref_primary_10_1109_TGRS_2020_2976880
crossref_primary_10_1007_s11276_021_02670_7
crossref_primary_10_3390_rs14030442
crossref_primary_10_1109_ACCESS_2020_2985637
crossref_primary_10_1109_JSTARS_2020_3017676
crossref_primary_10_3390_s20174807
crossref_primary_10_1109_LGRS_2019_2920668
crossref_primary_10_1109_TGRS_2022_3160727
crossref_primary_10_3390_rs11070769
crossref_primary_10_3390_rs12122031
crossref_primary_10_1109_TAES_2023_3344396
crossref_primary_10_1016_j_ijinfomgt_2018_10_010
crossref_primary_10_1177_1550147720912959
crossref_primary_10_3390_rs14205247
crossref_primary_10_3390_rs14153829
crossref_primary_10_1109_JSEN_2024_3393750
crossref_primary_10_1109_TGRS_2023_3346041
crossref_primary_10_3390_rs14102395
crossref_primary_10_3390_jmse8020112
crossref_primary_10_1109_TGRS_2019_2931620
crossref_primary_10_3390_rs11242938
crossref_primary_10_3390_smartcities6030076
crossref_primary_10_1109_JSTARS_2022_3206822
crossref_primary_10_3390_rs12020339
crossref_primary_10_3390_rs11070765
crossref_primary_10_1049_iet_ipr_2018_5914
crossref_primary_10_3390_rs16071198
crossref_primary_10_1080_19439962_2023_2169801
crossref_primary_10_3390_rs12152353
crossref_primary_10_3390_rs14051149
crossref_primary_10_1016_j_isprsjprs_2023_02_011
crossref_primary_10_1016_j_isprsjprs_2022_10_016
crossref_primary_10_3390_rs12182997
crossref_primary_10_1109_ACCESS_2022_3154474
crossref_primary_10_1109_TGRS_2022_3233401
crossref_primary_10_1515_geo_2020_0180
crossref_primary_10_1109_ACCESS_2022_3230140
crossref_primary_10_1109_JSTARS_2024_3408339
crossref_primary_10_1109_TGRS_2022_3208333
crossref_primary_10_1109_ACCESS_2018_2825376
crossref_primary_10_3390_rs12182869
crossref_primary_10_3390_rs15051324
crossref_primary_10_1109_TGRS_2020_3043089
crossref_primary_10_3390_app15126666
crossref_primary_10_3390_rs15082071
crossref_primary_10_1109_TGRS_2023_3249349
crossref_primary_10_3390_rs12183053
crossref_primary_10_1109_JSTARS_2023_3317489
crossref_primary_10_1007_s10489_022_03683_1
crossref_primary_10_3390_rs15030629
crossref_primary_10_3390_rs17142482
crossref_primary_10_3390_rs9111156
crossref_primary_10_3390_rs12010167
crossref_primary_10_1007_s10462_023_10455_x
crossref_primary_10_1088_1757_899X_730_1_012071
crossref_primary_10_1109_TGRS_2022_3231340
crossref_primary_10_3390_rs12061020
crossref_primary_10_1155_2022_1010767
crossref_primary_10_1109_LGRS_2018_2882551
crossref_primary_10_3390_rs14030644
crossref_primary_10_1080_2150704X_2018_1475770
crossref_primary_10_1109_ACCESS_2022_3169501
crossref_primary_10_1007_s00500_022_07522_w
crossref_primary_10_1109_JSTARS_2025_3596074
crossref_primary_10_3390_rs14163999
crossref_primary_10_1109_TITS_2023_3235911
crossref_primary_10_1002_adts_202200002
crossref_primary_10_3389_fmars_2022_1076775
crossref_primary_10_3390_rs12101573
crossref_primary_10_3390_rs10122043
crossref_primary_10_1109_LGRS_2022_3161509
crossref_primary_10_1016_j_compag_2020_105559
crossref_primary_10_1016_j_isprsjprs_2020_05_016
crossref_primary_10_1049_sil2_12104
crossref_primary_10_1109_TGRS_2020_3005151
crossref_primary_10_1109_TGRS_2024_3373488
crossref_primary_10_3390_s21051643
crossref_primary_10_5194_essd_14_4251_2022
crossref_primary_10_1080_15481603_2023_2196159
crossref_primary_10_1109_ACCESS_2024_3365777
crossref_primary_10_1109_TGRS_2023_3340891
crossref_primary_10_1109_TGRS_2021_3130117
crossref_primary_10_3390_rs14071738
crossref_primary_10_3390_rs17101745
crossref_primary_10_1109_ACCESS_2018_2869289
crossref_primary_10_3390_rs14010031
crossref_primary_10_3390_rs16060940
Cites_doi 10.1109/JSTARS.2013.2273393
10.5244/C.30.15
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-61657-5_3
10.1109/TPAMI.2016.2572683
10.3390/s16091345
10.1007/978-3-319-46976-8_20
10.1109/CVPR.2016.314
10.1016/j.neucom.2015.09.116
10.1109/CVPR.2016.91
10.1007/978-3-319-46493-0_22
10.1017/S0373463313000659
10.1109/CVPR.2016.98
10.1109/LGRS.2017.2654450
10.1016/j.rse.2011.05.028
10.1109/CVPR.2014.81
10.1109/RADAR.2013.6652006
10.1109/JSTARS.2014.2319195
10.1109/NCVPRIPG.2015.7490037
10.1080/07038992.2001.10854880
10.1134/S1054661816010065
10.1109/CVPR.2017.166
10.1007/978-3-319-46448-0_2
10.1007/978-3-319-10590-1_53
10.1016/j.cviu.2010.02.004
10.1109/TGRS.2010.2071879
10.1109/CVPRW.2009.5206532
ContentType Journal Article
Copyright 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs9080860
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_2d5fe8661eb54ea3869a8ad125484294
10_3390_rs9080860
GeographicLocations United States--US
Switzerland
GeographicLocations_xml – name: Switzerland
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-418ffc7a6cfe695ea5e83d0a09ebdab7c1453af3cbcfdc3608b0a80efd099a463
IEDL.DBID DOA
ISICitedReferencesCount 289
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408605600098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:42:40 EDT 2025
Mon Oct 20 01:21:36 EDT 2025
Sat Nov 29 07:11:34 EST 2025
Tue Nov 18 22:42:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-418ffc7a6cfe695ea5e83d0a09ebdab7c1453af3cbcfdc3608b0a80efd099a463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9372-8118
OpenAccessLink https://doaj.org/article/2d5fe8661eb54ea3869a8ad125484294
PQID 2235677207
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_2d5fe8661eb54ea3869a8ad125484294
proquest_journals_2235677207
crossref_citationtrail_10_3390_rs9080860
crossref_primary_10_3390_rs9080860
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_7) 2017; 14
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_33
ref_32
Crisp (ref_4) 2004; 35
ref_31
ref_30
Galleguillos (ref_26) 2010; 114
Shelhamer (ref_21) 2017; 39
Ren (ref_15) 2017; 39
Druzhkov (ref_11) 2016; 26
ref_19
ref_18
ref_17
ref_16
ref_38
ref_37
Fingas (ref_9) 2001; 27
Zhi (ref_8) 2014; 67
Guo (ref_10) 2016; 187
ref_25
Torres (ref_3) 2012; 120
ref_24
ref_23
ref_22
ref_20
Pelich (ref_6) 2015; 8
ref_2
ref_29
ref_28
Brusch (ref_1) 2011; 49
Marino (ref_5) 2014; 7
ref_27
References_xml – volume: 7
  start-page: 74907
  year: 2014
  ident: ref_5
  article-title: Validating a Notch Filter for Detection of Targets at Sea with ALOS-PALSAR Data: Tokyo Bay
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2273393
– ident: ref_23
  doi: 10.5244/C.30.15
– ident: ref_32
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_15
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_34
– ident: ref_24
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_16
– ident: ref_29
  doi: 10.1007/978-3-319-61657-5_3
– volume: 39
  start-page: 640
  year: 2017
  ident: ref_21
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref_35
  doi: 10.3390/s16091345
– ident: ref_37
– volume: 35
  start-page: 2165
  year: 2004
  ident: ref_4
  article-title: The state-of-the-art in ship detection in Synthetic Aperture Radar imagery
  publication-title: Org. Lett.
– ident: ref_18
  doi: 10.1007/978-3-319-46976-8_20
– ident: ref_28
  doi: 10.1109/CVPR.2016.314
– volume: 187
  start-page: 27
  year: 2016
  ident: ref_10
  article-title: Deep learning for visual understanding
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– ident: ref_13
  doi: 10.1109/CVPR.2016.91
– ident: ref_20
  doi: 10.1007/978-3-319-46493-0_22
– volume: 67
  start-page: 177
  year: 2014
  ident: ref_8
  article-title: Ship Surveillance by Integration of Space-borne SAR and AIS—Review of Current Research
  publication-title: J. Navig.
  doi: 10.1017/S0373463313000659
– ident: ref_22
  doi: 10.1109/CVPR.2016.98
– volume: 14
  start-page: 529
  year: 2017
  ident: ref_7
  article-title: An Intensity-Space Domain CFAR Method for Ship Detection in HR SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2654450
– volume: 120
  start-page: 9
  year: 2012
  ident: ref_3
  article-title: GMES Sentinel-1 mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.028
– ident: ref_12
  doi: 10.1109/CVPR.2014.81
– ident: ref_31
– ident: ref_27
– ident: ref_2
  doi: 10.1109/RADAR.2013.6652006
– volume: 8
  start-page: 3892
  year: 2015
  ident: ref_6
  article-title: AIS-Based Evaluation of Target Detectors and SAR Sensors Characteristics for Maritime Surveillance
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2319195
– ident: ref_17
  doi: 10.1109/NCVPRIPG.2015.7490037
– volume: 27
  start-page: 379
  year: 2001
  ident: ref_9
  article-title: Review of Ship Detection from Airborne Platforms
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2001.10854880
– volume: 26
  start-page: 9
  year: 2016
  ident: ref_11
  article-title: A survey of deep learning methods and software tools for image classification and object detection
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661816010065
– ident: ref_33
  doi: 10.1109/CVPR.2017.166
– ident: ref_14
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_30
  doi: 10.1007/978-3-319-10590-1_53
– volume: 114
  start-page: 712
  year: 2010
  ident: ref_26
  article-title: Context based object categorization: A critical survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2010.02.004
– ident: ref_38
– ident: ref_36
– ident: ref_19
– volume: 49
  start-page: 1092
  year: 2011
  ident: ref_1
  article-title: Ship suveillance with TerraSAR-X
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2071879
– ident: ref_25
  doi: 10.1109/CVPRW.2009.5206532
SSID ssj0000331904
Score 2.604335
Snippet Synthetic aperture radar (SAR) ship detection has been playing an increasingly essential role in marine monitoring in recent years. The lack of detailed...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 860
SubjectTerms Artificial neural networks
context information
convolutional neural network (CNN)
False alarms
Feature extraction
Feature maps
Methods
Monolayers
Multilayers
Neural networks
Object recognition
Pattern recognition
Proposals
Radar detection
Radar imaging
Remote sensing
Rescaling
Scaling
Semantics
Sentinel-1
ship detection
Ships
Synthetic aperture radar
synthetic aperture radar (SAR)
Target detection
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELX4kuDSlhZEClQW6qEXC2dt73pPiBQiDihCoa1yW3ntMYkUJSEJiP77jh0nOVBx4bSSbVnWzthvZjx-Q8h3WdRZmYNholSCSQeaGagLZgIeSp95iO-4_9wWnY7u9cq7FHCbpbTK5ZkYD2o3tiFGfo4wpnI0BXlxMXlkoWpUuF1NJTQ2yXZgKkM9325dd-66qygLF6hiXC4ohQT69-fTWYlGko6UlGsginz9r47jiDHtj-9d3SfyIVmX9HKhDvtkA0afyW4qdN7_-4XUkY3qJTwaoV0IucishTjmKLY_Jy3ErkDZET8xR5yGYC2NT3WHBk102n4KMTaK9i69v-zS-_5gQq9gHrO6Rgfkd_v6188blsosMCuUnjPZ1N7bwuTWQ14qMAq0cNzwEmpn6sI2pRLGC1tb76zIua650Ry8Q-vSyFwckq3ReARHhCoOyoerRGmV9Lk1WdO4Jjo9Ujqc3TbIj-U_r2ziIA-lMIYV-iJBPNVKPA1ytho6WRBv_G9QKwhuNSBwZceG8fShSluvypxCjUM7BGolwQidl0bjstA11ojGskFOljKt0gaeVWuBfn27-5jsZQHpY07gCdmaT5_glOzY5_lgNv2W9PEf9Tzs4Q
  priority: 102
  providerName: ProQuest
Title Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR Ship Detection
URI https://www.proquest.com/docview/2235677207
https://doaj.org/article/2d5fe8661eb54ea3869a8ad125484294
Volume 9
WOSCitedRecordID wos000408605600098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYlLWwvpe02lrUNovShLyaKJdnyY9MmtLAFk2wj24uRpRMtFC_kR2lf-rf3JLtpYIO-7EUG6bDNnazvTj59R8ipSMs4S0BHPJM8EhZUpKFMI-3xULjYQTjH_fNrOhqp6TTLN0p9-Zywmh64Vlw3thLlEUWglAI0V0mmlbaIy0LhWhqYQFmabQRTYQ3mOLWYqKmEOMb13fkiQ-dIBSrKVwAKPP1_LcMBW4Z7ZLdxCul5_TL7ZAuqA_KuqU9-8_iBlIFE6sGf9aBj8CnEUR_hx1Lsv28mDw55po1wCand1O-x0nDC9k6jZ02HK781RtFNpZPzMZ3c3M7oJSxDMlb1kfwYDr5fXEVNdYTIcKmWkegp50yqE-MgySRoCYpbplkGpdVlanpCcu24KY2zhidMlUwrBs6iU6hFwj-RVvWngs-ESgbS-T-AwkjhEqPjHmoYYxUhLN7dtMnZi8oK01CH-woWdwWGEF67xVq7bXKyFp3VfBn_Eup7va8FPMV16EDDF43hi7cM3yZHL1Yrmu9uUaCzIxMMGFj65X8845C8jz2Mh4S_I9JazldwTHbM_fJ2Me-Q7f5glI87Yep1fNboxLdPA2xz-RvH8-tv-a9nz6vjbg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFKlc-EakFLAQSFxWddb2rveAUEuJGjWNoragctp67TGtVCVpkhb6p_iNjJ3d9ADi1gOnlWzL2l0_z7wZj2cA3sq8SosMTSIKJRLpUCcGqzwxQR9Kn3qM97i_9vPBQB8fF8MV-NXchQlhlY1MjILajW3wkW-SGlMZUUGef5xcJKFqVDhdbUpoLGCxh9c_yGSbfejt0Pq-S9Pu56NPu0ldVSCxQul5Ijvae5ubzHrMCoVGoRaOG15g5UyV245UwnhhK-udFRnXFTeao3dEpozMBM17B1YlgZ23YHXY2x9-W3p1uCBIc7lIYSREwTens4JImY4pMG8UX6wP8If4jzqt--B_-xsP4X7NntnWAu6PYAVHj2GtLuR-ev0Eqpht62e4FMMOMMRaJ9ukpx2j9qt6l1FXSEkSHzEGngVnNItXkc8NmSCsexl8iIz4PDvcOmCHp2cTtoPzGLU2egpfbuUTn0FrNB7hc2CKo_LhqFRaJX1mTdoxrkNGnZSOZrdteN-scWnrHOuh1Md5SbZWgEO5hEMb3iyHThaJRf42aDsAZTkg5AKPDePp97IWLWXqFO0o4llYKYlG6Kwwml6LTH9NbEO2YaPBUFkLqFl5A6D1f3e_hrXdo_1-2e8N9l7AvTSwmhj_uAGt-fQSX8JdezU_m01f1XuBwcltA-43tYtOOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qKQIulFWEFrAQSFysOGN7xnOoUEsaEbVEUQuonAaPF1qpSkKSFvrX-HU8O570AOLWA6eRbMuaGX9v9VsAXomizsrcacpLyamwTlHt6oLqIA-Fz7yLedyfD4rhUB0fl6M1-NXkwoSwyoYnRkZtJyb4yDsoxmSOqiArOj6FRYx6_bfT7zR0kAo3rU07jSVE9t3lDzTf5tuDHp716yzr7318956mDgPUcKkWVHSV96bQufEuL6XT0ilumWalq62uC9MVkmvPTW28NTxnqmZaMectKlZa5Bz3vQHrRejf24L10eDD6MvKw8M4wpuJZTkjzkvWmc1LVNBULId5JQRjr4A_REGUb_2N__nP3IO7SasmO0syuA9rbvwAbqcG7yeXD6GOVbh-hmQZcuhCDDbdRfltCY5fJOrDqVCqJD5ibDwJTmoSU5TPNJompH8efIsE9XxytHNIjk5Op6TnFjGabfwIPl3LJz6G1ngydk-ASOakD1eowkjhc6OzrrZdNPaEsLi7acOb5rwrk2qvhxYgZxXaYAEa1QoabXi5WjpdFhz526LdAJrVglAjPA5MZt-qxHKqzEqkNNS_XC2F01zlpVb4WhkaqaiFiDZsNXiqEuOaV1dgevrv6RdwC1FWHQyG-5twJwvKTgyL3ILWYnbunsFNc7E4nc-eJ7Ig8PW68fYbxblXAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Region-Based+Convolutional+Neural+Network+with+Multilayer+Fusion+for+SAR+Ship+Detection&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Miao+Kang&rft.au=Kefeng+Ji&rft.au=Xiangguang+Leng&rft.au=Zhao+Lin&rft.date=2017-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=9&rft.issue=8&rft.spage=860&rft_id=info:doi/10.3390%2Frs9080860&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2d5fe8661eb54ea3869a8ad125484294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon