Heterogeneous Distributed Big Data Clustering on Sparse Grids
Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sp...
Saved in:
| Published in: | Algorithms Vol. 12; no. 3; p. 60 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
07.03.2019
|
| Subjects: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our computed kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager–worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a ten-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198 s using 128 nodes of Piz Daint. This translates to an overall performance of 352 TFLOPS . On the node-level, we provide results for two GPUs, Nvidia’s Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all computed kernels and devices, demonstrating the performance portability of our approach. |
|---|---|
| AbstractList | Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our computed kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager-worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a ten-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198 s using 128 nodes of Piz Daint. This translates to an overall performance of 352 TFLOPS . On the node-level, we provide results for two GPUs, Nvidia's Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all computed kernels and devices, demonstrating the performance portability of our approach. Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our computed kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager–worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a ten-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198s using 128 nodes of Piz Daint. This translates to an overall performance of 352 TFLOPS. On the node-level, we provide results for two GPUs, Nvidia’s Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all computed kernels and devices, demonstrating the performance portability of our approach. |
| Author | Pfander, David Daiß, Gregor Pflüger, Dirk |
| Author_xml | – sequence: 1 givenname: David surname: Pfander fullname: Pfander, David – sequence: 2 givenname: Gregor surname: Daiß fullname: Daiß, Gregor – sequence: 3 givenname: Dirk surname: Pflüger fullname: Pflüger, Dirk |
| BookMark | eNptkEFLAzEQhYNUsK0e_AcLnjysJptkNzl40FbbQsGDvYdsMruk1E1Nsgf_vVsrRUQYmMfwzZvhTdCo8x0gdE3wHaUS32tSYIpxic_QmEgpcyYkHf3SF2gS43YguCzJGD0sIUHwLXTg-5jNXUzB1X0Cmz25NpvrpLPZro8D5Lo28132ttchQrYIzsZLdN7oXYSrnz5Fm5fnzWyZr18Xq9njOjeUi5QzUhaGkLqilmlRAa8kb1hZV5UU3JSNtNgWnEpLKjACBDRgJAZLa4ppWdMpWh1trddbtQ_uXYdP5bVT3wMfWqVDcmYHijKJRdE0mkHBiCZSMGmHorgetBWD183Rax_8Rw8xqa3vQzd8rwrOuMQSVwfq9kiZ4GMM0JyuEqwOQatT0AN7_4c1LunkfJeCdrt_Nr4ASTR-xQ |
| CitedBy_id | crossref_primary_10_1155_2022_1916337 crossref_primary_10_1108_EJIM_01_2023_0048 |
| Cites_doi | 10.14778/2180912.2180915 10.1145/997817.997857 10.1145/3183713.3196887 10.1007/978-0-387-84858-7 10.1007/s11222-007-9033-z 10.1007/s11227-006-8294-1 10.1007/s10766-012-0202-0 10.1109/TPAMI.2002.1017616 10.1109/HPEC.2015.7322467 10.1002/cpe.3514 10.1007/s11704-013-3158-3 10.1007/s11227-011-0672-7 10.1016/j.jco.2010.04.001 10.1017/S0962492904000182 10.1137/1.9781611973440.51 10.1145/568574.568575 10.1515/9781400874668 10.1016/j.procs.2013.05.200 10.1016/0003-2670(94)00085-9 10.1145/2723372.2737792 10.1007/978-3-319-28262-6_2 10.1145/1645953.1646038 10.1007/978-3-319-28262-6 10.21914/anziamj.v42i0.2232 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/a12030060 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_349082ffa4e241a19849d49d30b198d8 10_3390_a12030060 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-4162c11b73d4a87e5795f46b77985c6f9d0d2539d17ec8e8efec90ed3b3036b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464354800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Mon Nov 10 04:31:31 EST 2025 Fri Jul 25 12:01:06 EDT 2025 Sat Nov 29 07:17:08 EST 2025 Tue Nov 18 21:49:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-4162c11b73d4a87e5795f46b77985c6f9d0d2539d17ec8e8efec90ed3b3036b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/349082ffa4e241a19849d49d30b198d8 |
| PQID | 2545909078 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_349082ffa4e241a19849d49d30b198d8 proquest_journals_2545909078 crossref_primary_10_3390_a12030060 crossref_citationtrail_10_3390_a12030060 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-07 |
| PublicationDateYYYYMMDD | 2019-03-07 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_8) 2007; 17 ref_14 Andrade (ref_17) 2013; 18 ref_12 ref_33 ref_32 ref_31 ref_30 ref_16 ref_15 Jian (ref_13) 2013; 64 Bahmani (ref_18) 2012; 5 Bungartz (ref_27) 2004; 13 (ref_10) 2002; 4 Glimm (ref_21) 2012; Volume 7526 Heinecke (ref_24) 2012; 41 Hegland (ref_28) 2000; 42 Takizawa (ref_11) 2006; 36 ref_23 ref_22 ref_20 Heinecke (ref_25) 2015; 28 ref_1 ref_3 ref_29 ref_26 Kanungo (ref_2) 2002; 24 Zupan (ref_9) 1994; 292 ref_5 ref_4 ref_7 ref_6 He (ref_19) 2014; 8 |
| References_xml | – ident: ref_7 – volume: 5 start-page: 622 year: 2012 ident: ref_18 article-title: Scalable K-Means++ publication-title: Proc. VLDB Endow. doi: 10.14778/2180912.2180915 – ident: ref_32 doi: 10.1145/997817.997857 – ident: ref_3 – ident: ref_5 doi: 10.1145/3183713.3196887 – ident: ref_1 doi: 10.1007/978-0-387-84858-7 – volume: 17 start-page: 395 year: 2007 ident: ref_8 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 36 start-page: 219 year: 2006 ident: ref_11 article-title: Hierarchical parallel processing of large scale data clustering on a PC cluster with GPU co-processing publication-title: J. Supercomput. doi: 10.1007/s11227-006-8294-1 – ident: ref_23 – volume: 41 start-page: 357 year: 2012 ident: ref_24 article-title: Emerging Architectures Enable to Boost Massively Parallel Data Mining Using Adaptive Sparse Grids publication-title: Int. J. Parallel Program. doi: 10.1007/s10766-012-0202-0 – volume: 24 start-page: 881 year: 2002 ident: ref_2 article-title: An Efficient k-Means Clustering Algorithm: Analysis and Implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017616 – ident: ref_14 doi: 10.1109/HPEC.2015.7322467 – volume: 28 start-page: 2145 year: 2015 ident: ref_25 article-title: Data Mining on Vast Datasets as a Cluster System Benchmark publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.3514 – volume: 8 start-page: 83 year: 2014 ident: ref_19 article-title: MR-DBSCAN: A scalable MapReduce-based DBSCAN algorithm for heavily skewed data publication-title: Front. Comput. Sci. doi: 10.1007/s11704-013-3158-3 – volume: 64 start-page: 942 year: 2013 ident: ref_13 article-title: Parallel data mining techniques on Graphics Processing Unit with Compute Unified Device Architecture (CUDA) publication-title: J. Supercomput. doi: 10.1007/s11227-011-0672-7 – ident: ref_22 doi: 10.1016/j.jco.2010.04.001 – ident: ref_4 – ident: ref_29 – ident: ref_33 – volume: 13 start-page: 1 year: 2004 ident: ref_27 article-title: Sparse Grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – ident: ref_30 doi: 10.1137/1.9781611973440.51 – ident: ref_12 – volume: 4 start-page: 65 year: 2002 ident: ref_10 article-title: Why So Many Clustering Algorithms: A Position Paper publication-title: SIGKDD Explor. Newsl. doi: 10.1145/568574.568575 – ident: ref_20 doi: 10.1515/9781400874668 – ident: ref_15 – volume: 18 start-page: 369 year: 2013 ident: ref_17 article-title: G-DBSCAN: A GPU Accelerated Algorithm for Density-based Clustering publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2013.05.200 – volume: Volume 7526 start-page: 131 year: 2012 ident: ref_21 article-title: Clustering Based on Density Estimation with Sparse Grids publication-title: KI 2012: Advances in Artificial Intelligence – volume: 292 start-page: 219 year: 1994 ident: ref_9 article-title: Classification of multicomponent analytical data of olive oils using different neural networks publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(94)00085-9 – ident: ref_6 doi: 10.1145/2723372.2737792 – ident: ref_31 doi: 10.1007/978-3-319-28262-6_2 – ident: ref_16 doi: 10.1145/1645953.1646038 – ident: ref_26 doi: 10.1007/978-3-319-28262-6 – volume: 42 start-page: 712 year: 2000 ident: ref_28 article-title: Finite Element Thin Plate Splines In Density Estimation publication-title: ANZIAM J. doi: 10.21914/anziamj.v42i0.2232 |
| SSID | ssj0065961 |
| Score | 2.148262 |
| Snippet | Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 60 |
| SubjectTerms | Algorithms Big Data Cluster analysis Clustering Computation Data mining Data points Datasets Density distributed computing GPGPU Kernels machine learning Massive data points Microprocessors OpenCL peak performance performance portability Portability Supercomputers |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl58i2-CePBSbJukSQ4irs-DLKIi3koeU1mQ7bq7-vuddNP1oHgReijtHMLMZB6Z8H2EHBlvJKYllYQpT8K5dYmyzCe6cjavMCEWDfPc853sdtXLi76PB26jeK2yjYlNoPa1C2fkJ9jICJ1iK6fOBu9JYI0K09VIoTFL5gNSGfr5fOeqe__QxuJC6CKb4AkxbO5PTJajU6cNHuV3FmrA-n_E4ibBXC__d2krZCmWlvR84gurZAb6a2S5pW2gcRevk9PbcAWmRs8BbPvpZYDODaxX4Gmn90ovzdjQi7ePgKCAeY3Wffo4wPYX6M2w50cb5On66uniNoksColjQo0TrLhyl2VWMs-NkiCkFhUvrJRaCVdU2qc-F0z7TIJToKACp1PwzIbsZtkmmevXfdgitPDOSIlGl7nlwJwtUstzXoGA3AtQ2-S4VWrpIsJ4ILp4K7HTCPovp_rfJodT0cEEVuM3oU6wzFQgIGE3H-rhaxk3VsnC5DKvKsMBixGTacW1x4elFt89LmqvNVoZt-eo_LbYzt-_d8kiVki6uXQm98jcePgB-2TBfY57o-FB9LYvSB7eZQ priority: 102 providerName: ProQuest |
| Title | Heterogeneous Distributed Big Data Clustering on Sparse Grids |
| URI | https://www.proquest.com/docview/2545909078 https://doaj.org/article/349082ffa4e241a19849d49d30b198d8 |
| Volume | 12 |
| WOSCitedRecordID | wos000464354800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHrz4FtfHEsSDl2LbJE1y8ODq-kBdFhXRU8ljKguyK7urR3-7k7a7CgpehBJKO9Awk-TLR6bfELJvvJEISyoKpzwR59ZFyjIf6cLZtEBAzMrKcw_XstNRj4-6-63UV8gJq-SBK8cdsnAylRaF4YBgY5Ajc-3xYrHFe1_-5htLPSFT1RqcCZ0llY4QQ1J_aJIUB3Nc6lB-oU8p0v9jDS6B5WyZLNY7Qnpc9WSFzEB_lSxNqi3QevKtkaOLkLkywIADsnV6GhRvQ7Eq8LTVe6anZmzoyctbED5AOKKDPr17RdYK9HzY86N1cn_Wvj-5iOriB5FjQo0j3CilLkmsZJ4bJUFILQqeWSm1Ei4rtI99Kpj2iQSnQEEBTsfgmQ2gZNkGme0P-rBJaOadkRJjJVPLgTmbxZanvAABqRegGuRg4pPc1cLgoT7FS44EIbgvn7qvQfampq-VGsZvRq3g2KlBELAuH2BY8zqs-V9hbZCdSVjyelaNciSzQsdI59XWf3xjmyzg9keXGWVyh8yOh2-wS-bd-7g3GjbJXKvd6d42y4GF7ZWMmiEz9C60H21837286T59Ahjt1Eg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuLU_RUmCFQOJi1d6Hd_dQIdK0pGqIKohQb9a-XEWq4hAnIH4U_5FZx04PIG49IPlg2SvL9nz7zYx3PB_AG-ONRLekkrjKk3BuXaIs84kunaUlOsS8UZ77OpLjsbq81Bdb8Kv7FyaWVXac2BC1r1z8Rn6IiYzQKaZy6v38WxJVo-LqaiehsYbFefj5A1O2-uhsgPZ9S-npyeR4mLSqAoljQi0TjECoyzIrmedGySCkFiXPrZRaCZeX2qeeCqZ9JoNTQYUyOJ0Gz2xke8vwsndgmzOeix5s90_GF5876s-FzrN1-yLGdHpoMopzKG3aX944vUYb4A_qb_zZ6e5_9iYewE4bOJMPa6Q_hK0wewS7nSgFaTnqMRwNY4FPhfMiVKuaDGJj4KjpFTzpT6_IwCwNOb5exf4Q6LVJNSNf5pjcB_JxMfX1E5jcxjM8hd6smoVnQHLvjJQIaUktD8zZPLWc8jKIQL0Iag_edTYsXNs_Pcp4XBeYR0VzFxtz78HrzdD5umnI3wb1IxA2A2Kf7-ZAtbgqWtooWFyXpWVpeMBQy2Race1xY6nFfY83ddBhpGjJpy5uALL_79Ov4N5w8mlUjM7G58_hPsaCuimvkwfQWy5W4QXcdd-X03rxsgU6geKWAfUbeHE6Sg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB5qFfHFeitWqw6i4EvYZC6ZmYcituva0rIUWqRvw1zLQtlsN7sVf5r_zjOzyfZB8a0PQh5CMoQk55vznZM5OR9CH4w3AmhJFmmVp2DMukJa6gsVnSURCLHOynPfT8R4LC8u1OkG-tX_C5PKKnufmB21b1z6Rj6ARIarElI5OYhdWcTpcPR5dl0kBam00trLaawgchx-_oD0rd07GoKtPxIy-np-cFh0CgOFo1wuCohGiKsqK6hnRorAheKR1VYIJbmro_KlJ5wqX4ngZJAhBqfK4KlNnt9SuOw9dF-wumS5avCsJ4Gaq7paNTKiVJUDUxGYTWVuhHlLf1kl4A8SyMw22vqP38kT9LgLp_GXFf6foo0wfYa2eqkK3Hmu52jvMJX9NDBbQrNs8TC1C05KX8Hj_cklHpqFwQdXy9Q1ArgcN1N8NoOUP-Bv84lvX6Dzu3iGbbQ5babhJcK1d0YIALoglgXqbF1aRlgMPBDPg9xBn3p7atd1VU_iHlcasqtker02_Q56vx46W7US-dug_QSK9YDU_TsfaOaXunMmmqbVWhKjYQECMFMpyZSHjZYW9j3c1G6PF925pFbfguXVv0-_Qw8BRfrkaHz8Gj2CAFHlmjuxizYX82V4gx64m8Wknb_NiMdI3zGafgPPY0HD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Distributed+Big+Data+Clustering+on+Sparse+Grids&rft.jtitle=Algorithms&rft.au=Pfander%2C+David&rft.au=Dai%C3%9F%2C+Gregor&rft.au=Pfl%C3%BCger%2C+Dirk&rft.date=2019-03-07&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=12&rft.issue=3&rft.spage=60&rft_id=info:doi/10.3390%2Fa12030060&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a12030060 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |