Heterogeneous Distributed Big Data Clustering on Sparse Grids

Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sp...

Full description

Saved in:
Bibliographic Details
Published in:Algorithms Vol. 12; no. 3; p. 60
Main Authors: Pfander, David, Daiß, Gregor, Pflüger, Dirk
Format: Journal Article
Language:English
Published: Basel MDPI AG 07.03.2019
Subjects:
ISSN:1999-4893, 1999-4893
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our computed kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager–worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a ten-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198 s using 128 nodes of Piz Daint. This translates to an overall performance of 352 TFLOPS . On the node-level, we provide results for two GPUs, Nvidia’s Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all computed kernels and devices, demonstrating the performance portability of our approach.
AbstractList Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our computed kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager-worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a ten-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198 s using 128 nodes of Piz Daint. This translates to an overall performance of 352 TFLOPS . On the node-level, we provide results for two GPUs, Nvidia's Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all computed kernels and devices, demonstrating the performance portability of our approach.
Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our computed kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager–worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a ten-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198s using 128 nodes of Piz Daint. This translates to an overall performance of 352 TFLOPS. On the node-level, we provide results for two GPUs, Nvidia’s Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all computed kernels and devices, demonstrating the performance portability of our approach.
Author Pfander, David
Daiß, Gregor
Pflüger, Dirk
Author_xml – sequence: 1
  givenname: David
  surname: Pfander
  fullname: Pfander, David
– sequence: 2
  givenname: Gregor
  surname: Daiß
  fullname: Daiß, Gregor
– sequence: 3
  givenname: Dirk
  surname: Pflüger
  fullname: Pflüger, Dirk
BookMark eNptkEFLAzEQhYNUsK0e_AcLnjysJptkNzl40FbbQsGDvYdsMruk1E1Nsgf_vVsrRUQYmMfwzZvhTdCo8x0gdE3wHaUS32tSYIpxic_QmEgpcyYkHf3SF2gS43YguCzJGD0sIUHwLXTg-5jNXUzB1X0Cmz25NpvrpLPZro8D5Lo28132ttchQrYIzsZLdN7oXYSrnz5Fm5fnzWyZr18Xq9njOjeUi5QzUhaGkLqilmlRAa8kb1hZV5UU3JSNtNgWnEpLKjACBDRgJAZLa4ppWdMpWh1trddbtQ_uXYdP5bVT3wMfWqVDcmYHijKJRdE0mkHBiCZSMGmHorgetBWD183Rax_8Rw8xqa3vQzd8rwrOuMQSVwfq9kiZ4GMM0JyuEqwOQatT0AN7_4c1LunkfJeCdrt_Nr4ASTR-xQ
CitedBy_id crossref_primary_10_1155_2022_1916337
crossref_primary_10_1108_EJIM_01_2023_0048
Cites_doi 10.14778/2180912.2180915
10.1145/997817.997857
10.1145/3183713.3196887
10.1007/978-0-387-84858-7
10.1007/s11222-007-9033-z
10.1007/s11227-006-8294-1
10.1007/s10766-012-0202-0
10.1109/TPAMI.2002.1017616
10.1109/HPEC.2015.7322467
10.1002/cpe.3514
10.1007/s11704-013-3158-3
10.1007/s11227-011-0672-7
10.1016/j.jco.2010.04.001
10.1017/S0962492904000182
10.1137/1.9781611973440.51
10.1145/568574.568575
10.1515/9781400874668
10.1016/j.procs.2013.05.200
10.1016/0003-2670(94)00085-9
10.1145/2723372.2737792
10.1007/978-3-319-28262-6_2
10.1145/1645953.1646038
10.1007/978-3-319-28262-6
10.21914/anziamj.v42i0.2232
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a12030060
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_349082ffa4e241a19849d49d30b198d8
10_3390_a12030060
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-4162c11b73d4a87e5795f46b77985c6f9d0d2539d17ec8e8efec90ed3b3036b3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464354800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Mon Nov 10 04:31:31 EST 2025
Fri Jul 25 12:01:06 EDT 2025
Sat Nov 29 07:17:08 EST 2025
Tue Nov 18 21:49:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-4162c11b73d4a87e5795f46b77985c6f9d0d2539d17ec8e8efec90ed3b3036b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/349082ffa4e241a19849d49d30b198d8
PQID 2545909078
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_349082ffa4e241a19849d49d30b198d8
proquest_journals_2545909078
crossref_primary_10_3390_a12030060
crossref_citationtrail_10_3390_a12030060
PublicationCentury 2000
PublicationDate 2019-03-07
PublicationDateYYYYMMDD 2019-03-07
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-07
  day: 07
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_8) 2007; 17
ref_14
Andrade (ref_17) 2013; 18
ref_12
ref_33
ref_32
ref_31
ref_30
ref_16
ref_15
Jian (ref_13) 2013; 64
Bahmani (ref_18) 2012; 5
Bungartz (ref_27) 2004; 13
(ref_10) 2002; 4
Glimm (ref_21) 2012; Volume 7526
Heinecke (ref_24) 2012; 41
Hegland (ref_28) 2000; 42
Takizawa (ref_11) 2006; 36
ref_23
ref_22
ref_20
Heinecke (ref_25) 2015; 28
ref_1
ref_3
ref_29
ref_26
Kanungo (ref_2) 2002; 24
Zupan (ref_9) 1994; 292
ref_5
ref_4
ref_7
ref_6
He (ref_19) 2014; 8
References_xml – ident: ref_7
– volume: 5
  start-page: 622
  year: 2012
  ident: ref_18
  article-title: Scalable K-Means++
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2180912.2180915
– ident: ref_32
  doi: 10.1145/997817.997857
– ident: ref_3
– ident: ref_5
  doi: 10.1145/3183713.3196887
– ident: ref_1
  doi: 10.1007/978-0-387-84858-7
– volume: 17
  start-page: 395
  year: 2007
  ident: ref_8
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 36
  start-page: 219
  year: 2006
  ident: ref_11
  article-title: Hierarchical parallel processing of large scale data clustering on a PC cluster with GPU co-processing
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-006-8294-1
– ident: ref_23
– volume: 41
  start-page: 357
  year: 2012
  ident: ref_24
  article-title: Emerging Architectures Enable to Boost Massively Parallel Data Mining Using Adaptive Sparse Grids
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-012-0202-0
– volume: 24
  start-page: 881
  year: 2002
  ident: ref_2
  article-title: An Efficient k-Means Clustering Algorithm: Analysis and Implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref_14
  doi: 10.1109/HPEC.2015.7322467
– volume: 28
  start-page: 2145
  year: 2015
  ident: ref_25
  article-title: Data Mining on Vast Datasets as a Cluster System Benchmark
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.3514
– volume: 8
  start-page: 83
  year: 2014
  ident: ref_19
  article-title: MR-DBSCAN: A scalable MapReduce-based DBSCAN algorithm for heavily skewed data
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-013-3158-3
– volume: 64
  start-page: 942
  year: 2013
  ident: ref_13
  article-title: Parallel data mining techniques on Graphics Processing Unit with Compute Unified Device Architecture (CUDA)
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-011-0672-7
– ident: ref_22
  doi: 10.1016/j.jco.2010.04.001
– ident: ref_4
– ident: ref_29
– ident: ref_33
– volume: 13
  start-page: 1
  year: 2004
  ident: ref_27
  article-title: Sparse Grids
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– ident: ref_30
  doi: 10.1137/1.9781611973440.51
– ident: ref_12
– volume: 4
  start-page: 65
  year: 2002
  ident: ref_10
  article-title: Why So Many Clustering Algorithms: A Position Paper
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/568574.568575
– ident: ref_20
  doi: 10.1515/9781400874668
– ident: ref_15
– volume: 18
  start-page: 369
  year: 2013
  ident: ref_17
  article-title: G-DBSCAN: A GPU Accelerated Algorithm for Density-based Clustering
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.05.200
– volume: Volume 7526
  start-page: 131
  year: 2012
  ident: ref_21
  article-title: Clustering Based on Density Estimation with Sparse Grids
  publication-title: KI 2012: Advances in Artificial Intelligence
– volume: 292
  start-page: 219
  year: 1994
  ident: ref_9
  article-title: Classification of multicomponent analytical data of olive oils using different neural networks
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(94)00085-9
– ident: ref_6
  doi: 10.1145/2723372.2737792
– ident: ref_31
  doi: 10.1007/978-3-319-28262-6_2
– ident: ref_16
  doi: 10.1145/1645953.1646038
– ident: ref_26
  doi: 10.1007/978-3-319-28262-6
– volume: 42
  start-page: 712
  year: 2000
  ident: ref_28
  article-title: Finite Element Thin Plate Splines In Density Estimation
  publication-title: ANZIAM J.
  doi: 10.21914/anziamj.v42i0.2232
SSID ssj0065961
Score 2.148262
Snippet Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 60
SubjectTerms Algorithms
Big Data
Cluster analysis
Clustering
Computation
Data mining
Data points
Datasets
Density
distributed computing
GPGPU
Kernels
machine learning
Massive data points
Microprocessors
OpenCL
peak performance
performance portability
Portability
Supercomputers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl58i2-CePBSbJukSQ4irs-DLKIi3koeU1mQ7bq7-vuddNP1oHgReijtHMLMZB6Z8H2EHBlvJKYllYQpT8K5dYmyzCe6cjavMCEWDfPc853sdtXLi76PB26jeK2yjYlNoPa1C2fkJ9jICJ1iK6fOBu9JYI0K09VIoTFL5gNSGfr5fOeqe__QxuJC6CKb4AkxbO5PTJajU6cNHuV3FmrA-n_E4ibBXC__d2krZCmWlvR84gurZAb6a2S5pW2gcRevk9PbcAWmRs8BbPvpZYDODaxX4Gmn90ovzdjQi7ePgKCAeY3Wffo4wPYX6M2w50cb5On66uniNoksColjQo0TrLhyl2VWMs-NkiCkFhUvrJRaCVdU2qc-F0z7TIJToKACp1PwzIbsZtkmmevXfdgitPDOSIlGl7nlwJwtUstzXoGA3AtQ2-S4VWrpIsJ4ILp4K7HTCPovp_rfJodT0cEEVuM3oU6wzFQgIGE3H-rhaxk3VsnC5DKvKsMBixGTacW1x4elFt89LmqvNVoZt-eo_LbYzt-_d8kiVki6uXQm98jcePgB-2TBfY57o-FB9LYvSB7eZQ
  priority: 102
  providerName: ProQuest
Title Heterogeneous Distributed Big Data Clustering on Sparse Grids
URI https://www.proquest.com/docview/2545909078
https://doaj.org/article/349082ffa4e241a19849d49d30b198d8
Volume 12
WOSCitedRecordID wos000464354800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHrz4FtfHEsSDl2LbJE1y8ODq-kBdFhXRU8ljKguyK7urR3-7k7a7CgpehBJKO9Awk-TLR6bfELJvvJEISyoKpzwR59ZFyjIf6cLZtEBAzMrKcw_XstNRj4-6-63UV8gJq-SBK8cdsnAylRaF4YBgY5Ajc-3xYrHFe1_-5htLPSFT1RqcCZ0llY4QQ1J_aJIUB3Nc6lB-oU8p0v9jDS6B5WyZLNY7Qnpc9WSFzEB_lSxNqi3QevKtkaOLkLkywIADsnV6GhRvQ7Eq8LTVe6anZmzoyctbED5AOKKDPr17RdYK9HzY86N1cn_Wvj-5iOriB5FjQo0j3CilLkmsZJ4bJUFILQqeWSm1Ei4rtI99Kpj2iQSnQEEBTsfgmQ2gZNkGme0P-rBJaOadkRJjJVPLgTmbxZanvAABqRegGuRg4pPc1cLgoT7FS44EIbgvn7qvQfampq-VGsZvRq3g2KlBELAuH2BY8zqs-V9hbZCdSVjyelaNciSzQsdI59XWf3xjmyzg9keXGWVyh8yOh2-wS-bd-7g3GjbJXKvd6d42y4GF7ZWMmiEz9C60H21837286T59Ahjt1Eg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuLU_RUmCFQOJi1d6Hd_dQIdK0pGqIKohQb9a-XEWq4hAnIH4U_5FZx04PIG49IPlg2SvL9nz7zYx3PB_AG-ONRLekkrjKk3BuXaIs84kunaUlOsS8UZ77OpLjsbq81Bdb8Kv7FyaWVXac2BC1r1z8Rn6IiYzQKaZy6v38WxJVo-LqaiehsYbFefj5A1O2-uhsgPZ9S-npyeR4mLSqAoljQi0TjECoyzIrmedGySCkFiXPrZRaCZeX2qeeCqZ9JoNTQYUyOJ0Gz2xke8vwsndgmzOeix5s90_GF5876s-FzrN1-yLGdHpoMopzKG3aX944vUYb4A_qb_zZ6e5_9iYewE4bOJMPa6Q_hK0wewS7nSgFaTnqMRwNY4FPhfMiVKuaDGJj4KjpFTzpT6_IwCwNOb5exf4Q6LVJNSNf5pjcB_JxMfX1E5jcxjM8hd6smoVnQHLvjJQIaUktD8zZPLWc8jKIQL0Iag_edTYsXNs_Pcp4XBeYR0VzFxtz78HrzdD5umnI3wb1IxA2A2Kf7-ZAtbgqWtooWFyXpWVpeMBQy2Race1xY6nFfY83ddBhpGjJpy5uALL_79Ov4N5w8mlUjM7G58_hPsaCuimvkwfQWy5W4QXcdd-X03rxsgU6geKWAfUbeHE6Sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB5qFfHFeitWqw6i4EvYZC6ZmYcituva0rIUWqRvw1zLQtlsN7sVf5r_zjOzyfZB8a0PQh5CMoQk55vznZM5OR9CH4w3AmhJFmmVp2DMukJa6gsVnSURCLHOynPfT8R4LC8u1OkG-tX_C5PKKnufmB21b1z6Rj6ARIarElI5OYhdWcTpcPR5dl0kBam00trLaawgchx-_oD0rd07GoKtPxIy-np-cFh0CgOFo1wuCohGiKsqK6hnRorAheKR1VYIJbmro_KlJ5wqX4ngZJAhBqfK4KlNnt9SuOw9dF-wumS5avCsJ4Gaq7paNTKiVJUDUxGYTWVuhHlLf1kl4A8SyMw22vqP38kT9LgLp_GXFf6foo0wfYa2eqkK3Hmu52jvMJX9NDBbQrNs8TC1C05KX8Hj_cklHpqFwQdXy9Q1ArgcN1N8NoOUP-Bv84lvX6Dzu3iGbbQ5babhJcK1d0YIALoglgXqbF1aRlgMPBDPg9xBn3p7atd1VU_iHlcasqtker02_Q56vx46W7US-dug_QSK9YDU_TsfaOaXunMmmqbVWhKjYQECMFMpyZSHjZYW9j3c1G6PF925pFbfguXVv0-_Qw8BRfrkaHz8Gj2CAFHlmjuxizYX82V4gx64m8Wknb_NiMdI3zGafgPPY0HD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Distributed+Big+Data+Clustering+on+Sparse+Grids&rft.jtitle=Algorithms&rft.au=Pfander%2C+David&rft.au=Dai%C3%9F%2C+Gregor&rft.au=Pfl%C3%BCger%2C+Dirk&rft.date=2019-03-07&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=12&rft.issue=3&rft.spage=60&rft_id=info:doi/10.3390%2Fa12030060&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a12030060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon