Migration-Based Moth-Flame Optimization Algorithm

Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dro...

Full description

Saved in:
Bibliographic Details
Published in:Processes Vol. 9; no. 12; p. 2276
Main Authors: Nadimi-Shahraki, Mohammad H., Fatahi, Ali, Zamani, Hoda, Mirjalili, Seyedali, Abualigah, Laith, Abd Elaziz, Mohamed
Format: Journal Article
Language:English
Published: Basel MDPI AG 18.12.2021
Subjects:
ISSN:2227-9717, 2227-9717
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dropping of population diversity and poor exploration. Hence, in this article, a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the mentioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating them stochastically in the early iterations using a random migration (RM) operator, maintaining the solution diversification by storing new qualified solutions separately in a guiding archive, and, finally, exploiting around the positions saved in the guiding archive using a guided migration (GM) operator. The dimensionally aware switch between these two operators guarantees the convergence of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC 2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO, including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four latest high-performing variants were considered for the main experiments with different dimensions, 30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration ability and population diversity maintenance by employing migration strategy and guiding archive. In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates competitive performance compared to the contender algorithms used in the experiments.
AbstractList Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dropping of population diversity and poor exploration. Hence, in this article, a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the mentioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating them stochastically in the early iterations using a random migration (RM) operator, maintaining the solution diversification by storing new qualified solutions separately in a guiding archive, and, finally, exploiting around the positions saved in the guiding archive using a guided migration (GM) operator. The dimensionally aware switch between these two operators guarantees the convergence of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC 2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO, including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four latest high-performing variants were considered for the main experiments with different dimensions, 30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration ability and population diversity maintenance by employing migration strategy and guiding archive. In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates competitive performance compared to the contender algorithms used in the experiments.
Author Fatahi, Ali
Abualigah, Laith
Nadimi-Shahraki, Mohammad H.
Abd Elaziz, Mohamed
Mirjalili, Seyedali
Zamani, Hoda
Author_xml – sequence: 1
  givenname: Mohammad H.
  orcidid: 0000-0002-0135-1115
  surname: Nadimi-Shahraki
  fullname: Nadimi-Shahraki, Mohammad H.
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-7779-3470
  surname: Fatahi
  fullname: Fatahi, Ali
– sequence: 3
  givenname: Hoda
  orcidid: 0000-0003-0444-4509
  surname: Zamani
  fullname: Zamani, Hoda
– sequence: 4
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
– sequence: 5
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
– sequence: 6
  givenname: Mohamed
  orcidid: 0000-0002-7682-6269
  surname: Abd Elaziz
  fullname: Abd Elaziz, Mohamed
BookMark eNptkE1PAjEQhhuDiYgc_AcknjxUOu1-tEckoiYQLnredLtdKNndrm056K-ngDHGOJd3knnm671Gg852GqFbIA-MCTLtnQBKaZ5doOFRscghH_zKr9DY-x2JIYDxNBsiWJmNk8HYDj9Kr6vJyoYtXjSy1ZN1H0xrvk7VyazZWGfCtr1Bl7VsvB5_6wi9L57e5i94uX5-nc-WWLGUB8yqhEIFgqYaRKZ4Eg9knGTAdKm5AFWLnAgheBnBpOKqzAmlOq1KgFRVko3Q3Xlu7-zHXvtQ7OzedXFlQTOgPA5LeaTuz5Ry1nun66J3ppXuswBSHE0pfkyJ7PQPq0w4fRecNM0_HQcL7mNk
CitedBy_id crossref_primary_10_3390_math10081259
crossref_primary_10_1371_journal_pone_0275104
crossref_primary_10_1007_s42235_022_00323_9
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1063_5_0213886
crossref_primary_10_1016_j_eswa_2023_121712
crossref_primary_10_3390_math10071129
crossref_primary_10_1016_j_enganabound_2022_01_014
crossref_primary_10_1007_s11042_022_13836_6
crossref_primary_10_1109_ACCESS_2022_3172789
crossref_primary_10_1016_j_heliyon_2024_e31850
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_3390_sym14020204
crossref_primary_10_1016_j_apenergy_2023_122071
crossref_primary_10_3390_electronics11121919
crossref_primary_10_1016_j_enconman_2022_116523
crossref_primary_10_3390_s22041410
crossref_primary_10_1007_s10922_022_09653_9
crossref_primary_10_1016_j_compbiomed_2022_105858
crossref_primary_10_3389_fenrg_2023_1055845
crossref_primary_10_1007_s00202_025_03167_8
crossref_primary_10_1155_2022_8398768
crossref_primary_10_3390_math10152770
crossref_primary_10_1007_s10462_022_10328_9
crossref_primary_10_3390_math11051213
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_1007_s11224_024_02411_4
crossref_primary_10_1007_s12530_023_09566_1
crossref_primary_10_1016_j_knosys_2022_108833
crossref_primary_10_1007_s11063_023_11336_8
crossref_primary_10_1016_j_seta_2023_103271
crossref_primary_10_1007_s42235_023_00433_y
crossref_primary_10_1016_j_energy_2024_133069
crossref_primary_10_1007_s11042_023_17886_2
crossref_primary_10_1038_s41598_023_49754_2
crossref_primary_10_1007_s00500_023_09299_y
crossref_primary_10_1007_s10462_022_10280_8
crossref_primary_10_1016_j_eswa_2023_120367
crossref_primary_10_1371_journal_pone_0282812
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_1007_s00500_023_08416_1
crossref_primary_10_3390_electronics12071564
crossref_primary_10_3390_math10081303
crossref_primary_10_1007_s10586_024_04301_0
crossref_primary_10_1007_s00521_023_09234_0
crossref_primary_10_1371_journal_pone_0267197
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_3390_math11040862
crossref_primary_10_1007_s42235_023_00357_7
crossref_primary_10_1016_j_iot_2024_101135
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_3390_pr11082263
crossref_primary_10_3390_s22051795
Cites_doi 10.3390/math7100875
10.1016/j.swevo.2019.04.008
10.3390/computation9060068
10.3390/app9091776
10.1016/j.knosys.2020.106711
10.1016/j.cie.2021.107250
10.3390/e23121637
10.1016/j.eswa.2020.113617
10.1016/j.advengsoft.2021.102973
10.1016/j.cma.2020.113609
10.1109/4235.585893
10.3390/e23081065
10.1007/978-981-10-3770-2_53
10.1109/TPWRS.2002.1007886
10.1007/978-3-319-60663-7_3
10.3390/a14110314
10.1016/j.compbiomed.2021.105027
10.1016/j.cnsns.2012.05.010
10.1016/j.eswa.2016.04.018
10.1023/A:1008202821328
10.3390/math9202627
10.1016/j.advengsoft.2017.07.002
10.1016/j.eswa.2020.114107
10.1007/s42235-018-0063-3
10.1109/ACCESS.2019.2908718
10.3390/s90705339
10.1108/02644401211235834
10.3390/math9161929
10.1007/s10489-018-1364-2
10.1016/j.swevo.2011.02.002
10.1109/ICCAR.2017.7942762
10.5220/0008960701750182
10.1016/j.asoc.2010.04.024
10.3390/math9151743
10.1007/978-3-319-64861-3_30
10.1007/s00521-018-3821-6
10.3390/s21155102
10.3390/s21124086
10.1109/ACCESS.2020.2997066
10.1016/j.ins.2019.04.022
10.1002/9780470496916
10.1016/j.eswa.2021.115436
10.3390/diagnostics11050811
10.3390/sym12111782
10.3390/math9202574
10.1016/j.asoc.2020.106761
10.3390/math8081221
10.1016/j.knosys.2015.07.006
10.1016/j.eswa.2020.113917
10.1177/1550147718824460
10.1016/j.engappai.2019.103342
10.3390/en14113019
10.1093/oso/9780195131581.001.0001
10.1016/j.eswa.2017.04.023
10.1007/s11269-018-1992-7
10.3390/app11219868
10.1109/ACCESS.2018.2868118
10.1007/s00521-015-1920-1
10.1016/j.matcom.2019.06.017
10.1109/ICCAIRO.2017.38
10.3390/electronics10020101
10.1109/ACCESS.2020.3025833
10.1109/CEC.2016.7744378
10.1109/IntelliSys.2017.8324318
10.3390/app9040792
10.3390/machines9100220
10.1016/j.advengsoft.2016.01.008
10.20944/preprints202109.0090.v1
10.3390/math8091515
10.1016/j.advengsoft.2013.12.007
10.3390/diagnostics11020315
10.1016/j.asoc.2019.105583
10.1016/j.engappai.2021.104314
10.1016/j.eswa.2020.113338
10.1007/s00366-011-0241-y
10.3390/computers10110136
10.21629/JSEE.2019.06.10
10.3390/sym12081234
10.1016/j.eswa.2019.03.043
10.1007/s10845-010-0393-4
10.1007/s00366-016-0457-y
10.3390/app10113827
10.1016/j.compag.2017.02.026
10.3390/mca26030064
10.1007/s00607-020-00809-6
10.20944/preprints202103.0282.v1
10.3390/pr9091551
10.1023/A:1015059928466
10.1007/BF00175355
10.1155/2021/6622655
10.1016/j.knosys.2019.105277
10.1016/j.advengsoft.2015.01.010
10.1016/j.compstruc.2016.03.001
10.1016/j.future.2019.07.015
10.1109/IDAP.2018.8620933
10.1002/cpe.6310
10.1007/s11277-018-6043-4
10.1007/s00500-017-2894-y
10.1007/s00366-016-0485-7
10.1007/978-3-662-06560-0
10.1038/scientificamerican0792-66
10.3390/e23111383
10.1016/j.neucom.2017.04.060
10.3390/a14070200
10.1016/j.matcom.2021.04.006
10.1016/j.asoc.2014.06.035
10.3390/s21196434
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr9122276
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
ProQuest Biological Science
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr9122276
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-3d421d1925e196c84390380613ebe891cf9709998bd424d8cb7022e5db115cda3
IEDL.DBID M7P
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 11:52:17 EDT 2025
Tue Nov 18 22:17:37 EST 2025
Sat Nov 29 07:14:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-3d421d1925e196c84390380613ebe891cf9709998bd424d8cb7022e5db115cda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2203-4549
0000-0003-0444-4509
0000-0002-7682-6269
0000-0002-1443-9458
0000-0002-0135-1115
0000-0002-7779-3470
OpenAccessLink https://www.proquest.com/docview/2612838058?pq-origsite=%requestingapplication%
PQID 2612838058
PQPubID 2032344
ParticipantIDs proquest_journals_2612838058
crossref_primary_10_3390_pr9122276
crossref_citationtrail_10_3390_pr9122276
PublicationCentury 2000
PublicationDate 2021-12-18
PublicationDateYYYYMMDD 2021-12-18
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-18
  day: 18
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zamani (ref_47) 2021; 104
ref_14
ref_13
ref_12
ref_11
ref_10
Bakirtzis (ref_48) 2002; 17
Xu (ref_109) 2018; 15
Yousri (ref_106) 2021; 154
ref_19
Storn (ref_39) 1997; 11
ref_18
Varaee (ref_6) 2017; 33
ref_17
Derrac (ref_118) 2011; 1
ref_16
ref_15
Wolpert (ref_42) 1997; 1
Beyer (ref_46) 2002; 1
Ghasemi (ref_7) 2017; 33
Izakian (ref_32) 2009; 9
Akay (ref_1) 2012; 23
Ishtiaq (ref_75) 2019; 15
ref_25
ref_24
Zhang (ref_111) 2020; 159
ref_23
ref_22
ref_21
ref_20
Taghian (ref_51) 2020; 97
Koza (ref_45) 1994; 4
ref_29
ref_27
Abualigah (ref_100) 2021; 376
Abualigah (ref_62) 2021; 157
Wang (ref_80) 2017; 267
Gupta (ref_83) 2020; 102
Elaziz (ref_84) 2020; 168
Taghian (ref_69) 2021; 166
ref_71
Yang (ref_59) 2012; 29
Shah (ref_72) 2018; 6
Gandomi (ref_60) 2013; 29
ref_79
ref_78
ref_77
Zahrani (ref_37) 2021; 17
Das (ref_50) 2019; 49
Nguyen (ref_87) 2020; 8
Jaiswal (ref_88) 2020; 10
Aziz (ref_91) 2017; 83
Hassanien (ref_81) 2017; 136
ref_82
Xu (ref_96) 2019; 492
Xu (ref_95) 2019; 129
Mirjalili (ref_54) 2016; 95
Jia (ref_70) 2021; 7
Khalilpourazari (ref_93) 2019; 23
Gharehchopogh (ref_3) 2021; 33
Pelusi (ref_114) 2020; 191
ref_89
Mirjalili (ref_65) 2015; 83
ref_86
ref_85
Li (ref_110) 2018; 32
Gandomi (ref_53) 2012; 17
Hashim (ref_99) 2019; 101
Zamani (ref_28) 2016; 151
Fei (ref_74) 2020; 8
Mirjalili (ref_55) 2017; 114
Holland (ref_44) 1992; 267
Osaba (ref_33) 2019; 48
Li (ref_98) 2021; 183
Zamani (ref_52) 2019; 85
MiarNaeimi (ref_58) 2021; 213
ref_64
ref_63
Jia (ref_90) 2019; 7
Kotary (ref_73) 2020; 87
Mittal (ref_76) 2018; 104
Khishe (ref_57) 2020; 149
(ref_56) 2021; 166
Zamani (ref_26) 2016; 14
Karaboga (ref_68) 2014; 23
Hongwei (ref_94) 2019; 30
Li (ref_92) 2016; 2016
ref_115
ref_117
ref_116
Kar (ref_35) 2016; 59
ref_36
ref_34
Askarzadeh (ref_61) 2016; 169
ref_31
ref_30
ref_112
Mallipeddi (ref_49) 2011; 11
ref_38
Mirjalili (ref_67) 2015; 89
ref_104
ref_103
Mirjalili (ref_41) 2014; 69
ref_105
ref_108
ref_43
Chen (ref_97) 2021; 188
Mirjalili (ref_66) 2016; 27
ref_102
ref_40
ref_101
Dang (ref_107) 2021; 2021
ref_2
ref_9
ref_8
ref_5
ref_4
Kaur (ref_113) 2020; 32
References_xml – ident: ref_104
  doi: 10.3390/math7100875
– volume: 48
  start-page: 220
  year: 2019
  ident: ref_33
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput
  doi: 10.1016/j.swevo.2019.04.008
– ident: ref_25
  doi: 10.3390/computation9060068
– ident: ref_31
  doi: 10.3390/app9091776
– volume: 213
  start-page: 106711
  year: 2021
  ident: ref_58
  article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2020.106711
– volume: 157
  start-page: 107250
  year: 2021
  ident: ref_62
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– ident: ref_112
  doi: 10.3390/e23121637
– volume: 159
  start-page: 113617
  year: 2020
  ident: ref_111
  article-title: Advanced orthogonal moth flame optimization with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113617
– volume: 154
  start-page: 102973
  year: 2021
  ident: ref_106
  article-title: A hybrid Harris hawks-moth-flame optimization algorithm including fractional-order chaos maps and evolutionary population dynamics
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2021.102973
– volume: 376
  start-page: 113609
  year: 2021
  ident: ref_100
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_42
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: ref_19
  doi: 10.3390/e23081065
– ident: ref_101
  doi: 10.1007/978-981-10-3770-2_53
– volume: 17
  start-page: 229
  year: 2002
  ident: ref_48
  article-title: Optimal power flow by enhanced genetic algorithm
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.1007886
– ident: ref_108
  doi: 10.1007/978-3-319-60663-7_3
– ident: ref_77
  doi: 10.3390/a14110314
– ident: ref_27
  doi: 10.1016/j.compbiomed.2021.105027
– volume: 17
  start-page: 4831
  year: 2012
  ident: ref_53
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 59
  start-page: 20
  year: 2016
  ident: ref_35
  article-title: Bio inspired computing—A review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.018
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_39
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 10
  start-page: 196
  year: 2020
  ident: ref_88
  article-title: MMFO: Modified moth flame optimization algorithm for region based RGB color image segmentation
  publication-title: Int. J. Electr. Comput. Eng.
– ident: ref_21
  doi: 10.3390/math9202627
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_55
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 166
  start-page: 114107
  year: 2021
  ident: ref_56
  article-title: Red fox optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114107
– volume: 15
  start-page: 751
  year: 2018
  ident: ref_109
  article-title: Enhanced moth-flame optimization based on cultural learning and Gaussian mutation
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-018-0063-3
– volume: 7
  start-page: 44097
  year: 2019
  ident: ref_90
  article-title: Multilevel thresholding segmentation for color image using modified moth-flame optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908718
– volume: 9
  start-page: 5339
  year: 2009
  ident: ref_32
  article-title: Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing Systems
  publication-title: Sensors
  doi: 10.3390/s90705339
– volume: 29
  start-page: 464
  year: 2012
  ident: ref_59
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– ident: ref_12
  doi: 10.3390/math9161929
– volume: 49
  start-page: 1841
  year: 2019
  ident: ref_50
  article-title: A directional crossover (DX) operator for real parameter optimization using genetic algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1364-2
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_118
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref_102
  doi: 10.1109/ICCAR.2017.7942762
– volume: 7
  start-page: 1
  year: 2021
  ident: ref_70
  article-title: An enhanced chimp optimization algorithm for continuous optimization domains
  publication-title: Complex Intell. Syst.
– ident: ref_79
  doi: 10.5220/0008960701750182
– volume: 11
  start-page: 1679
  year: 2011
  ident: ref_49
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.024
– ident: ref_2
  doi: 10.3390/math9151743
– ident: ref_89
  doi: 10.1007/978-3-319-64861-3_30
– volume: 32
  start-page: 2315
  year: 2020
  ident: ref_113
  article-title: An enhanced moth flame optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3821-6
– ident: ref_13
  doi: 10.3390/s21155102
– ident: ref_71
  doi: 10.3390/s21124086
– volume: 8
  start-page: 97474
  year: 2020
  ident: ref_74
  article-title: Energy-Efficient Clustering Algorithm in Underwater Sensor Networks Based on Fuzzy C Means and Moth-Flame Optimization Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997066
– volume: 492
  start-page: 181
  year: 2019
  ident: ref_96
  article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.04.022
– volume: 14
  start-page: 1243
  year: 2016
  ident: ref_26
  article-title: Feature selection based on whale optimization algorithm for diseases diagnosis
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– ident: ref_34
  doi: 10.1002/9780470496916
– volume: 183
  start-page: 115436
  year: 2021
  ident: ref_98
  article-title: Death mechanism-based moth–flame optimization with improved flame generation mechanism for global optimization tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115436
– ident: ref_64
– ident: ref_86
  doi: 10.3390/diagnostics11050811
– ident: ref_20
  doi: 10.3390/sym12111782
– ident: ref_24
  doi: 10.3390/math9202574
– volume: 97
  start-page: 106761
  year: 2020
  ident: ref_51
  article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106761
– ident: ref_30
  doi: 10.3390/math8081221
– volume: 89
  start-page: 228
  year: 2015
  ident: ref_67
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 166
  start-page: 113917
  year: 2021
  ident: ref_69
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113917
– volume: 15
  start-page: 1550147718824460
  year: 2019
  ident: ref_75
  article-title: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147718824460
– volume: 87
  start-page: 103342
  year: 2020
  ident: ref_73
  article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103342
– ident: ref_14
  doi: 10.3390/en14113019
– ident: ref_38
  doi: 10.1093/oso/9780195131581.001.0001
– volume: 83
  start-page: 242
  year: 2017
  ident: ref_91
  article-title: Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.023
– volume: 32
  start-page: 3303
  year: 2018
  ident: ref_110
  article-title: Optimization of water resources utilization by multi-objective moth-flame algorithm
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1992-7
– ident: ref_10
  doi: 10.3390/app11219868
– volume: 6
  start-page: 48611
  year: 2018
  ident: ref_72
  article-title: CAMONET: Moth-Flame Optimization (MFO) Based Clustering Algorithm for VANETs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868118
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_66
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 168
  start-page: 48
  year: 2020
  ident: ref_84
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.06.017
– ident: ref_82
  doi: 10.1109/ICCAIRO.2017.38
– ident: ref_17
  doi: 10.3390/electronics10020101
– volume: 8
  start-page: 174142
  year: 2020
  ident: ref_87
  article-title: A Scheme of Color Image Multithreshold Segmentation Based on Improved Moth-Flame Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025833
– ident: ref_78
  doi: 10.1109/CEC.2016.7744378
– ident: ref_103
  doi: 10.1109/IntelliSys.2017.8324318
– ident: ref_105
  doi: 10.3390/app9040792
– ident: ref_9
  doi: 10.3390/machines9100220
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_54
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_4
  doi: 10.20944/preprints202109.0090.v1
– ident: ref_18
  doi: 10.3390/math8091515
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_41
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref_16
  doi: 10.3390/diagnostics11020315
– volume: 85
  start-page: 105583
  year: 2019
  ident: ref_52
  article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105583
– volume: 104
  start-page: 104314
  year: 2021
  ident: ref_47
  article-title: QANA: Quantum-based avian navigation optimizer algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104314
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_57
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 29
  start-page: 17
  year: 2013
  ident: ref_60
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– ident: ref_85
  doi: 10.3390/computers10110136
– volume: 30
  start-page: 1144
  year: 2019
  ident: ref_94
  article-title: Chaos-enhanced moth-flame optimization algorithm for global optimization
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2019.06.10
– volume: 17
  start-page: 100231
  year: 2021
  ident: ref_37
  article-title: An intelligent social-based method for rail-car fleet sizing problem
  publication-title: J. Rail Transp. Plan. Manag.
– ident: ref_115
  doi: 10.3390/sym12081234
– volume: 151
  start-page: 40
  year: 2016
  ident: ref_28
  article-title: Swarm intelligence approach for breast cancer diagnosis
  publication-title: Int. J. Comput. Appl.
– volume: 129
  start-page: 135
  year: 2019
  ident: ref_95
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.043
– volume: 23
  start-page: 1001
  year: 2012
  ident: ref_1
  article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-010-0393-4
– volume: 33
  start-page: 71
  year: 2017
  ident: ref_6
  article-title: Engineering optimization based on ideal gas molecular movement algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0457-y
– ident: ref_11
  doi: 10.3390/app10113827
– volume: 136
  start-page: 86
  year: 2017
  ident: ref_81
  article-title: An improved moth flame optimization algorithm based on rough sets for tomato diseases detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.02.026
– ident: ref_8
  doi: 10.3390/mca26030064
– volume: 102
  start-page: 1503
  year: 2020
  ident: ref_83
  article-title: Feature selection and evaluation for software usability model using modified moth-flame optimization
  publication-title: Computing
  doi: 10.1007/s00607-020-00809-6
– ident: ref_15
  doi: 10.20944/preprints202103.0282.v1
– ident: ref_5
  doi: 10.3390/pr9091551
– volume: 1
  start-page: 3
  year: 2002
  ident: ref_46
  article-title: Evolution strategies—A comprehensive introduction
  publication-title: Nat. Comput.
  doi: 10.1023/A:1015059928466
– volume: 4
  start-page: 87
  year: 1994
  ident: ref_45
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– volume: 2021
  start-page: 6622655
  year: 2021
  ident: ref_107
  article-title: Optimization for a flexure hinge using an effective hybrid approach of fuzzy logic and moth-flame optimization algorithm
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/6622655
– volume: 191
  start-page: 105277
  year: 2020
  ident: ref_114
  article-title: An Improved Moth-Flame Optimization algorithm with hybrid search phase
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105277
– volume: 83
  start-page: 80
  year: 2015
  ident: ref_65
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 2016
  start-page: 1423930
  year: 2016
  ident: ref_92
  article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems
  publication-title: Math. Probl. Eng.
– ident: ref_40
– volume: 169
  start-page: 1
  year: 2016
  ident: ref_61
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– ident: ref_63
– volume: 101
  start-page: 646
  year: 2019
  ident: ref_99
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– ident: ref_36
  doi: 10.1109/IDAP.2018.8620933
– ident: ref_116
– volume: 33
  start-page: e6310
  year: 2021
  ident: ref_3
  article-title: A farmland fertility algorithm for solving constrained engineering problems
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6310
– volume: 104
  start-page: 677
  year: 2018
  ident: ref_76
  article-title: Moth Flame Optimization Based Energy Efficient Stable Clustered Routing Approach for Wireless Sensor Networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-018-6043-4
– volume: 23
  start-page: 1699
  year: 2019
  ident: ref_93
  article-title: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2894-y
– volume: 33
  start-page: 477
  year: 2017
  ident: ref_7
  article-title: A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0485-7
– ident: ref_117
  doi: 10.1007/978-3-662-06560-0
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_44
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: ref_22
  doi: 10.3390/e23111383
– volume: 267
  start-page: 69
  year: 2017
  ident: ref_80
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– ident: ref_29
  doi: 10.3390/a14070200
– ident: ref_43
– volume: 188
  start-page: 291
  year: 2021
  ident: ref_97
  article-title: Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.04.006
– volume: 23
  start-page: 227
  year: 2014
  ident: ref_68
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.035
– ident: ref_23
  doi: 10.3390/s21196434
SSID ssj0000913856
Score 2.4303849
Snippet Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2276
SubjectTerms Algorithms
Archives & records
Behavior
Butterflies & moths
Competition
Evolution
Experiments
Feature selection
Genetic algorithms
Intelligence
Optimization
Optimization algorithms
Optimization techniques
Population
Swarm intelligence
Task complexity
Title Migration-Based Moth-Flame Optimization Algorithm
URI https://www.proquest.com/docview/2612838058
Volume 9
WOSCitedRecordID wos000742070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IeNCDCmpEkTTGAx5W6Xv3ZMBANAZsjCZ4atrdLZLwEqpHf7uzZUFJjBcvvew03cx7p7PfAJwL1CImGUpA2C5xbL9OImZFhCYiojalrnRENmzC73Zpr8cCXXCb67bKpU_MHLWYcFUjv1JQV_hy3aXX0zeipkapv6t6hEYOCgolwcpa94JVjUVhXlLXWwAK2Xi6v5rOmKluf3rrYWjdC2ehpb37303twY5OKo3GQguKsCHHJdj-ATVYgqI24rlR00jTF_tgdgb9hQaQJkYzYXRQbqSNSiKNB_QlI31J02gM-_jZ9HV0AM_t1tPNLdEzFAi3XZoSWziWKTCNcyXaGqeYf9RxwxjEUXqUmTxhvkoSaYyEjqA89jGqS1fEmCpyEdmHkB9PxvIIDMvijuexRJgRdagUjCe-iNBXcj-JnSgpQ23J0pBrgHE152IY4kFDcT9ccb8MZyvS6QJV4zeiypLpoTasefjN8eO_l09gy1LtJ6ZFTFqBfDp7l6ewyT_SwXxWhUKz1Q0eq5C7b15WM61Rz88WrgR3neDlCzEHy5M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTgIxFL1BMFEXPlAjijoxmuCigXkx7cIYfBAIgiwwwdU403aQhJeAGn_Kb_SWmUFNjDsXrqfTpHNO77nttOcCHAtkEZMMERCmTSzTKRCPGR6hgfCoSaktLTErNuE0GrTdZs0EvMd3YdSxyjgmzgK1GHK1R55XVlf4csGm56MnoqpGqb-rcQmNkBY1-faKS7bJWfUK8T0xjPJ167JCoqoChJs2nRJTWIYuMLGxJbKPU1TkAvaLsobjoUznAXNU2kR9bGgJyn0HdU7awsfkiQvPxH4XIGUpsich1azWm_fzXR3lskntYmhhZGLP-dGY6eq-afG78H2P-zMxK6_9t8-wDqtR2qyVQp5vQEIO0rDyxUwxDRtRmJpouchL-3QT9Hq3E3KcXKBeC62OzCRlnAZSu8Vo2Y-uoWqlXgeHOX3sb8HdnwxkG5KD4UDugGYY3CoWWSB0j1pUCsYDR3ioBtwJfMsLMpCLIXR5ZKGuKnn0XFxKKbTdOdoZOJo3HYW-IT81ysYgu1HomLifCO_-_vgQliqt-o17U23U9mDZUIdtdIPoNAvJ6fhZ7sMif5l2J-ODiKUaPPw1Iz4Asz0iSw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dT8IwFL1RNEYf_ECN3y5GE3xoYN3G2gdjVCQSBXnQBJ_maDskAURAjX_NX-ct61AS4xsPPq_r0p2ze2679lyAQ4ks4oojAtLxiOv4ORJyGhIWyZA5jHnKlcNiE36lwmo1Xp2Cz-QsjN5WmcTEYaCWz0KvkWe11RXenPNYNjLbIqqF4mn3hegKUvpPa1JOI6bItfp4x-lb_6RUQKyPKC1e3l1cEVNhgAjHYwPiSJfaEpMcTyETBUN1zuEzUOJwbIzbIuK-TqFYHRu6kom6j5qnPFnHRErI0MF-p2EGU3KXpmCmWipXH0YrPNpxk3n52M7IwZ6z3R639dnT_LgIjmvAUNiKS__5lSzDokmnrbOY_yswpTppWPhhspiGFRO--lbGeGwfr4JdbjZi7pNz1HFplZGxpIifh7JuMYq2zfFU66zVwGEOntprcD-RgaxDqvPcURtgUSrcfJ5H0g6Zy5TkIvJliCoh_KjuhtEmZBI4A2Gs1XWFj1aAUyyNfDBCfhMORk27sZ_Ib412EsADE1L6wTfaW39f3oc5pEFwU6pcb8M81XtwbEpstgOpQe9V7cKseBs0-709Q1gLHidNiC8WqisL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migration-Based+Moth-Flame+Optimization+Algorithm&rft.jtitle=Processes&rft.au=Nadimi-Shahraki%2C+Mohammad+H.&rft.au=Fatahi%2C+Ali&rft.au=Zamani%2C+Hoda&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-12-18&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=9&rft.issue=12&rft.spage=2276&rft_id=info:doi/10.3390%2Fpr9122276&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr9122276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon