Migration-Based Moth-Flame Optimization Algorithm
Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dro...
Saved in:
| Published in: | Processes Vol. 9; no. 12; p. 2276 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
18.12.2021
|
| Subjects: | |
| ISSN: | 2227-9717, 2227-9717 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dropping of population diversity and poor exploration. Hence, in this article, a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the mentioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating them stochastically in the early iterations using a random migration (RM) operator, maintaining the solution diversification by storing new qualified solutions separately in a guiding archive, and, finally, exploiting around the positions saved in the guiding archive using a guided migration (GM) operator. The dimensionally aware switch between these two operators guarantees the convergence of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC 2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO, including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four latest high-performing variants were considered for the main experiments with different dimensions, 30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration ability and population diversity maintenance by employing migration strategy and guiding archive. In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates competitive performance compared to the contender algorithms used in the experiments. |
|---|---|
| AbstractList | Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dropping of population diversity and poor exploration. Hence, in this article, a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the mentioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating them stochastically in the early iterations using a random migration (RM) operator, maintaining the solution diversification by storing new qualified solutions separately in a guiding archive, and, finally, exploiting around the positions saved in the guiding archive using a guided migration (GM) operator. The dimensionally aware switch between these two operators guarantees the convergence of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC 2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO, including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four latest high-performing variants were considered for the main experiments with different dimensions, 30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration ability and population diversity maintenance by employing migration strategy and guiding archive. In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates competitive performance compared to the contender algorithms used in the experiments. |
| Author | Fatahi, Ali Abualigah, Laith Nadimi-Shahraki, Mohammad H. Abd Elaziz, Mohamed Mirjalili, Seyedali Zamani, Hoda |
| Author_xml | – sequence: 1 givenname: Mohammad H. orcidid: 0000-0002-0135-1115 surname: Nadimi-Shahraki fullname: Nadimi-Shahraki, Mohammad H. – sequence: 2 givenname: Ali orcidid: 0000-0002-7779-3470 surname: Fatahi fullname: Fatahi, Ali – sequence: 3 givenname: Hoda orcidid: 0000-0003-0444-4509 surname: Zamani fullname: Zamani, Hoda – sequence: 4 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali – sequence: 5 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith – sequence: 6 givenname: Mohamed orcidid: 0000-0002-7682-6269 surname: Abd Elaziz fullname: Abd Elaziz, Mohamed |
| BookMark | eNptkE1PAjEQhhuDiYgc_AcknjxUOu1-tEckoiYQLnredLtdKNndrm056K-ngDHGOJd3knnm671Gg852GqFbIA-MCTLtnQBKaZ5doOFRscghH_zKr9DY-x2JIYDxNBsiWJmNk8HYDj9Kr6vJyoYtXjSy1ZN1H0xrvk7VyazZWGfCtr1Bl7VsvB5_6wi9L57e5i94uX5-nc-WWLGUB8yqhEIFgqYaRKZ4Eg9knGTAdKm5AFWLnAgheBnBpOKqzAmlOq1KgFRVko3Q3Xlu7-zHXvtQ7OzedXFlQTOgPA5LeaTuz5Ry1nun66J3ppXuswBSHE0pfkyJ7PQPq0w4fRecNM0_HQcL7mNk |
| CitedBy_id | crossref_primary_10_3390_math10081259 crossref_primary_10_1371_journal_pone_0275104 crossref_primary_10_1007_s42235_022_00323_9 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1063_5_0213886 crossref_primary_10_1016_j_eswa_2023_121712 crossref_primary_10_3390_math10071129 crossref_primary_10_1016_j_enganabound_2022_01_014 crossref_primary_10_1007_s11042_022_13836_6 crossref_primary_10_1109_ACCESS_2022_3172789 crossref_primary_10_1016_j_heliyon_2024_e31850 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1007_s00521_024_10621_4 crossref_primary_10_3390_sym14020204 crossref_primary_10_1016_j_apenergy_2023_122071 crossref_primary_10_3390_electronics11121919 crossref_primary_10_1016_j_enconman_2022_116523 crossref_primary_10_3390_s22041410 crossref_primary_10_1007_s10922_022_09653_9 crossref_primary_10_1016_j_compbiomed_2022_105858 crossref_primary_10_3389_fenrg_2023_1055845 crossref_primary_10_1007_s00202_025_03167_8 crossref_primary_10_1155_2022_8398768 crossref_primary_10_3390_math10152770 crossref_primary_10_1007_s10462_022_10328_9 crossref_primary_10_3390_math11051213 crossref_primary_10_1016_j_cma_2022_114616 crossref_primary_10_1007_s11224_024_02411_4 crossref_primary_10_1007_s12530_023_09566_1 crossref_primary_10_1016_j_knosys_2022_108833 crossref_primary_10_1007_s11063_023_11336_8 crossref_primary_10_1016_j_seta_2023_103271 crossref_primary_10_1007_s42235_023_00433_y crossref_primary_10_1016_j_energy_2024_133069 crossref_primary_10_1007_s11042_023_17886_2 crossref_primary_10_1038_s41598_023_49754_2 crossref_primary_10_1007_s00500_023_09299_y crossref_primary_10_1007_s10462_022_10280_8 crossref_primary_10_1016_j_eswa_2023_120367 crossref_primary_10_1371_journal_pone_0282812 crossref_primary_10_1007_s11831_023_10037_8 crossref_primary_10_1007_s00500_023_08416_1 crossref_primary_10_3390_electronics12071564 crossref_primary_10_3390_math10081303 crossref_primary_10_1007_s10586_024_04301_0 crossref_primary_10_1007_s00521_023_09234_0 crossref_primary_10_1371_journal_pone_0267197 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_3390_math11040862 crossref_primary_10_1007_s42235_023_00357_7 crossref_primary_10_1016_j_iot_2024_101135 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_3390_pr11082263 crossref_primary_10_3390_s22051795 |
| Cites_doi | 10.3390/math7100875 10.1016/j.swevo.2019.04.008 10.3390/computation9060068 10.3390/app9091776 10.1016/j.knosys.2020.106711 10.1016/j.cie.2021.107250 10.3390/e23121637 10.1016/j.eswa.2020.113617 10.1016/j.advengsoft.2021.102973 10.1016/j.cma.2020.113609 10.1109/4235.585893 10.3390/e23081065 10.1007/978-981-10-3770-2_53 10.1109/TPWRS.2002.1007886 10.1007/978-3-319-60663-7_3 10.3390/a14110314 10.1016/j.compbiomed.2021.105027 10.1016/j.cnsns.2012.05.010 10.1016/j.eswa.2016.04.018 10.1023/A:1008202821328 10.3390/math9202627 10.1016/j.advengsoft.2017.07.002 10.1016/j.eswa.2020.114107 10.1007/s42235-018-0063-3 10.1109/ACCESS.2019.2908718 10.3390/s90705339 10.1108/02644401211235834 10.3390/math9161929 10.1007/s10489-018-1364-2 10.1016/j.swevo.2011.02.002 10.1109/ICCAR.2017.7942762 10.5220/0008960701750182 10.1016/j.asoc.2010.04.024 10.3390/math9151743 10.1007/978-3-319-64861-3_30 10.1007/s00521-018-3821-6 10.3390/s21155102 10.3390/s21124086 10.1109/ACCESS.2020.2997066 10.1016/j.ins.2019.04.022 10.1002/9780470496916 10.1016/j.eswa.2021.115436 10.3390/diagnostics11050811 10.3390/sym12111782 10.3390/math9202574 10.1016/j.asoc.2020.106761 10.3390/math8081221 10.1016/j.knosys.2015.07.006 10.1016/j.eswa.2020.113917 10.1177/1550147718824460 10.1016/j.engappai.2019.103342 10.3390/en14113019 10.1093/oso/9780195131581.001.0001 10.1016/j.eswa.2017.04.023 10.1007/s11269-018-1992-7 10.3390/app11219868 10.1109/ACCESS.2018.2868118 10.1007/s00521-015-1920-1 10.1016/j.matcom.2019.06.017 10.1109/ICCAIRO.2017.38 10.3390/electronics10020101 10.1109/ACCESS.2020.3025833 10.1109/CEC.2016.7744378 10.1109/IntelliSys.2017.8324318 10.3390/app9040792 10.3390/machines9100220 10.1016/j.advengsoft.2016.01.008 10.20944/preprints202109.0090.v1 10.3390/math8091515 10.1016/j.advengsoft.2013.12.007 10.3390/diagnostics11020315 10.1016/j.asoc.2019.105583 10.1016/j.engappai.2021.104314 10.1016/j.eswa.2020.113338 10.1007/s00366-011-0241-y 10.3390/computers10110136 10.21629/JSEE.2019.06.10 10.3390/sym12081234 10.1016/j.eswa.2019.03.043 10.1007/s10845-010-0393-4 10.1007/s00366-016-0457-y 10.3390/app10113827 10.1016/j.compag.2017.02.026 10.3390/mca26030064 10.1007/s00607-020-00809-6 10.20944/preprints202103.0282.v1 10.3390/pr9091551 10.1023/A:1015059928466 10.1007/BF00175355 10.1155/2021/6622655 10.1016/j.knosys.2019.105277 10.1016/j.advengsoft.2015.01.010 10.1016/j.compstruc.2016.03.001 10.1016/j.future.2019.07.015 10.1109/IDAP.2018.8620933 10.1002/cpe.6310 10.1007/s11277-018-6043-4 10.1007/s00500-017-2894-y 10.1007/s00366-016-0485-7 10.1007/978-3-662-06560-0 10.1038/scientificamerican0792-66 10.3390/e23111383 10.1016/j.neucom.2017.04.060 10.3390/a14070200 10.1016/j.matcom.2021.04.006 10.1016/j.asoc.2014.06.035 10.3390/s21196434 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr9122276 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection ProQuest Biological Science Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10_3390_pr9122276 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC COVID DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c358t-3d421d1925e196c84390380613ebe891cf9709998bd424d8cb7022e5db115cda3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 11:52:17 EDT 2025 Tue Nov 18 22:17:37 EST 2025 Sat Nov 29 07:14:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-3d421d1925e196c84390380613ebe891cf9709998bd424d8cb7022e5db115cda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2203-4549 0000-0003-0444-4509 0000-0002-7682-6269 0000-0002-1443-9458 0000-0002-0135-1115 0000-0002-7779-3470 |
| OpenAccessLink | https://www.proquest.com/docview/2612838058?pq-origsite=%requestingapplication% |
| PQID | 2612838058 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2612838058 crossref_primary_10_3390_pr9122276 crossref_citationtrail_10_3390_pr9122276 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-18 |
| PublicationDateYYYYMMDD | 2021-12-18 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zamani (ref_47) 2021; 104 ref_14 ref_13 ref_12 ref_11 ref_10 Bakirtzis (ref_48) 2002; 17 Xu (ref_109) 2018; 15 Yousri (ref_106) 2021; 154 ref_19 Storn (ref_39) 1997; 11 ref_18 Varaee (ref_6) 2017; 33 ref_17 Derrac (ref_118) 2011; 1 ref_16 ref_15 Wolpert (ref_42) 1997; 1 Beyer (ref_46) 2002; 1 Ghasemi (ref_7) 2017; 33 Izakian (ref_32) 2009; 9 Akay (ref_1) 2012; 23 Ishtiaq (ref_75) 2019; 15 ref_25 ref_24 Zhang (ref_111) 2020; 159 ref_23 ref_22 ref_21 ref_20 Taghian (ref_51) 2020; 97 Koza (ref_45) 1994; 4 ref_29 ref_27 Abualigah (ref_100) 2021; 376 Abualigah (ref_62) 2021; 157 Wang (ref_80) 2017; 267 Gupta (ref_83) 2020; 102 Elaziz (ref_84) 2020; 168 Taghian (ref_69) 2021; 166 ref_71 Yang (ref_59) 2012; 29 Shah (ref_72) 2018; 6 Gandomi (ref_60) 2013; 29 ref_79 ref_78 ref_77 Zahrani (ref_37) 2021; 17 Das (ref_50) 2019; 49 Nguyen (ref_87) 2020; 8 Jaiswal (ref_88) 2020; 10 Aziz (ref_91) 2017; 83 Hassanien (ref_81) 2017; 136 ref_82 Xu (ref_96) 2019; 492 Xu (ref_95) 2019; 129 Mirjalili (ref_54) 2016; 95 Jia (ref_70) 2021; 7 Khalilpourazari (ref_93) 2019; 23 Gharehchopogh (ref_3) 2021; 33 Pelusi (ref_114) 2020; 191 ref_89 Mirjalili (ref_65) 2015; 83 ref_86 ref_85 Li (ref_110) 2018; 32 Gandomi (ref_53) 2012; 17 Hashim (ref_99) 2019; 101 Zamani (ref_28) 2016; 151 Fei (ref_74) 2020; 8 Mirjalili (ref_55) 2017; 114 Holland (ref_44) 1992; 267 Osaba (ref_33) 2019; 48 Li (ref_98) 2021; 183 Zamani (ref_52) 2019; 85 MiarNaeimi (ref_58) 2021; 213 ref_64 ref_63 Jia (ref_90) 2019; 7 Kotary (ref_73) 2020; 87 Mittal (ref_76) 2018; 104 Khishe (ref_57) 2020; 149 (ref_56) 2021; 166 Zamani (ref_26) 2016; 14 Karaboga (ref_68) 2014; 23 Hongwei (ref_94) 2019; 30 Li (ref_92) 2016; 2016 ref_115 ref_117 ref_116 Kar (ref_35) 2016; 59 ref_36 ref_34 Askarzadeh (ref_61) 2016; 169 ref_31 ref_30 ref_112 Mallipeddi (ref_49) 2011; 11 ref_38 Mirjalili (ref_67) 2015; 89 ref_104 ref_103 Mirjalili (ref_41) 2014; 69 ref_105 ref_108 ref_43 Chen (ref_97) 2021; 188 Mirjalili (ref_66) 2016; 27 ref_102 ref_40 ref_101 Dang (ref_107) 2021; 2021 ref_2 ref_9 ref_8 ref_5 ref_4 Kaur (ref_113) 2020; 32 |
| References_xml | – ident: ref_104 doi: 10.3390/math7100875 – volume: 48 start-page: 220 year: 2019 ident: ref_33 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput doi: 10.1016/j.swevo.2019.04.008 – ident: ref_25 doi: 10.3390/computation9060068 – ident: ref_31 doi: 10.3390/app9091776 – volume: 213 start-page: 106711 year: 2021 ident: ref_58 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2020.106711 – volume: 157 start-page: 107250 year: 2021 ident: ref_62 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – ident: ref_112 doi: 10.3390/e23121637 – volume: 159 start-page: 113617 year: 2020 ident: ref_111 article-title: Advanced orthogonal moth flame optimization with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113617 – volume: 154 start-page: 102973 year: 2021 ident: ref_106 article-title: A hybrid Harris hawks-moth-flame optimization algorithm including fractional-order chaos maps and evolutionary population dynamics publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2021.102973 – volume: 376 start-page: 113609 year: 2021 ident: ref_100 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 1 start-page: 67 year: 1997 ident: ref_42 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: ref_19 doi: 10.3390/e23081065 – ident: ref_101 doi: 10.1007/978-981-10-3770-2_53 – volume: 17 start-page: 229 year: 2002 ident: ref_48 article-title: Optimal power flow by enhanced genetic algorithm publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2002.1007886 – ident: ref_108 doi: 10.1007/978-3-319-60663-7_3 – ident: ref_77 doi: 10.3390/a14110314 – ident: ref_27 doi: 10.1016/j.compbiomed.2021.105027 – volume: 17 start-page: 4831 year: 2012 ident: ref_53 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 – volume: 59 start-page: 20 year: 2016 ident: ref_35 article-title: Bio inspired computing—A review of algorithms and scope of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.018 – volume: 11 start-page: 341 year: 1997 ident: ref_39 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 10 start-page: 196 year: 2020 ident: ref_88 article-title: MMFO: Modified moth flame optimization algorithm for region based RGB color image segmentation publication-title: Int. J. Electr. Comput. Eng. – ident: ref_21 doi: 10.3390/math9202627 – volume: 114 start-page: 163 year: 2017 ident: ref_55 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 166 start-page: 114107 year: 2021 ident: ref_56 article-title: Red fox optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114107 – volume: 15 start-page: 751 year: 2018 ident: ref_109 article-title: Enhanced moth-flame optimization based on cultural learning and Gaussian mutation publication-title: J. Bionic Eng. doi: 10.1007/s42235-018-0063-3 – volume: 7 start-page: 44097 year: 2019 ident: ref_90 article-title: Multilevel thresholding segmentation for color image using modified moth-flame optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908718 – volume: 9 start-page: 5339 year: 2009 ident: ref_32 article-title: Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing Systems publication-title: Sensors doi: 10.3390/s90705339 – volume: 29 start-page: 464 year: 2012 ident: ref_59 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – ident: ref_12 doi: 10.3390/math9161929 – volume: 49 start-page: 1841 year: 2019 ident: ref_50 article-title: A directional crossover (DX) operator for real parameter optimization using genetic algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-018-1364-2 – volume: 1 start-page: 3 year: 2011 ident: ref_118 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: ref_102 doi: 10.1109/ICCAR.2017.7942762 – volume: 7 start-page: 1 year: 2021 ident: ref_70 article-title: An enhanced chimp optimization algorithm for continuous optimization domains publication-title: Complex Intell. Syst. – ident: ref_79 doi: 10.5220/0008960701750182 – volume: 11 start-page: 1679 year: 2011 ident: ref_49 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.024 – ident: ref_2 doi: 10.3390/math9151743 – ident: ref_89 doi: 10.1007/978-3-319-64861-3_30 – volume: 32 start-page: 2315 year: 2020 ident: ref_113 article-title: An enhanced moth flame optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3821-6 – ident: ref_13 doi: 10.3390/s21155102 – ident: ref_71 doi: 10.3390/s21124086 – volume: 8 start-page: 97474 year: 2020 ident: ref_74 article-title: Energy-Efficient Clustering Algorithm in Underwater Sensor Networks Based on Fuzzy C Means and Moth-Flame Optimization Method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997066 – volume: 492 start-page: 181 year: 2019 ident: ref_96 article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.022 – volume: 14 start-page: 1243 year: 2016 ident: ref_26 article-title: Feature selection based on whale optimization algorithm for diseases diagnosis publication-title: Int. J. Comput. Sci. Inf. Secur. – ident: ref_34 doi: 10.1002/9780470496916 – volume: 183 start-page: 115436 year: 2021 ident: ref_98 article-title: Death mechanism-based moth–flame optimization with improved flame generation mechanism for global optimization tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115436 – ident: ref_64 – ident: ref_86 doi: 10.3390/diagnostics11050811 – ident: ref_20 doi: 10.3390/sym12111782 – ident: ref_24 doi: 10.3390/math9202574 – volume: 97 start-page: 106761 year: 2020 ident: ref_51 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106761 – ident: ref_30 doi: 10.3390/math8081221 – volume: 89 start-page: 228 year: 2015 ident: ref_67 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 166 start-page: 113917 year: 2021 ident: ref_69 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113917 – volume: 15 start-page: 1550147718824460 year: 2019 ident: ref_75 article-title: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147718824460 – volume: 87 start-page: 103342 year: 2020 ident: ref_73 article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103342 – ident: ref_14 doi: 10.3390/en14113019 – ident: ref_38 doi: 10.1093/oso/9780195131581.001.0001 – volume: 83 start-page: 242 year: 2017 ident: ref_91 article-title: Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.023 – volume: 32 start-page: 3303 year: 2018 ident: ref_110 article-title: Optimization of water resources utilization by multi-objective moth-flame algorithm publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-1992-7 – ident: ref_10 doi: 10.3390/app11219868 – volume: 6 start-page: 48611 year: 2018 ident: ref_72 article-title: CAMONET: Moth-Flame Optimization (MFO) Based Clustering Algorithm for VANETs publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868118 – volume: 27 start-page: 1053 year: 2016 ident: ref_66 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 168 start-page: 48 year: 2020 ident: ref_84 article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2019.06.017 – ident: ref_82 doi: 10.1109/ICCAIRO.2017.38 – ident: ref_17 doi: 10.3390/electronics10020101 – volume: 8 start-page: 174142 year: 2020 ident: ref_87 article-title: A Scheme of Color Image Multithreshold Segmentation Based on Improved Moth-Flame Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025833 – ident: ref_78 doi: 10.1109/CEC.2016.7744378 – ident: ref_103 doi: 10.1109/IntelliSys.2017.8324318 – ident: ref_105 doi: 10.3390/app9040792 – ident: ref_9 doi: 10.3390/machines9100220 – volume: 95 start-page: 51 year: 2016 ident: ref_54 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_4 doi: 10.20944/preprints202109.0090.v1 – ident: ref_18 doi: 10.3390/math8091515 – volume: 69 start-page: 46 year: 2014 ident: ref_41 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_16 doi: 10.3390/diagnostics11020315 – volume: 85 start-page: 105583 year: 2019 ident: ref_52 article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105583 – volume: 104 start-page: 104314 year: 2021 ident: ref_47 article-title: QANA: Quantum-based avian navigation optimizer algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104314 – volume: 149 start-page: 113338 year: 2020 ident: ref_57 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 29 start-page: 17 year: 2013 ident: ref_60 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – ident: ref_85 doi: 10.3390/computers10110136 – volume: 30 start-page: 1144 year: 2019 ident: ref_94 article-title: Chaos-enhanced moth-flame optimization algorithm for global optimization publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2019.06.10 – volume: 17 start-page: 100231 year: 2021 ident: ref_37 article-title: An intelligent social-based method for rail-car fleet sizing problem publication-title: J. Rail Transp. Plan. Manag. – ident: ref_115 doi: 10.3390/sym12081234 – volume: 151 start-page: 40 year: 2016 ident: ref_28 article-title: Swarm intelligence approach for breast cancer diagnosis publication-title: Int. J. Comput. Appl. – volume: 129 start-page: 135 year: 2019 ident: ref_95 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.043 – volume: 23 start-page: 1001 year: 2012 ident: ref_1 article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization publication-title: J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4 – volume: 33 start-page: 71 year: 2017 ident: ref_6 article-title: Engineering optimization based on ideal gas molecular movement algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-016-0457-y – ident: ref_11 doi: 10.3390/app10113827 – volume: 136 start-page: 86 year: 2017 ident: ref_81 article-title: An improved moth flame optimization algorithm based on rough sets for tomato diseases detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.02.026 – ident: ref_8 doi: 10.3390/mca26030064 – volume: 102 start-page: 1503 year: 2020 ident: ref_83 article-title: Feature selection and evaluation for software usability model using modified moth-flame optimization publication-title: Computing doi: 10.1007/s00607-020-00809-6 – ident: ref_15 doi: 10.20944/preprints202103.0282.v1 – ident: ref_5 doi: 10.3390/pr9091551 – volume: 1 start-page: 3 year: 2002 ident: ref_46 article-title: Evolution strategies—A comprehensive introduction publication-title: Nat. Comput. doi: 10.1023/A:1015059928466 – volume: 4 start-page: 87 year: 1994 ident: ref_45 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – volume: 2021 start-page: 6622655 year: 2021 ident: ref_107 article-title: Optimization for a flexure hinge using an effective hybrid approach of fuzzy logic and moth-flame optimization algorithm publication-title: Math. Probl. Eng. doi: 10.1155/2021/6622655 – volume: 191 start-page: 105277 year: 2020 ident: ref_114 article-title: An Improved Moth-Flame Optimization algorithm with hybrid search phase publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105277 – volume: 83 start-page: 80 year: 2015 ident: ref_65 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 2016 start-page: 1423930 year: 2016 ident: ref_92 article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems publication-title: Math. Probl. Eng. – ident: ref_40 – volume: 169 start-page: 1 year: 2016 ident: ref_61 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 – ident: ref_63 – volume: 101 start-page: 646 year: 2019 ident: ref_99 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – ident: ref_36 doi: 10.1109/IDAP.2018.8620933 – ident: ref_116 – volume: 33 start-page: e6310 year: 2021 ident: ref_3 article-title: A farmland fertility algorithm for solving constrained engineering problems publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6310 – volume: 104 start-page: 677 year: 2018 ident: ref_76 article-title: Moth Flame Optimization Based Energy Efficient Stable Clustered Routing Approach for Wireless Sensor Networks publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-018-6043-4 – volume: 23 start-page: 1699 year: 2019 ident: ref_93 article-title: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems publication-title: Soft Comput. doi: 10.1007/s00500-017-2894-y – volume: 33 start-page: 477 year: 2017 ident: ref_7 article-title: A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-016-0485-7 – ident: ref_117 doi: 10.1007/978-3-662-06560-0 – volume: 267 start-page: 66 year: 1992 ident: ref_44 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: ref_22 doi: 10.3390/e23111383 – volume: 267 start-page: 69 year: 2017 ident: ref_80 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – ident: ref_29 doi: 10.3390/a14070200 – ident: ref_43 – volume: 188 start-page: 291 year: 2021 ident: ref_97 article-title: Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.04.006 – volume: 23 start-page: 227 year: 2014 ident: ref_68 article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.035 – ident: ref_23 doi: 10.3390/s21196434 |
| SSID | ssj0000913856 |
| Score | 2.4303849 |
| Snippet | Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks.... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2276 |
| SubjectTerms | Algorithms Archives & records Behavior Butterflies & moths Competition Evolution Experiments Feature selection Genetic algorithms Intelligence Optimization Optimization algorithms Optimization techniques Population Swarm intelligence Task complexity |
| Title | Migration-Based Moth-Flame Optimization Algorithm |
| URI | https://www.proquest.com/docview/2612838058 |
| Volume | 9 |
| WOSCitedRecordID | wos000742070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IeNCDCmpEkTTGAx5W6Xv3ZMBANAZsjCZ4atrdLZLwEqpHf7uzZUFJjBcvvew03cx7p7PfAJwL1CImGUpA2C5xbL9OImZFhCYiojalrnRENmzC73Zpr8cCXXCb67bKpU_MHLWYcFUjv1JQV_hy3aXX0zeipkapv6t6hEYOCgolwcpa94JVjUVhXlLXWwAK2Xi6v5rOmKluf3rrYWjdC2ehpb37303twY5OKo3GQguKsCHHJdj-ATVYgqI24rlR00jTF_tgdgb9hQaQJkYzYXRQbqSNSiKNB_QlI31J02gM-_jZ9HV0AM_t1tPNLdEzFAi3XZoSWziWKTCNcyXaGqeYf9RxwxjEUXqUmTxhvkoSaYyEjqA89jGqS1fEmCpyEdmHkB9PxvIIDMvijuexRJgRdagUjCe-iNBXcj-JnSgpQ23J0pBrgHE152IY4kFDcT9ccb8MZyvS6QJV4zeiypLpoTasefjN8eO_l09gy1LtJ6ZFTFqBfDp7l6ewyT_SwXxWhUKz1Q0eq5C7b15WM61Rz88WrgR3neDlCzEHy5M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTgIxFL1BMFEXPlAjijoxmuCigXkx7cIYfBAIgiwwwdU403aQhJeAGn_Kb_SWmUFNjDsXrqfTpHNO77nttOcCHAtkEZMMERCmTSzTKRCPGR6hgfCoSaktLTErNuE0GrTdZs0EvMd3YdSxyjgmzgK1GHK1R55XVlf4csGm56MnoqpGqb-rcQmNkBY1-faKS7bJWfUK8T0xjPJ167JCoqoChJs2nRJTWIYuMLGxJbKPU1TkAvaLsobjoUznAXNU2kR9bGgJyn0HdU7awsfkiQvPxH4XIGUpsich1azWm_fzXR3lskntYmhhZGLP-dGY6eq-afG78H2P-zMxK6_9t8-wDqtR2qyVQp5vQEIO0rDyxUwxDRtRmJpouchL-3QT9Hq3E3KcXKBeC62OzCRlnAZSu8Vo2Y-uoWqlXgeHOX3sb8HdnwxkG5KD4UDugGYY3CoWWSB0j1pUCsYDR3ioBtwJfMsLMpCLIXR5ZKGuKnn0XFxKKbTdOdoZOJo3HYW-IT81ysYgu1HomLifCO_-_vgQliqt-o17U23U9mDZUIdtdIPoNAvJ6fhZ7sMif5l2J-ODiKUaPPw1Iz4Asz0iSw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dT8IwFL1RNEYf_ECN3y5GE3xoYN3G2gdjVCQSBXnQBJ_maDskAURAjX_NX-ct61AS4xsPPq_r0p2ze2679lyAQ4ks4oojAtLxiOv4ORJyGhIWyZA5jHnKlcNiE36lwmo1Xp2Cz-QsjN5WmcTEYaCWz0KvkWe11RXenPNYNjLbIqqF4mn3hegKUvpPa1JOI6bItfp4x-lb_6RUQKyPKC1e3l1cEVNhgAjHYwPiSJfaEpMcTyETBUN1zuEzUOJwbIzbIuK-TqFYHRu6kom6j5qnPFnHRErI0MF-p2EGU3KXpmCmWipXH0YrPNpxk3n52M7IwZ6z3R639dnT_LgIjmvAUNiKS__5lSzDokmnrbOY_yswpTppWPhhspiGFRO--lbGeGwfr4JdbjZi7pNz1HFplZGxpIifh7JuMYq2zfFU66zVwGEOntprcD-RgaxDqvPcURtgUSrcfJ5H0g6Zy5TkIvJliCoh_KjuhtEmZBI4A2Gs1XWFj1aAUyyNfDBCfhMORk27sZ_Ib412EsADE1L6wTfaW39f3oc5pEFwU6pcb8M81XtwbEpstgOpQe9V7cKseBs0-709Q1gLHidNiC8WqisL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migration-Based+Moth-Flame+Optimization+Algorithm&rft.jtitle=Processes&rft.au=Nadimi-Shahraki%2C+Mohammad+H.&rft.au=Fatahi%2C+Ali&rft.au=Zamani%2C+Hoda&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-12-18&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=9&rft.issue=12&rft.spage=2276&rft_id=info:doi/10.3390%2Fpr9122276&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr9122276 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |