A parameterized view on matroid optimization problems

Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 410; číslo 44; s. 4471 - 4479
Hlavní autor: Marx, Dániel
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Oxford Elsevier B.V 17.10.2009
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity point of view: instead of the trivial n O ( k ) time brute force algorithm for finding a k -element solution, we try to give algorithms with uniformly polynomial (i.e., f ( k ) ⋅ n O ( 1 ) ) running time. The main result is that if the ground set of a represented linear matroid is partitioned into blocks of size ℓ , then we can determine in randomized time f ( k , ℓ ) ⋅ n O ( 1 ) whether there is an independent set that is the union of k blocks. As a consequence, algorithms with similar running time are obtained for other problems such as finding a k -element set in the intersection of ℓ matroids, or finding k terminals in a network such that each of them can be connected simultaneously to the source by ℓ disjoint paths.
AbstractList Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity point of view: instead of the trivial n(O(((k() time brute force algorithm for finding a k-element solution, we try to give algorithms with uniformly polynomial (i.e., f(k)?n(O(((1()) running time. The main result is that if the ground set of a represented linear matroid is partitioned into blocks of size ?, then we can determine in randomized time f(k,?)?n(O(((1() whether there is an independent set that is the union of k blocks. As a consequence, algorithms with similar running time are obtained for other problems such as finding a k-element set in the intersection of ? matroids, or finding k terminals in a network such that each of them can be connected simultaneously to the source by ? disjoint paths.
Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity point of view: instead of the trivial n O ( k ) time brute force algorithm for finding a k -element solution, we try to give algorithms with uniformly polynomial (i.e., f ( k ) ⋅ n O ( 1 ) ) running time. The main result is that if the ground set of a represented linear matroid is partitioned into blocks of size ℓ , then we can determine in randomized time f ( k , ℓ ) ⋅ n O ( 1 ) whether there is an independent set that is the union of k blocks. As a consequence, algorithms with similar running time are obtained for other problems such as finding a k -element set in the intersection of ℓ matroids, or finding k terminals in a network such that each of them can be connected simultaneously to the source by ℓ disjoint paths.
Author Marx, Dániel
Author_xml – sequence: 1
  givenname: Dániel
  surname: Marx
  fullname: Marx, Dániel
  email: dmarx@cs.bme.hu
  organization: Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Budapest H-1521, Hungary
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22059050$$DView record in Pascal Francis
BookMark eNp9kMtKAzEUhoNUsK0-gLvZ6G7GXJsJrkrxBgU3ug6ZzBlImZtJqtinN7V146LZHAj_dy7fDE36oQeErgkuCCaLu00RbSgoxqrAssBUnqEpKaXKKVV8gqaYYZ4zJcUFmoWwwekJuZgiscxG400HEbzbQZ19OvjKhj7rTPSDq7NhjK5zOxNd-hz9ULXQhUt03pg2wNWxztH748Pb6jlfvz69rJbr3DJRxpyVWGAwgtXWNKWgDZc1ryxUVpZNDQZEiZWtGOcqbUlKI7mChhsLgsnalmyObg990-CPLYSoOxcstK3pYdgGzbgilBKcgjfHoAnWtI03vXVBj951xn9rSrFQaZeUk4ec9UMIHhptXfy9LXrjWk2w3uvUG5106r1OjaVOOhNJ_pF_zU8x9wcGkqMk1utgHfQWaufBRl0P7gT9A-2Fj-g
CODEN TCSCDI
CitedBy_id crossref_primary_10_1145_3170444
crossref_primary_10_1145_3390887
crossref_primary_10_1137_21M1442267
crossref_primary_10_1007_s00453_022_01077_w
crossref_primary_10_1137_24M1632759
crossref_primary_10_1007_s00453_019_00600_w
crossref_primary_10_1109_TIT_2013_2248414
crossref_primary_10_1016_j_disopt_2010_07_004
crossref_primary_10_1007_s00224_020_10022_9
crossref_primary_10_1016_j_ic_2014_12_008
crossref_primary_10_1145_3674835
crossref_primary_10_1137_16M1104585
crossref_primary_10_1007_s00453_021_00831_w
crossref_primary_10_1016_j_jcss_2022_11_002
crossref_primary_10_1145_3731452
crossref_primary_10_1007_s00041_012_9235_4
crossref_primary_10_1137_17M1129428
crossref_primary_10_1007_s10107_020_01497_y
crossref_primary_10_1016_j_jcss_2015_11_008
crossref_primary_10_1137_13091837X
crossref_primary_10_1007_s00453_022_00959_3
crossref_primary_10_1016_j_jcss_2018_03_001
crossref_primary_10_1145_3571075
crossref_primary_10_1016_j_tcs_2018_02_029
crossref_primary_10_1145_3501304
crossref_primary_10_1007_s00453_014_9934_0
crossref_primary_10_1007_s00453_020_00681_y
crossref_primary_10_1145_3599722
crossref_primary_10_1145_2635810
crossref_primary_10_1145_3039243
crossref_primary_10_1016_j_tcs_2012_10_060
crossref_primary_10_1145_2886094
crossref_primary_10_1016_j_tcs_2021_06_037
crossref_primary_10_1007_s00224_017_9805_6
crossref_primary_10_1016_j_ic_2024_105261
crossref_primary_10_1145_3439721
crossref_primary_10_1145_3708509
crossref_primary_10_1007_s00453_016_0231_y
crossref_primary_10_1007_s00500_015_1846_7
crossref_primary_10_1016_j_dam_2021_03_014
crossref_primary_10_1007_s00453_020_00773_9
Cites_doi 10.1016/j.tcs.2005.10.008
10.1016/0095-8956(80)90066-0
10.1016/0022-247X(68)90163-7
10.1007/BF02523189
10.1006/jsco.1994.1025
10.1145/322217.322225
ContentType Journal Article
Conference Proceeding
Copyright 2009 Elsevier B.V.
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2009 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.tcs.2009.07.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 4479
ExternalDocumentID 22059050
10_1016_j_tcs_2009_07_027
S030439750900512X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-38050ea53dcaf852f47d4bcebc78fdeae5809cb344929418a749ef4ace537dc83
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270688400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sun Sep 28 00:28:56 EDT 2025
Mon Jul 21 09:14:21 EDT 2025
Sat Nov 29 05:15:00 EST 2025
Tue Nov 18 20:00:22 EST 2025
Fri Feb 23 02:16:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords Matroids
Fixed-parameter tractability
Combinatorial optmization
Intersection
Polynomial
Partition
Computer theory
Combinatorial problem
Matroid
Optimization method
Combinatorial optimization
Complexity
Polynomial time
Network
Independent set
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MeetingName Automata, Languages and Programming (ICALP 2006)
MergedId FETCHMERGED-LOGICAL-c358t-38050ea53dcaf852f47d4bcebc78fdeae5809cb344929418a749ef4ace537dc83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2009.07.027
PQID 34912210
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_34912210
pascalfrancis_primary_22059050
crossref_citationtrail_10_1016_j_tcs_2009_07_027
crossref_primary_10_1016_j_tcs_2009_07_027
elsevier_sciencedirect_doi_10_1016_j_tcs_2009_07_027
PublicationCentury 2000
PublicationDate 2009-10-17
PublicationDateYYYYMMDD 2009-10-17
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-17
  day: 17
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Theoretical computer science
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Perfect (b10) 1968; 22
Mac Lane, Birkhoff (b7) 1988
Lovász (b5) 1977
Downey, Fellows (b2) 1999
Lovász (b6) 1980; 28
(b4) 1995
Shoup (b14) 1994; 17
Alon, Yuster, Zwick (b1) 1997; 17
Schwartz (b13) 1980; 27
Zippel (b15) 1979; vol. 72
Plehn, Voigt (b11) 1991; vol. 484
Recski (b12) 1989; vol. 6
Monien (b9) 1985; vol. 109
Flum, Grohe (b3) 2006
Marx (b8) 2006; 351
Flum (10.1016/j.tcs.2009.07.027_b3) 2006
Schwartz (10.1016/j.tcs.2009.07.027_b13) 1980; 27
Downey (10.1016/j.tcs.2009.07.027_b2) 1999
Monien (10.1016/j.tcs.2009.07.027_b9) 1985; vol. 109
Alon (10.1016/j.tcs.2009.07.027_b1) 1997; 17
Marx (10.1016/j.tcs.2009.07.027_b8) 2006; 351
Plehn (10.1016/j.tcs.2009.07.027_b11) 1991; vol. 484
Zippel (10.1016/j.tcs.2009.07.027_b15) 1979; vol. 72
Lovász (10.1016/j.tcs.2009.07.027_b6) 1980; 28
Recski (10.1016/j.tcs.2009.07.027_b12) 1989; vol. 6
Perfect (10.1016/j.tcs.2009.07.027_b10) 1968; 22
Mac Lane (10.1016/j.tcs.2009.07.027_b7) 1988
(10.1016/j.tcs.2009.07.027_b4) 1995
Lovász (10.1016/j.tcs.2009.07.027_b5) 1977
Shoup (10.1016/j.tcs.2009.07.027_b14) 1994; 17
References_xml – volume: vol. 109
  start-page: 239
  year: 1985
  end-page: 254
  ident: b9
  article-title: How to find long paths efficiently
  publication-title: Analysis and Design of Algorithms for Combinatorial Problems
– volume: 27
  start-page: 701
  year: 1980
  end-page: 717
  ident: b13
  article-title: Fast probabilistic algorithms for verification of polynomial identities
  publication-title: J. Assoc. Comput. Mach.
– year: 2006
  ident: b3
  article-title: Parameterized Complexity Theory
– volume: vol. 72
  start-page: 216
  year: 1979
  end-page: 226
  ident: b15
  article-title: Probabilistic algorithms for sparse polynomials
  publication-title: Symbolic and Algebraic Computation
– year: 1988
  ident: b7
  article-title: Algebra
– volume: vol. 484
  start-page: 18
  year: 1991
  end-page: 29
  ident: b11
  article-title: Finding minimally weighted subgraphs
  publication-title: Graph-Theoretic Concepts in Computer Science
– volume: 17
  start-page: 209
  year: 1997
  end-page: 223
  ident: b1
  article-title: Finding and counting given length cycles
  publication-title: Algorithmica
– volume: 17
  start-page: 371
  year: 1994
  end-page: 391
  ident: b14
  article-title: Fast construction of irreducible polynomials over finite fields
  publication-title: J. Symbolic Comput.
– year: 1999
  ident: b2
  publication-title: Parameterized Complexity
– volume: 28
  start-page: 208
  year: 1980
  end-page: 236
  ident: b6
  article-title: Matroid matching and some applications
  publication-title: J. Combin. Theory Ser. B
– volume: 351
  start-page: 407
  year: 2006
  end-page: 424
  ident: b8
  article-title: Parameterized coloring problems on chordal graphs
  publication-title: Theoret. Comput. Sci.
– volume: 22
  start-page: 96
  year: 1968
  end-page: 111
  ident: b10
  article-title: Applications of Menger’s graph theorem
  publication-title: J. Math. Anal. Appl.
– year: 1995
  ident: b4
  publication-title: Handbook of Combinatorics, Vol. 1, 2
– start-page: 45
  year: 1977
  end-page: 86
  ident: b5
  article-title: Flats in matroids and geometric graphs
  publication-title: Combinatorial Surveys
– volume: vol. 6
  year: 1989
  ident: b12
  article-title: Matroid theory and its applications in electric network theory and statics
  publication-title: Algorithms and Combinatorics
– volume: 351
  start-page: 407
  issue: 3
  year: 2006
  ident: 10.1016/j.tcs.2009.07.027_b8
  article-title: Parameterized coloring problems on chordal graphs
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.10.008
– volume: 28
  start-page: 208
  issue: 2
  year: 1980
  ident: 10.1016/j.tcs.2009.07.027_b6
  article-title: Matroid matching and some applications
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(80)90066-0
– volume: 22
  start-page: 96
  year: 1968
  ident: 10.1016/j.tcs.2009.07.027_b10
  article-title: Applications of Menger’s graph theorem
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(68)90163-7
– year: 1995
  ident: 10.1016/j.tcs.2009.07.027_b4
– year: 1999
  ident: 10.1016/j.tcs.2009.07.027_b2
– volume: vol. 109
  start-page: 239
  year: 1985
  ident: 10.1016/j.tcs.2009.07.027_b9
  article-title: How to find long paths efficiently
– start-page: 45
  year: 1977
  ident: 10.1016/j.tcs.2009.07.027_b5
  article-title: Flats in matroids and geometric graphs
– volume: vol. 6
  year: 1989
  ident: 10.1016/j.tcs.2009.07.027_b12
  article-title: Matroid theory and its applications in electric network theory and statics
– volume: 17
  start-page: 209
  issue: 3
  year: 1997
  ident: 10.1016/j.tcs.2009.07.027_b1
  article-title: Finding and counting given length cycles
  publication-title: Algorithmica
  doi: 10.1007/BF02523189
– volume: vol. 484
  start-page: 18
  year: 1991
  ident: 10.1016/j.tcs.2009.07.027_b11
  article-title: Finding minimally weighted subgraphs
– year: 2006
  ident: 10.1016/j.tcs.2009.07.027_b3
– year: 1988
  ident: 10.1016/j.tcs.2009.07.027_b7
– volume: 17
  start-page: 371
  issue: 5
  year: 1994
  ident: 10.1016/j.tcs.2009.07.027_b14
  article-title: Fast construction of irreducible polynomials over finite fields
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1994.1025
– volume: 27
  start-page: 701
  issue: 4
  year: 1980
  ident: 10.1016/j.tcs.2009.07.027_b13
  article-title: Fast probabilistic algorithms for verification of polynomial identities
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/322217.322225
– volume: vol. 72
  start-page: 216
  year: 1979
  ident: 10.1016/j.tcs.2009.07.027_b15
  article-title: Probabilistic algorithms for sparse polynomials
SSID ssj0000576
Score 2.3142202
Snippet Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4471
SubjectTerms Applied sciences
Calculus of variations and optimal control
Combinatorial optmization
Computer science; control theory; systems
Convex and discrete geometry
Exact sciences and technology
Fixed-parameter tractability
Geometry
Mathematical analysis
Mathematics
Matroids
Miscellaneous
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Sciences and techniques of general use
Theoretical computing
Title A parameterized view on matroid optimization problems
URI https://dx.doi.org/10.1016/j.tcs.2009.07.027
https://www.proquest.com/docview/34912210
Volume 410
WOSCitedRecordID wos000270688400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbQxgGExBhDFMbwgRNRJid2YvtYTUMDsWlCA_UWOY4jdVrTaunQtL9-z7GdptsY4sDFaq0mUf09v_fi9-ND6FNV5gYsXRIrk-kY_H8RK07KGDwLmlNVK97RAf36zk9OxGQiTz3ReNvRCfCmEdfXcvFfoYY5ANuWzv4D3P1NYQI-A-gwAuww3gf-YfszKE7UnrUh8qZuKCLjyDb-ntmEmOkNOJ6uiKWJZvZ8fFpFc1AnM1-nGXnmmd4FPx7_mHQKqwu1J7ZQfe0EQVrV6wom3bGWt8EDzUNtuEQ6SpOgJplPP3XywNhA6zHmaFS8BYWv8kHt7A4KzveXuvWdQvk-ca0B1jth37FQfd6grQqWxB7RbKY0F_CyvTn-ejj5trK9GXfRaf8HQhy7y-i789g_eSIvFqoFgGpHbHLPRneOx9kW2lmVZOLTHuxX6IlpttFL_w6BvYZuYSrQdIS5bfT8uG_N275G2RivoY4t6njeYI86HqKOA-o76OeXw7ODo9hzZ8SaZmIZUwHLZFRGK61qkaU14xUrtSk1F3VlYGcKInVJGQP_mCVCcSZNzZQ2GeWVFvQN2mjmjXmLsClJliowRkaVjKi8tD4MjIKqnOWEjxAJ61ho31je8ptcFCGD8LyApbeEp7IgvIClH6HP_SUL11XlsR-zAE7h94pz9wqQq8cu21sDsn9QEKIR-hiQLUCn2kCZasz8qi0ok0maJuTd327xHj1bbahdtLG8vDIf0FP9ezltL_e8cN4CWt6VsA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Theoretical+computer+science&rft.atitle=A+parameterized+view+on+matroid+optimization+problems&rft.au=MARX%2C+D%C3%A1niel&rft.date=2009-10-17&rft.pub=Elsevier&rft.issn=0304-3975&rft.volume=410&rft.issue=44&rft.spage=4471&rft.epage=4479&rft_id=info:doi/10.1016%2Fj.tcs.2009.07.027&rft.externalDBID=n%2Fa&rft.externalDocID=22059050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon