Multiple k −opt evaluation multiple k −opt moves with GPU high performance local search to large-scale traveling salesman problems

The 2-opt, 3-opt or k –opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while sequential k –opt complete neighborhood examination takes polynomial time complexity which is timeconsuming to approach large scale TSP instance...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics and artificial intelligence Vol. 88; no. 4; pp. 347 - 365
Main Authors: Qiao, Wen-Bao, Créput, Jean-Charles
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.04.2020
Springer
Springer Nature B.V
Subjects:
ISSN:1012-2443, 1573-7470
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The 2-opt, 3-opt or k –opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while sequential k –opt complete neighborhood examination takes polynomial time complexity which is timeconsuming to approach large scale TSP instances. This paper introduces a reasonable methodology called “multiple k –opt evaluation, multiple k –opt moves” that allows to simultaneously execute, without interference, massive k −opt moves that are globally found on the same TSP tour, as well as keep high performance GPU (Graphics Processing Unit) parallel 2-/3-opt evaluation with characteristic of “data parallelism, decentralized control and O (1) local memory for each GPU thread”. The methodology is reasonable since intervention of a sequential O ( N ) time complexity tour reversal operation is unavoidable for each k −opt move when using array of ordered coordinates as TSP tour data structure for high performance GPU k −opt local search that considers coalesced memory access and usage of limited on-chip shared memory. Innovation work includes two parts, a sequential non-interacted k -opt moves’ set partition algorithm that takes linear time complexity; a new TSP tour representation, array of ordered coordinates-index, that unveils how to combine the advantages of using doubly linked list and array of ordered coordinates data structures for iterative parallel k −opt local search based on GPU CUDA. We test this methodology on 22 national TSP instances with up to 71009 cities and with brute initial tour solution. Average maximum 997 non-interacted 2-opt moves are found and executed on the same tour of ch71009.tsp instance after one iteration of complete N ∗ ( N − 1 ) 2 2-opt checks working in parallel on GPU. And the proposed iterative GPU parallel 2-opt methodology executes average 306631 2-opt moves while only iterates 786 tour reversal operations, in comparison with methods that have to execute tour reversal operation after each 2-opt move. Experimental comparisons show that our proposed methodology gets huge acceleration over both classical sequential and a current state-of-the-art GPU parallel 2-opt implementation.
AbstractList The 2-opt, 3-opt or k –opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while sequential k –opt complete neighborhood examination takes polynomial time complexity which is timeconsuming to approach large scale TSP instances. This paper introduces a reasonable methodology called “multiple k –opt evaluation, multiple k –opt moves” that allows to simultaneously execute, without interference, massive k −opt moves that are globally found on the same TSP tour, as well as keep high performance GPU (Graphics Processing Unit) parallel 2-/3-opt evaluation with characteristic of “data parallelism, decentralized control and O (1) local memory for each GPU thread”. The methodology is reasonable since intervention of a sequential O ( N ) time complexity tour reversal operation is unavoidable for each k −opt move when using array of ordered coordinates as TSP tour data structure for high performance GPU k −opt local search that considers coalesced memory access and usage of limited on-chip shared memory. Innovation work includes two parts, a sequential non-interacted k -opt moves’ set partition algorithm that takes linear time complexity; a new TSP tour representation, array of ordered coordinates-index, that unveils how to combine the advantages of using doubly linked list and array of ordered coordinates data structures for iterative parallel k −opt local search based on GPU CUDA. We test this methodology on 22 national TSP instances with up to 71009 cities and with brute initial tour solution. Average maximum 997 non-interacted 2-opt moves are found and executed on the same tour of ch71009.tsp instance after one iteration of complete N ∗ ( N − 1 ) 2 2-opt checks working in parallel on GPU. And the proposed iterative GPU parallel 2-opt methodology executes average 306631 2-opt moves while only iterates 786 tour reversal operations, in comparison with methods that have to execute tour reversal operation after each 2-opt move. Experimental comparisons show that our proposed methodology gets huge acceleration over both classical sequential and a current state-of-the-art GPU parallel 2-opt implementation.
The 2-opt, 3-opt or k-opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while sequential k--opt complete neighborhood examination takes polynomial time complexity which is time consuming to approach large scale TSP instances. This paper introduces a reasonable methodology called "multiple k--opt evaluation, multiple k--opt moves" that allows to simultaneously execute, without interference, massive k--opt moves that are globally found on the same TSP tour, as well as keep high performance GPU (Graphics Processing Unit) parallel 2-/3-opt evaluation with characteristic of "data parallelism, decentralized control and O(1) local memory for each GPU thread". The methodology is reasonable since intervention of a sequential O(N) time complexity tour reversal operation is unavoidable for each k--opt move when using array of ordered coordinates as TSP tour data structure for high performance GPU k--opt local search that considers coalesced memory access and usage of limited on-chip shared memory. Innovation work includes two parts, a sequential non-interacted k--opt moves' set partition algorithm that takes linear time complexity; a new TSP tour representation, array of ordered coordinates-index, that unveils how to combine the advantages of using doubly linked list and array of ordered coordinates data structures for iterative parallel k--opt local search based on GPU CUDA. We test this methodology on 22 national TSP instances with up to 71009 cities and with brute initial tour solution. Average maximum 997 non-interacted 2-opt moves are found and executed on the same tour of ch71009.tsp instance after one iteration of complete N * (N-1)/2 2-opt checks working in parallel on GPU. And the proposed iterative GPU parallel 2-opt methodology executes average 306631 2-opt moves while only iterates 786 tour reversal operations, in comparison with methods that have to execute tour reversal operation after each 2-opt move. Experimental comparisons show that our proposed methodology gets huge acceleration over both classical sequential and a current state-of-the-art GPU parallel 2-opt implementation. Keywords Parallel 2-opt * Massive 2-opt moves * Parallel 3-opt * Massive 3-opt moves * TSP * GPU * High performance GPU local search Mathematics Subject Classification (2010) 68 * 68U01
The 2-opt, 3-opt or k–opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while sequential k–opt complete neighborhood examination takes polynomial time complexity which is timeconsuming to approach large scale TSP instances. This paper introduces a reasonable methodology called “multiple k–opt evaluation, multiple k–opt moves” that allows to simultaneously execute, without interference, massive k −opt moves that are globally found on the same TSP tour, as well as keep high performance GPU (Graphics Processing Unit) parallel 2-/3-opt evaluation with characteristic of “data parallelism, decentralized control and O(1) local memory for each GPU thread”. The methodology is reasonable since intervention of a sequential O(N) time complexity tour reversal operation is unavoidable for each k −opt move when using array of ordered coordinates as TSP tour data structure for high performance GPU k −opt local search that considers coalesced memory access and usage of limited on-chip shared memory. Innovation work includes two parts, a sequential non-interacted k-opt moves’ set partition algorithm that takes linear time complexity; a new TSP tour representation, array of ordered coordinates-index, that unveils how to combine the advantages of using doubly linked list and array of ordered coordinates data structures for iterative parallel k −opt local search based on GPU CUDA. We test this methodology on 22 national TSP instances with up to 71009 cities and with brute initial tour solution. Average maximum 997 non-interacted 2-opt moves are found and executed on the same tour of ch71009.tsp instance after one iteration of complete N∗(N−1)2 2-opt checks working in parallel on GPU. And the proposed iterative GPU parallel 2-opt methodology executes average 306631 2-opt moves while only iterates 786 tour reversal operations, in comparison with methods that have to execute tour reversal operation after each 2-opt move. Experimental comparisons show that our proposed methodology gets huge acceleration over both classical sequential and a current state-of-the-art GPU parallel 2-opt implementation.
Audience Academic
Author Qiao, Wen-Bao
Créput, Jean-Charles
Author_xml – sequence: 1
  givenname: Wen-Bao
  surname: Qiao
  fullname: Qiao, Wen-Bao
  email: rapidbao@outlook.com
  organization: School of Computer Science, Beijing Information Science and Technology University, CIAD, Univ. Bourgogne Franche-Comté, UTBM
– sequence: 2
  givenname: Jean-Charles
  surname: Créput
  fullname: Créput, Jean-Charles
  organization: CIAD, Univ. Bourgogne Franche-Comté, UTBM
BookMark eNp9kctu1TAQhi1UJNrCC7CyxNqtLzlxsqwqKJWKYNGuLceZ5Lg4cbB9DuUFqq55RJ6EoUFColLlhe3x_3ku_xE5mOMMhLwV_ERwrk-z4JWWjIuW8bbWLbt7QQ7FRiumK80P8MyFZLKq1CtylPMt5yhr6kNy_2kXil8C0K_018PPuBQKext2tvg40-nJ4xT3kOl3X7b04ssN3fpxSxdIQ0yTnR3QEJ0NNINNbktLpMGmEVjGINCS7B6Cn0ea8ZoRoEuKXYApvyYvBxsyvPm7H5ObD--vzz-yq88Xl-dnV8ypTVOY0m3VgbBcKdt1re2Elti4haruBwFt0zddZYeq58K6Rljhuk3fghr0oGrnKnVM3q3_YuJvO8jF3MZdmjGlka1oJJdSalSdrKoR6zR-HiKW7nD1MHmHkx88xs-00Ior0dQINCvgUsw5wWCcL48jRNAHI7j5Y5NZbTJok3m0ydwhKv9Dl-Qnm348D6kVyiieR0j_2niG-g0oD6yO
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129110
Cites_doi 10.1016/0377-2217(92)90138-Y
10.1287/moor.2.3.209
10.1002/j.1538-7305.1965.tb04146.x
10.1016/j.jpdc.2017.06.011
10.1016/0167-739X(94)00059-N
10.1287/ijoc.3.4.376
10.1287/ijoc.1.3.190
10.1016/S0893-6080(03)00130-8
10.1287/mnsc.40.10.1276
10.1016/S0305-0548(97)00031-2
10.1016/j.omega.2017.12.003
10.1287/opre.6.6.791
10.1007/978-3-319-59153-7_41
10.1007/s10479-017-2481-8
10.1109/HPCSim.2012.6266963
10.1007/0-306-48056-5_11
10.1109/IPDPSW.2013.227
10.1080/01605682.2018.1464428
10.1007/978-3-030-05348-2_8
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
COPYRIGHT 2020 Springer
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-019-09679-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 365
ExternalDocumentID A717303186
10_1007_s10472_019_09679_x
GrantInformation_xml – fundername: China Scholarship Council
  funderid: https://doi.org/10.13039/501100004543
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-3794be1a033abb9ab172047ae46df1e98d8b4af4d01ac81a1cb5d9e3f7f36cc43
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534791700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-2443
IngestDate Wed Nov 05 14:58:36 EST 2025
Sat Nov 29 09:49:16 EST 2025
Sat Nov 29 05:14:37 EST 2025
Tue Nov 18 22:24:16 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords TSP
68
Parallel 2-opt
68U01
Parallel 3-opt
Massive 3-opt moves
GPU
High performance GPU local search
Massive 2-opt moves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-3794be1a033abb9ab172047ae46df1e98d8b4af4d01ac81a1cb5d9e3f7f36cc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918202227
PQPubID 2043872
PageCount 19
ParticipantIDs proquest_journals_2918202227
gale_infotracacademiconefile_A717303186
crossref_citationtrail_10_1007_s10472_019_09679_x
crossref_primary_10_1007_s10472_019_09679_x
springer_journals_10_1007_s10472_019_09679_x
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Laporte (CR1) 1992; 59
Johnson, McGeoch (CR2) 1997; 1
Mladenović, Hansen (CR7) 1997; 24
CR3
Karp (CR15) 1977; 2
Lin (CR19) 1965; 44
CR8
CR17
CR9
CR16
CR13
CR12
Qiao, Créput (CR21) 2017; 11
CR22
Mulder, Wunsch (CR23) 2003; 16
Croes (CR11) 1958; 6
CR20
Pei, Liu, Fan, Pardalos, Lu (CR10) 2019; 82
Rios, Ochi, Boeres, Coelho, Coelho, Farias (CR18) 2018; 111
Reinelt (CR24) 1991; 3
Gendreau, Hertz, Laporte (CR6) 1994; 40
Garey, Johnson (CR4) 1979
Verhoeven, Aarts, Swinkels (CR14) 1995; 11
Glover (CR5) 1989; 1
9679_CR13
E Rios (9679_CR18) 2018; 111
9679_CR12
M Gendreau (9679_CR6) 1994; 40
RM Karp (9679_CR15) 1977; 2
9679_CR17
9679_CR16
G Reinelt (9679_CR24) 1991; 3
SA Mulder (9679_CR23) 2003; 16
DS Johnson (9679_CR2) 1997; 1
F Glover (9679_CR5) 1989; 1
N Mladenović (9679_CR7) 1997; 24
W-B Qiao (9679_CR21) 2017; 11
9679_CR8
9679_CR9
MR Garey (9679_CR4) 1979
G Laporte (9679_CR1) 1992; 59
9679_CR3
J Pei (9679_CR10) 2019; 82
9679_CR20
M Verhoeven (9679_CR14) 1995; 11
GA Croes (9679_CR11) 1958; 6
9679_CR22
S Lin (9679_CR19) 1965; 44
References_xml – volume: 59
  start-page: 231
  issue: 2
  year: 1992
  end-page: 247
  ident: CR1
  article-title: The traveling salesman problem: An overview of exact and approximate algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(92)90138-Y
– volume: 1
  start-page: 215
  year: 1997
  end-page: 310
  ident: CR2
  article-title: The traveling salesman problem: A case study in local optimization
  publication-title: Local Search Comb. Optim.
– volume: 2
  start-page: 209
  issue: 3
  year: 1977
  end-page: 224
  ident: CR15
  article-title: Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2.3.209
– volume: 44
  start-page: 2245
  issue: 10
  year: 1965
  end-page: 2269
  ident: CR19
  article-title: Computer solutions of the traveling salesman problem
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1965.tb04146.x
– ident: CR22
– volume: 111
  start-page: 39
  year: 2018
  end-page: 55
  ident: CR18
  article-title: Exploring parallel multi-gpu local search strategies in a metaheuristic framework
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.06.011
– volume: 11
  start-page: 175
  issue: 2
  year: 1995
  end-page: 182
  ident: CR14
  article-title: A parallel 2-opt algorithm for the traveling salesman problem
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/0167-739X(94)00059-N
– volume: 3
  start-page: 376
  issue: 4
  year: 1991
  end-page: 384
  ident: CR24
  article-title: Tsplib—a traveling salesman problem library
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– ident: CR3
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  end-page: 206
  ident: CR5
  article-title: Tabu search—part i
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.1.3.190
– ident: CR16
– ident: CR12
– ident: CR17
– volume: 16
  start-page: 827
  issue: 5
  year: 2003
  end-page: 832
  ident: CR23
  article-title: Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00130-8
– start-page: 70
  year: 1979
  end-page: 70
  ident: CR4
  publication-title: A Guide to the Theory of np-Completeness
– ident: CR13
– volume: 40
  start-page: 1276
  issue: 10
  year: 1994
  end-page: 1290
  ident: CR6
  article-title: A tabu search heuristic for the vehicle routing problem
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.40.10.1276
– volume: 24
  start-page: 1097
  issue: 11
  year: 1997
  end-page: 1100
  ident: CR7
  article-title: Variable neighborhood search
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(97)00031-2
– ident: CR9
– volume: 82
  start-page: 55
  year: 2019
  end-page: 69
  ident: CR10
  article-title: A hybrid ba-vns algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers
  publication-title: Omega
  doi: 10.1016/j.omega.2017.12.003
– volume: 6
  start-page: 791
  issue: 6
  year: 1958
  end-page: 812
  ident: CR11
  article-title: A method for solving traveling-salesman problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.6.6.791
– ident: CR8
– volume: 11
  start-page: 281
  issue: 3
  year: 2017
  end-page: 285
  ident: CR21
  article-title: Parallel 2-opt local search on gpu
  publication-title: World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering
– ident: CR20
– volume: 1
  start-page: 215
  year: 1997
  ident: 9679_CR2
  publication-title: Local Search Comb. Optim.
– ident: 9679_CR20
– ident: 9679_CR3
– volume: 6
  start-page: 791
  issue: 6
  year: 1958
  ident: 9679_CR11
  publication-title: Oper. Res.
  doi: 10.1287/opre.6.6.791
– volume: 3
  start-page: 376
  issue: 4
  year: 1991
  ident: 9679_CR24
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– ident: 9679_CR13
  doi: 10.1007/978-3-319-59153-7_41
– volume: 2
  start-page: 209
  issue: 3
  year: 1977
  ident: 9679_CR15
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2.3.209
– volume: 40
  start-page: 1276
  issue: 10
  year: 1994
  ident: 9679_CR6
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.40.10.1276
– volume: 24
  start-page: 1097
  issue: 11
  year: 1997
  ident: 9679_CR7
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(97)00031-2
– ident: 9679_CR8
  doi: 10.1007/s10479-017-2481-8
– start-page: 70
  volume-title: A Guide to the Theory of np-Completeness
  year: 1979
  ident: 9679_CR4
– ident: 9679_CR16
  doi: 10.1109/HPCSim.2012.6266963
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  ident: 9679_CR5
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.1.3.190
– volume: 111
  start-page: 39
  year: 2018
  ident: 9679_CR18
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.06.011
– ident: 9679_CR12
  doi: 10.1007/0-306-48056-5_11
– volume: 11
  start-page: 175
  issue: 2
  year: 1995
  ident: 9679_CR14
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/0167-739X(94)00059-N
– ident: 9679_CR17
  doi: 10.1109/IPDPSW.2013.227
– volume: 59
  start-page: 231
  issue: 2
  year: 1992
  ident: 9679_CR1
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(92)90138-Y
– volume: 44
  start-page: 2245
  issue: 10
  year: 1965
  ident: 9679_CR19
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1965.tb04146.x
– ident: 9679_CR9
  doi: 10.1080/01605682.2018.1464428
– volume: 82
  start-page: 55
  year: 2019
  ident: 9679_CR10
  publication-title: Omega
  doi: 10.1016/j.omega.2017.12.003
– volume: 11
  start-page: 281
  issue: 3
  year: 2017
  ident: 9679_CR21
  publication-title: World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering
– volume: 16
  start-page: 827
  issue: 5
  year: 2003
  ident: 9679_CR23
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00130-8
– ident: 9679_CR22
  doi: 10.1007/978-3-030-05348-2_8
SSID ssj0009686
Score 2.22509
Snippet The 2-opt, 3-opt or k –opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while...
The 2-opt, 3-opt or k-opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while...
The 2-opt, 3-opt or k–opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area, while...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms Algorithms
Analysis
Arrays
Artificial Intelligence
Chips (memory devices)
Combinatorial analysis
Complex Systems
Complexity
Computer Science
Data structures
Decentralized control
Efficiency
Euclidean space
Graphics processing units
Management science
Mathematics
Methodology
Polynomials
Search algorithms
Traveling salesman problem
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4QAHCgXEQkFzQOIAFvHGm9gnVCEKl1aVoFJvlr8iIdrNUoeqvwBx5ifyS_B4nUZQ0QvHxLFjaWaeE3vmPYDndStMJbhjtvOSiU4FZprky5VvbCelEN7bLDbR7u_LoyN1UDbcYkmrHDExA7XvHe2Rv54rohqnys03q6-MVKPodLVIaFyHG8SSwHPq3seJdLfJSo9EYcXSMlaXoplSOidaSkqghKGmVez8j4Xpb3i-dE6al5_dzf-d-F24Uz48cWftKffgWlhuweYo6oAlxrfg9t4FkWu8D9_3SsIhfsFfP372qwEnfnA8udR40p-FiLS5i-8PDpHIkHE11SZgXjpxHV449HhMiegsppsBB1JCoup4jOkypg5Y5G7iAzjcfffp7QdWpBuYqxdySLClhA3cVHVtrFXGchLDaU0Qje94UNJLK0wnfMWNk9xwZxdehbpru7pxTtQPYWPZL8MjwMq3QhjBpZ8TN9hCVQmRreOVaRKQu24GfLSbdoXXnOQ1jvXEyEy21snWOttan8_g5UWf1ZrV48qnX5A7aAr5NLIzpXIhzY_Is_QOZTIQODYz2B59QBcsiHpygBm8Gr1oav73ex9fPdoTuDWnn_-cRrQNG8Ppt_AUbrqz4XM8fZYj4TdXnRKJ
  priority: 102
  providerName: ProQuest
Title Multiple k −opt evaluation multiple k −opt moves with GPU high performance local search to large-scale traveling salesman problems
URI https://link.springer.com/article/10.1007/s10472-019-09679-x
https://www.proquest.com/docview/2918202227
Volume 88
WOSCitedRecordID wos000534791700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2ClgVdUCggppTRXSCxgEjxxJPYy4JakFBHo5aiio3lVyREOzOq06pfUHXNJ_Il-GacBiggwSZSYjuJnPtI4nPPAXheVFznnNnM1E5kvJY-02W05dyVphaCc-dMKzZRTSbi6EhOU1FY6NDu3ZJkG6l_KHbjFcEICOJTVjKLb46rMd0JEmzYP_jYU-2Wrb4jEVdlMXkVqVTm9-f4KR39GpRvrI62SWd3_f9u9z7cSy-ZuL20igdwy882YL0TcMDkzxuwtndN2hoewuVeAhfiF_x29XW-aLDnAseTG40n83MfkH7k4tvpIRLxMS76OgRs0yQuXQmbOR4T6DwL8aDHhlSPqBIeQ9wNcQAmaZvwCA53dz68eZclmYbMFmPRxBAlufFM50WhjZHaMBK-qbTnpauZl8IJw3XNXc60FUwza8ZO-qKu6qK0lhePYWU2n_kngLmrONecCTciHrCxzGP0NZbluoxB29YDYN3TUjZxmJOUxrHq2Zdp2lWcdtVOu7oYwMvrMYslg8dfe78gI1Dk3vHMVqcqhXh_RJSltgm1QIGwHMBWZycq-X1QI0mE-FRfPIBXnV30zX--7ua_dX8Kd0f04d9CiLZgpTk988_gjj1vPofTIay-3plM94dw-32VDQnOehC30_GnYesp3wFE6g3v
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQ5UCigLhTwAcQBrMaxN3EOCFVAabXdVQ-t1JvxXyREu1maUMoLIM48CA_Fk-DJOo2gorceOCaOncT5POPYM98H8ITnQieCWWpKJ6koC091FrCcuMyUUgrhnGnFJvLJRB4cFLsL8LPLhcGwys4mtobaVRbXyNfTAqnGMXPz1ewTRdUo3F3tJDTmsBj5r1_CL1v9cvtN-L5P03Tz7d7rLRpVBajlQ9mEEVUI45lOONfGFNow1GnJtReZK5kvpJNG6FK4hGkrmWbWDF3heZmXPLNW8NDuFbgquMxxXI1y2pP8Zq2yJFJm0eA2eUzSial6IscgCAxQyvKCnv7hCP92B-f2ZVt3t7n8v3XULbgZJ9ZkYz4SbsOCn67AcidaQaINW4Eb4zOi2voOfBvHgErykfz6_qOaNaTnPydH5wqPqhNfE1y8Ju929wmSPZNZn3tB2qkBmb8-aSpyiIH2tA4nPWlQ6Qmz_0kdDutQgUQ5n_ou7F9K39yDxWk19atAEpcLoQWTLkXus2GRBI9jLEt0FhyVLQfAOpwoG3nbUT7kUPWM04gtFbClWmyp0wE8P6szm7OWXHj1M4SfQpMWWrY6ZmaE50NyMLWBkRpo_LMBrHWYU9HW1aoH3ABedKjti_993_sXt_YYrm_tjXfUzvZk9ACWUlzoaEOm1mCxOf7sH8I1e9J8qI8ftaOQwPvLRvNvpDJxhw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hglA5UCggFgrMAYkDjRpvvIl9rIAFBF2tBEW9Wf6UKtrdVZNW_QWIMz-RX4In6zSFUiTUYxLbsZyZsWO_9wbgeVFxnXNmMxOcyHiQPtNltOXclSYIwblzpk02UU0mYm9PTs-x-Fu0e3ckueQ0kErTrNlauLB1jvjGK4IUENynrGQWV5HXOQHp6X_905dedrdscz2SiFUWJ7Ii0Wb-3sZvU9OfAfrCSWk7AY3Xrt71O3A7LT5xe2ktd-Gan63DWpfYAZOfr8OtnTMx1_oefNtJoEP8ij-__5gvGuw1wvHwwsPD-YmvkTZ48e10F0kQGRc9PwHb6ROXLobNHA8IjJ7V8abHhrIhEUMe63hZxwqYUt7U92F3_Obzq3dZSt-Q2WIkmhi6JDee6bwotDFSG0YJcSrteekC81I4YbgO3OVMW8E0s2bkpC9CFYrSWl48gJXZfOYfAuau4lxzJtyQ9MFGMo9R2ViW6zIGcxsGwLovp2zSNqcUGweqV2WmYVdx2FU77Op0AC_P6iyWyh7_LP2CDEKR28eWrU7shdg_EtBS24RmoABZDmCjsxmV4kGthpKE8ol3PIDNzkb6x5e_99H_FX8GN6evx-rj-8mHx7A6pL2BFmW0ASvN0bF_AjfsSbNfHz1t3eQXDBoVVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+k%E2%80%93opt+evaluation+multiple+k%E2%80%93opt+moves+with+GPU+high+performance+local+search+to+large-scale+traveling+salesman+problems&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Qiao%2C+Wen-Bao&rft.au=Creput%2C+Jean-Charles&rft.date=2020-04-01&rft.pub=Springer&rft.issn=1012-2443&rft.volume=88&rft.issue=4&rft.spage=347&rft_id=info:doi/10.1007%2Fs10472-019-09679-x&rft.externalDocID=A717303186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon