Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization

We consider the problem of minimizing composite functions of the form f ( g ( x ) ) + h ( x ) , where  f and  h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 195; no. 1-2; pp. 649 - 691
Main Authors: Zhang, Junyu, Xiao, Lin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of minimizing composite functions of the form f ( g ( x ) ) + h ( x ) , where  f and  h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an ϵ -stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When  g is a finite average of  N components, we obtain sample complexity O ( N + N 4 / 5 ϵ - 1 ) for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of O ( ϵ - 5 / 2 ) and O ( ϵ - 3 / 2 ) for component mappings and their Jacobians respectively. If in addition  f is smooth, then improved sample complexities of O ( N + N 1 / 2 ϵ - 1 ) and O ( ϵ - 3 / 2 ) are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations.
AbstractList We consider the problem of minimizing composite functions of the form [Formula omitted], where f and h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an [Formula omitted]-stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When g is a finite average of N components, we obtain sample complexity [Formula omitted] for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of [Formula omitted] and [Formula omitted] for component mappings and their Jacobians respectively. If in addition f is smooth, then improved sample complexities of [Formula omitted] and [Formula omitted] are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations.
We consider the problem of minimizing composite functions of the form f ( g ( x ) ) + h ( x ) , where  f and  h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an ϵ -stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When  g is a finite average of  N components, we obtain sample complexity O ( N + N 4 / 5 ϵ - 1 ) for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of O ( ϵ - 5 / 2 ) and O ( ϵ - 3 / 2 ) for component mappings and their Jacobians respectively. If in addition  f is smooth, then improved sample complexities of O ( N + N 1 / 2 ϵ - 1 ) and O ( ϵ - 3 / 2 ) are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations.
We consider the problem of minimizing composite functions of the form f(g(x))+h(x), where f and h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an ϵ-stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When g is a finite average of N components, we obtain sample complexity O(N+N4/5ϵ-1) for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of O(ϵ-5/2) and O(ϵ-3/2) for component mappings and their Jacobians respectively. If in addition f is smooth, then improved sample complexities of O(N+N1/2ϵ-1) and O(ϵ-3/2) are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations.
Audience Academic
Author Xiao, Lin
Zhang, Junyu
Author_xml – sequence: 1
  givenname: Junyu
  surname: Zhang
  fullname: Zhang, Junyu
  organization: Department of Electrical Engineering, Princeton University
– sequence: 2
  givenname: Lin
  orcidid: 0000-0002-9759-3898
  surname: Xiao
  fullname: Xiao, Lin
  email: linx@fb.com
  organization: Facebook AI Research (FAIR)
BookMark eNp9kMFqGzEQhkVxIU7aF8hpoWclI2m90h6NSZtAoIe29Ci02llHYVdyJNm4fvoq2UChBzMHgTTf_Jrvkix88EjINYMbBiBvEwMGkgJnFJiElp4-kCWrRUPrpm4WZAnAV3TVMLgglyk9AwATSi3J7x852CeTsrPVwURnvEUasd9b7KtdDEc6Oo8mVmbchujy05SqIcSq5NvgD3isbJh2IbmMVdhlN7mTyS74T-TjYMaEn9_PK_Lr693PzT19_P7tYbN-pFasVKac13XXcaY6JVWtWK8E8h5FB0wZUKZWPba2s1zIjje2lV15sStU2IOQIMQV-TLPLX992WPK-jnsoy-RmstSTLG2Ll03c9fWjKidH0KOxpbqcXJlDxxcuV9L_jqz5aoAfAZsDClFHPQuusnEP5qBfjWuZ-O6GNdvxvWpQOo_yLr8ZqOkufE8KmY0lRy_xfhvjTPUX7hVmSo
CitedBy_id crossref_primary_10_1016_j_cam_2023_115425
crossref_primary_10_1109_TSP_2024_3398496
crossref_primary_10_1007_s12190_022_01722_1
crossref_primary_10_1007_s10915_023_02099_4
crossref_primary_10_1007_s10957_023_02180_w
crossref_primary_10_1090_mcom_3965
Cites_doi 10.1093/imaiai/iay015
10.1137/140961791
10.1137/17M1151031
10.21314/JOR.2000.038
10.1007/BF01584377
10.1137/19M1285457
10.1007/BF01585997
10.1137/15M1031953
10.1080/08927020600643812
10.1007/s10107-015-0943-9
10.1137/18M1178244
10.1137/11082381X
10.1007/s10107-016-1017-3
10.1073/pnas.1908018116
10.1007/s10107-018-1311-3
10.1109/TAC.2012.2215413
10.1057/palgrave.jors.2600425
10.1007/BF00933293
10.1007/s10957-018-01452-0
10.1137/18M1230323
10.1007/BF01588325
10.1137/18M1230542
10.1137/17M1135086
10.1287/educ.1073.0032
10.1287/educ.2013.0110
10.1007/s10589-020-00179-x
10.24963/ijcai.2017/470
10.1609/aaai.v32i1.11795
10.1287/moor.2017.0889
10.1007/978-3-662-39921-7_17
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01709-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 691
ExternalDocumentID A723703928
10_1007_s10107_021_01709_z
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-2244bb218b878481d83e2de3b018a08a48de9cbc237b26c97bb01c5e8ed037033
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704212700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:49:38 EDT 2025
Sat Nov 29 10:53:14 EST 2025
Sat Nov 29 03:34:02 EST 2025
Tue Nov 18 22:34:14 EST 2025
Fri Feb 21 02:47:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 68W20
68Q25
Variance reduction
Stochastic composite optimization
Nonsmooth optimization
90C26
Sample complexity
Prox-linear algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-2244bb218b878481d83e2de3b018a08a48de9cbc237b26c97bb01c5e8ed037033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9759-3898
PQID 2727218194
PQPubID 25307
PageCount 43
ParticipantIDs proquest_journals_2727218194
gale_infotracacademiconefile_A723703928
crossref_primary_10_1007_s10107_021_01709_z
crossref_citationtrail_10_1007_s10107_021_01709_z
springer_journals_10_1007_s10107_021_01709_z
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Fletcher, Watson (CR25) 1980; 18
CR37
Ochs, Fadili, Brox (CR39) 2019; 181
CR36
CR34
CR32
Lewis, Wright (CR33) 2016; 158
Drusvyatskiy (CR19) 2017; 26
CR30
Pham, Nguyen, Phan, Tran-Dinh (CR41) 2020; 21
Asi, Duchi (CR1) 2019; 116
Rockafellar, Uryasev (CR48) 2000; 2
CR3
CR6
Ortega, Rheinboldt (CR40) 1970
CR8
Koshal, Nedić, Shanbhag (CR31) 2013; 58
CR9
CR49
Dann, Neumann, Peters (CR15) 2014; 15
CR47
CR46
CR45
CR44
Drusvyatskiy, Paquette (CR21) 2019; 178
CR43
Wang, Fang, Liu (CR53) 2017; 161
CR42
Asi, Duchi (CR2) 2019; 29
Cartis, Gould, Toint (CR11) 2011; 21
Davis, Drusvyatskiy (CR16) 2019; 29
Hiriart-Urruty, Lemaréchal (CR27) 2013
Nesterov (CR35) 2007; 22
Burke, Ferris (CR10) 1995; 71
Zhang, Xiao (CR59) 2021; 31
CR14
CR58
CR13
CR57
CR12
CR55
CR54
CR52
Duchi, Ruan (CR23) 2019; 8
Ghadimi, Ruszczyński, Wang (CR26) 2020; 30
CR50
Iusem, Jofré, Oliveira, Phompson (CR29) 2017; 27
Sutton, Barto (CR51) 1998
Nocedal, Wright (CR38) 2006
CR28
CR24
Bertsekas (CR5) 1997; 48
Burke (CR7) 1985; 33
CR22
CR20
Dekel, Gilad-Bachrach, Shamir, Xiao (CR18) 2012; 13
CR61
Davis, Grimmer (CR17) 2019; 29
CR60
Xiao, Zhang (CR56) 2014; 24
Bertsekas (CR4) 1977; 23
H Asi (1709_CR1) 2019; 116
1709_CR47
1709_CR46
1709_CR45
H Asi (1709_CR2) 2019; 29
1709_CR49
JM Ortega (1709_CR40) 1970
D Drusvyatskiy (1709_CR21) 2019; 178
JC Duchi (1709_CR23) 2019; 8
1709_CR50
1709_CR55
1709_CR54
1709_CR52
1709_CR14
1709_CR58
1709_CR13
1709_CR57
1709_CR12
M Wang (1709_CR53) 2017; 161
R Fletcher (1709_CR25) 1980; 18
AN Iusem (1709_CR29) 2017; 27
C Dann (1709_CR15) 2014; 15
1709_CR61
1709_CR60
JV Burke (1709_CR10) 1995; 71
1709_CR22
P Ochs (1709_CR39) 2019; 181
1709_CR20
1709_CR24
NH Pham (1709_CR41) 2020; 21
1709_CR28
JV Burke (1709_CR7) 1985; 33
C Cartis (1709_CR11) 2011; 21
1709_CR8
1709_CR9
RT Rockafellar (1709_CR48) 2000; 2
AS Lewis (1709_CR33) 2016; 158
L Xiao (1709_CR56) 2014; 24
D Davis (1709_CR17) 2019; 29
S Ghadimi (1709_CR26) 2020; 30
1709_CR3
O Dekel (1709_CR18) 2012; 13
Y Nesterov (1709_CR35) 2007; 22
J-B Hiriart-Urruty (1709_CR27) 2013
J Koshal (1709_CR31) 2013; 58
1709_CR32
1709_CR6
1709_CR30
1709_CR37
1709_CR36
1709_CR34
J Zhang (1709_CR59) 2021; 31
DP Bertsekas (1709_CR5) 1997; 48
J Nocedal (1709_CR38) 2006
D Drusvyatskiy (1709_CR19) 2017; 26
DP Bertsekas (1709_CR4) 1977; 23
1709_CR44
D Davis (1709_CR16) 2019; 29
1709_CR43
RS Sutton (1709_CR51) 1998
1709_CR42
References_xml – ident: CR45
– ident: CR22
– volume: 8
  start-page: 471
  issue: 3
  year: 2019
  end-page: 529
  ident: CR23
  article-title: Solving (most) of a set of quadratic equalities: composite optimization for robust phase retrieval
  publication-title: Inf. Inference A J. IMA
  doi: 10.1093/imaiai/iay015
– ident: CR49
– volume: 24
  start-page: 2057
  issue: 4
  year: 2014
  end-page: 2075
  ident: CR56
  article-title: A proximal stochastic gradient method with progressive variance reduction
  publication-title: SIAM J. Optim.
  doi: 10.1137/140961791
– ident: CR12
– ident: CR54
– ident: CR61
– ident: CR8
– ident: CR58
– volume: 29
  start-page: 1908
  issue: 3
  year: 2019
  end-page: 1930
  ident: CR17
  article-title: Proximally guided stochastic subgradient method for nonsmooth, nonconvex problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1151031
– ident: CR42
– volume: 2
  start-page: 21
  year: 2000
  end-page: 42
  ident: CR48
  article-title: Optimization of conditional value-at-risk. J
  publication-title: Risk
  doi: 10.21314/JOR.2000.038
– ident: CR46
– volume: 33
  start-page: 260
  issue: 3
  year: 1985
  end-page: 279
  ident: CR7
  article-title: Descent methods for composite nondifferentiable optimization problems
  publication-title: Math. Program.
  doi: 10.1007/BF01584377
– volume: 31
  start-page: 1131
  issue: 2
  year: 2021
  end-page: 1157
  ident: CR59
  article-title: Multi-level composite stochastic optimization via nested variance reduction
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1285457
– ident: CR50
– volume: 71
  start-page: 179
  issue: 2
  year: 1995
  end-page: 194
  ident: CR10
  article-title: A Gauss-Newton method for convex composite optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01585997
– volume: 27
  start-page: 686
  issue: 2
  year: 2017
  end-page: 724
  ident: CR29
  article-title: Extragradient method with variance reduction for stochastic variational inequalities
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1031953
– ident: CR9
– volume: 15
  start-page: 809
  issue: 1
  year: 2014
  end-page: 883
  ident: CR15
  article-title: Policy evaluation with temporal differences: a survey and comparison
  publication-title: J. Mach. Learn. Res.
– ident: CR57
– year: 2013
  ident: CR27
  publication-title: Convex Analysis and Minimization Algorithms I: Fundamentals
– ident: CR32
– ident: CR60
– ident: CR36
– volume: 22
  start-page: 469
  issue: 3
  year: 2007
  end-page: 483
  ident: CR35
  article-title: Modified Gauss-Newton scheme with worst case guarantees for global performance
  publication-title: Optim. Methods Softw.
  doi: 10.1080/08927020600643812
– volume: 158
  start-page: 501
  issue: 1–2
  year: 2016
  end-page: 546
  ident: CR33
  article-title: A proximal method for composite minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0943-9
– volume: 29
  start-page: 207
  issue: 1
  year: 2019
  end-page: 239
  ident: CR16
  article-title: Stochastic model-based minimization of weakly convex functions
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1178244
– ident: CR43
– ident: CR47
– ident: CR14
– ident: CR37
– ident: CR30
– volume: 21
  start-page: 1721
  issue: 4
  year: 2011
  end-page: 1739
  ident: CR11
  article-title: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/11082381X
– volume: 161
  start-page: 419
  issue: 1–2
  year: 2017
  end-page: 449
  ident: CR53
  article-title: Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1017-3
– ident: CR6
– volume: 116
  start-page: 22924
  issue: 46
  year: 2019
  end-page: 22930
  ident: CR1
  article-title: The importance of better models in stochastic optimization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1908018116
– volume: 178
  start-page: 503
  year: 2019
  end-page: 558
  ident: CR21
  article-title: Efficiency of minimizing compositions of convex functions and smooth maps
  publication-title: Math. Programm.
  doi: 10.1007/s10107-018-1311-3
– volume: 58
  start-page: 594
  issue: 3
  year: 2013
  end-page: 609
  ident: CR31
  article-title: Regularized iterative stochastic approximation methods for stochastic variational inequality problems
  publication-title: IEEE Trans. Automatic Control
  doi: 10.1109/TAC.2012.2215413
– volume: 48
  start-page: 334
  issue: 3
  year: 1997
  ident: CR5
  article-title: Nonlinear programming
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600425
– volume: 23
  start-page: 487
  issue: 4
  year: 1977
  end-page: 510
  ident: CR4
  article-title: Approximation procedures based on the method of multipliers
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00933293
– year: 2006
  ident: CR38
  publication-title: Numerical Optimization
– ident: CR44
– year: 1998
  ident: CR51
  publication-title: Reinforcement Learning: An Introduction
– ident: CR3
– volume: 181
  start-page: 244
  year: 2019
  end-page: 278
  ident: CR39
  article-title: Non-smooth non-convex Bregman minimization: unification and new algorithms
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-01452-0
– year: 1970
  ident: CR40
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– ident: CR52
– ident: CR13
– volume: 29
  start-page: 2257
  issue: 3
  year: 2019
  end-page: 2290
  ident: CR2
  article-title: Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1230323
– volume: 18
  start-page: 291
  issue: 1
  year: 1980
  end-page: 307
  ident: CR25
  article-title: First and second order conditions for a class of nondifferentiable optimization problems
  publication-title: Math. Program.
  doi: 10.1007/BF01588325
– ident: CR34
– ident: CR55
– volume: 13
  start-page: 165
  year: 2012
  end-page: 202
  ident: CR18
  article-title: Optimal distributed online prediction using mini-batches
  publication-title: J. Mach. Learn. Res.
– ident: CR28
– volume: 26
  start-page: 1
  issue: 1
  year: 2017
  end-page: 8
  ident: CR19
  article-title: The proximal point method revisited
  publication-title: SIAG/OPT Views and News (A Forum for the SIAM Activity Group on Optimization)
– ident: CR24
– ident: CR20
– volume: 30
  start-page: 960
  issue: 1
  year: 2020
  end-page: 979
  ident: CR26
  article-title: A single time-scale stochastic approximation method for nested stochastic optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1230542
– volume: 21
  start-page: 1
  year: 2020
  end-page: 48
  ident: CR41
  article-title: ProxSARAH: An efficient algorithmic framework for stochastic composite nonconvex optimization
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume-title: Convex Analysis and Minimization Algorithms I: Fundamentals
  year: 2013
  ident: 1709_CR27
– ident: 1709_CR22
  doi: 10.1137/17M1135086
– volume: 58
  start-page: 594
  issue: 3
  year: 2013
  ident: 1709_CR31
  publication-title: IEEE Trans. Automatic Control
  doi: 10.1109/TAC.2012.2215413
– volume: 29
  start-page: 2257
  issue: 3
  year: 2019
  ident: 1709_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1230323
– volume: 21
  start-page: 1
  year: 2020
  ident: 1709_CR41
  publication-title: J. Mach. Learn. Res. (JMLR)
– ident: 1709_CR6
– volume: 29
  start-page: 1908
  issue: 3
  year: 2019
  ident: 1709_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1151031
– volume: 26
  start-page: 1
  issue: 1
  year: 2017
  ident: 1709_CR19
  publication-title: SIAG/OPT Views and News (A Forum for the SIAM Activity Group on Optimization)
– ident: 1709_CR44
– volume: 27
  start-page: 686
  issue: 2
  year: 2017
  ident: 1709_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1031953
– ident: 1709_CR30
– volume: 2
  start-page: 21
  year: 2000
  ident: 1709_CR48
  publication-title: Risk
  doi: 10.21314/JOR.2000.038
– ident: 1709_CR24
– volume: 116
  start-page: 22924
  issue: 46
  year: 2019
  ident: 1709_CR1
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1908018116
– volume: 8
  start-page: 471
  issue: 3
  year: 2019
  ident: 1709_CR23
  publication-title: Inf. Inference A J. IMA
  doi: 10.1093/imaiai/iay015
– ident: 1709_CR34
– ident: 1709_CR47
  doi: 10.1287/educ.1073.0032
– volume: 181
  start-page: 244
  year: 2019
  ident: 1709_CR39
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-01452-0
– volume: 15
  start-page: 809
  issue: 1
  year: 2014
  ident: 1709_CR15
  publication-title: J. Mach. Learn. Res.
– ident: 1709_CR37
– volume-title: Numerical Optimization
  year: 2006
  ident: 1709_CR38
– ident: 1709_CR50
  doi: 10.1287/educ.2013.0110
– ident: 1709_CR12
– volume: 22
  start-page: 469
  issue: 3
  year: 2007
  ident: 1709_CR35
  publication-title: Optim. Methods Softw.
  doi: 10.1080/08927020600643812
– ident: 1709_CR43
– ident: 1709_CR60
– volume: 71
  start-page: 179
  issue: 2
  year: 1995
  ident: 1709_CR10
  publication-title: Math. Program.
  doi: 10.1007/BF01585997
– ident: 1709_CR3
– volume: 24
  start-page: 2057
  issue: 4
  year: 2014
  ident: 1709_CR56
  publication-title: SIAM J. Optim.
  doi: 10.1137/140961791
– volume: 33
  start-page: 260
  issue: 3
  year: 1985
  ident: 1709_CR7
  publication-title: Math. Program.
  doi: 10.1007/BF01584377
– ident: 1709_CR54
– ident: 1709_CR58
– volume: 21
  start-page: 1721
  issue: 4
  year: 2011
  ident: 1709_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/11082381X
– volume: 18
  start-page: 291
  issue: 1
  year: 1980
  ident: 1709_CR25
  publication-title: Math. Program.
  doi: 10.1007/BF01588325
– volume: 158
  start-page: 501
  issue: 1–2
  year: 2016
  ident: 1709_CR33
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0943-9
– ident: 1709_CR36
– ident: 1709_CR61
– ident: 1709_CR8
– ident: 1709_CR13
– volume: 48
  start-page: 334
  issue: 3
  year: 1997
  ident: 1709_CR5
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600425
– ident: 1709_CR46
– volume: 29
  start-page: 207
  issue: 1
  year: 2019
  ident: 1709_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1178244
– volume: 13
  start-page: 165
  year: 2012
  ident: 1709_CR18
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 960
  issue: 1
  year: 2020
  ident: 1709_CR26
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1230542
– ident: 1709_CR55
– volume: 31
  start-page: 1131
  issue: 2
  year: 2021
  ident: 1709_CR59
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1285457
– volume-title: Iterative Solution of Nonlinear Equations in Several Variables
  year: 1970
  ident: 1709_CR40
– ident: 1709_CR14
– ident: 1709_CR9
– volume: 161
  start-page: 419
  issue: 1–2
  year: 2017
  ident: 1709_CR53
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1017-3
– ident: 1709_CR32
  doi: 10.1007/s10589-020-00179-x
– ident: 1709_CR57
  doi: 10.24963/ijcai.2017/470
– ident: 1709_CR45
– ident: 1709_CR49
– ident: 1709_CR28
  doi: 10.1609/aaai.v32i1.11795
– ident: 1709_CR20
  doi: 10.1287/moor.2017.0889
– volume-title: Reinforcement Learning: An Introduction
  year: 1998
  ident: 1709_CR51
– ident: 1709_CR52
– volume: 23
  start-page: 487
  issue: 4
  year: 1977
  ident: 1709_CR4
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00933293
– ident: 1709_CR42
  doi: 10.1007/978-3-662-39921-7_17
– volume: 178
  start-page: 503
  year: 2019
  ident: 1709_CR21
  publication-title: Math. Programm.
  doi: 10.1007/s10107-018-1311-3
SSID ssj0001388
Score 2.444413
Snippet We consider the problem of minimizing composite functions of the form f ( g ( x ) ) + h ( x ) , where  f and  h are convex functions (which can be nonsmooth)...
We consider the problem of minimizing composite functions of the form [Formula omitted], where f and h are convex functions (which can be nonsmooth) and g is a...
We consider the problem of minimizing composite functions of the form f(g(x))+h(x), where f and h are convex functions (which can be nonsmooth) and g is a...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 649
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Composite functions
Full Length Paper
Jacobians
Mapping
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Theoretical
Variance
Title Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization
URI https://link.springer.com/article/10.1007/s10107-021-01709-z
https://www.proquest.com/docview/2727218194
Volume 195
WOSCitedRecordID wos000704212700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink [Stanislaus State]
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLYWlgMcgF1ADC_lsBIHiNQ0nWlyRAjEARBidoFblKSZZaRhBrUFIX49dmlnYIGV4FglTSI7sZ3Y_gzwK6jgemnPcyEyyZPECu5EFLjT2tpI-dCpqkRcHKenp-rqSp_VSWFFE-3euCQrSf0i2U3Qs1pM19800vxxCr6julNUsOG8ezGWv0Iq1RRqJeugTpV5f4xX6uhfofzGO1opncOFry13EeZrI5PtPe-KH_AtDH_C3AvoQfw6GeO1Fktw2S1H_toSZjO7x9szbQWeE6pryBhFunCyRm3O7ODvKO-X1zcFQ2uXDUfDKmz9gVFoOsV_BTZCIXRTZ3cuw5_Dg9_7R7wuucC9bKuSo0JPnEO171RKQPuZkiHOgnSRUMg6m6gsaO98LFMXd7xOHbb4NnI8iyQKD7kC0zh1WAVGNy1UkT3hE5UIn9lIauuTXqejhZeq3QLRUN74Go-cymIMzARJmUhokISmIqF5bMHO-J_bZzSO__beJoYaOqo4srd1xgGuj0CvzF4a05p1rFqw0fDc1Ge4MDH5qNEA0kkLdhseT5o_nnftc93XYTamnIoqcG0Dpsv8LmzCjL8v-0W-Ve3tJ8po89c
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLcGm8T2sI2PaceA5QFpDyxS0-SuySNCQ6AdJwQMeIuSNMchwd3Udmjir59d2oMNmASPVdIkshPbie2fAdajjn6YDQMXIpdcKSe4F0nk3hjnEh1ir64ScdzPBgN9emr2m6Swso12b12StaS-k-wm6Fktpetvlhh-PQMvFWosQsw_ODyeyl8htW4LtZJ10KTKPDzGX-roX6F8zztaK53td89b7nt42xiZbPNmV8zDizhegDd3oAfxa2-K11ouwslhNQkjR5jN7Apvz7QVeEGorjFnFOnCyRp1BXMXZ5PivBpdlgytXTaejOuw9d-MQtMp_iuyCQqhyya7cwl-bH872trhTckFHmRXVxwVuvIe1b7XGQHt51rGNI_SJ0Ij65zSeTTBh1RmPu0Fk3lsCV3keJ5IFB7yA8zi1PEjMLppoYociqC0EiF3iTQuqGGvZ0SQutsB0VLehgaPnMpiXNhbJGUioUUS2pqE9roDG9N_ft6gcfy39xdiqKWjiiMH12Qc4PoI9MpuZimt2aS6Aystz21zhkubko8aDSCjOvC15fFt8-PzLj-t-2eY2zna69v-7uD7J3idUn5FHcS2ArNV8SuuwqtwVZ2XxVq9z_8AP732uw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xghB7GAw2URjMD5P2AFbj2G3sx2pQgTaqSYWyN8t2nHXS-qE0q1D_enxp0pXxIaE9RnZsy3e-D_vudwBHXnqbJZmjjKWcCmEYtSzy1CplTCSd75RVIoZnSb8vLy7U-UYWfxntXj9JrnIaEKVpUrRmadbaSHxjeMUWoyucRIout-ChwEB69NcHw7UsZlzKumgrWgpV2syfx_hFNd0V0L-9lJYKqPf0_kt_BjuV8Um6K27ZhQd-8hy2NyAJw9eXNY7r_AV8HxRTNzKI5UwWwatGFqE5or36lGAEDEUr1eTEXF9O86tiNJ6TYAWTyXRShrP_IBiyjnFhnkyDcBpXWZ978K338evJJ1qVYqCOt2VBg6IX1gZzwMoEAfhTyX2cem4jJgNJjZCpV866mCc27jiV2NDi2oET0ogHocL3oRGm9i-BoAcWVGfGnJCCudREXBknsk5HMcdluwmspoJ2FU45lsu41rcIy7iFOmyhLrdQL5vwbv3PbIXS8c_ex0hcjUc4jOxMlYkQ1odgWLqbxLhmFcsmHNT019XZnusY366DYaREE97X9L5t_vu8r_6v-yE8Pv_Q02ef-6ev4UmMaRdlbNsBNIr8xr-BR25RXM3ztyXL_wTxtv-f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+variance-reduced+prox-linear+algorithms+for+nonconvex+composite+optimization&rft.jtitle=Mathematical+programming&rft.au=Zhang%2C+Junyu&rft.au=Xiao%2C+Lin&rft.date=2022-09-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=195&rft.issue=1-2&rft.spage=649&rft_id=info:doi/10.1007%2Fs10107-021-01709-z&rft.externalDocID=A723703928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon