Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization
We consider the problem of minimizing composite functions of the form f ( g ( x ) ) + h ( x ) , where f and h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over...
Saved in:
| Published in: | Mathematical programming Vol. 195; no. 1-2; pp. 649 - 691 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider the problem of minimizing composite functions of the form
f
(
g
(
x
)
)
+
h
(
x
)
, where
f
and
h
are convex functions (which can be nonsmooth) and
g
is a smooth vector mapping. In addition, we assume that
g
is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an
ϵ
-stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When
g
is a finite average of
N
components, we obtain sample complexity
O
(
N
+
N
4
/
5
ϵ
-
1
)
for both mapping and Jacobian evaluations. When
g
is a general expectation, we obtain sample complexities of
O
(
ϵ
-
5
/
2
)
and
O
(
ϵ
-
3
/
2
)
for component mappings and their Jacobians respectively. If in addition
f
is smooth, then improved sample complexities of
O
(
N
+
N
1
/
2
ϵ
-
1
)
and
O
(
ϵ
-
3
/
2
)
are derived for
g
being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations. |
|---|---|
| AbstractList | We consider the problem of minimizing composite functions of the form [Formula omitted], where f and h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an [Formula omitted]-stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When g is a finite average of N components, we obtain sample complexity [Formula omitted] for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of [Formula omitted] and [Formula omitted] for component mappings and their Jacobians respectively. If in addition f is smooth, then improved sample complexities of [Formula omitted] and [Formula omitted] are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations. We consider the problem of minimizing composite functions of the form f ( g ( x ) ) + h ( x ) , where f and h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an ϵ -stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When g is a finite average of N components, we obtain sample complexity O ( N + N 4 / 5 ϵ - 1 ) for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of O ( ϵ - 5 / 2 ) and O ( ϵ - 3 / 2 ) for component mappings and their Jacobians respectively. If in addition f is smooth, then improved sample complexities of O ( N + N 1 / 2 ϵ - 1 ) and O ( ϵ - 3 / 2 ) are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations. We consider the problem of minimizing composite functions of the form f(g(x))+h(x), where f and h are convex functions (which can be nonsmooth) and g is a smooth vector mapping. In addition, we assume that g is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an ϵ-stationary point in terms of the total number of evaluations of the component mappings and their Jacobians. When g is a finite average of N components, we obtain sample complexity O(N+N4/5ϵ-1) for both mapping and Jacobian evaluations. When g is a general expectation, we obtain sample complexities of O(ϵ-5/2) and O(ϵ-3/2) for component mappings and their Jacobians respectively. If in addition f is smooth, then improved sample complexities of O(N+N1/2ϵ-1) and O(ϵ-3/2) are derived for g being a finite average and a general expectation respectively, for both component mapping and Jacobian evaluations. |
| Audience | Academic |
| Author | Xiao, Lin Zhang, Junyu |
| Author_xml | – sequence: 1 givenname: Junyu surname: Zhang fullname: Zhang, Junyu organization: Department of Electrical Engineering, Princeton University – sequence: 2 givenname: Lin orcidid: 0000-0002-9759-3898 surname: Xiao fullname: Xiao, Lin email: linx@fb.com organization: Facebook AI Research (FAIR) |
| BookMark | eNp9kMFqGzEQhkVxIU7aF8hpoWclI2m90h6NSZtAoIe29Ci02llHYVdyJNm4fvoq2UChBzMHgTTf_Jrvkix88EjINYMbBiBvEwMGkgJnFJiElp4-kCWrRUPrpm4WZAnAV3TVMLgglyk9AwATSi3J7x852CeTsrPVwURnvEUasd9b7KtdDEc6Oo8mVmbchujy05SqIcSq5NvgD3isbJh2IbmMVdhlN7mTyS74T-TjYMaEn9_PK_Lr693PzT19_P7tYbN-pFasVKac13XXcaY6JVWtWK8E8h5FB0wZUKZWPba2s1zIjje2lV15sStU2IOQIMQV-TLPLX992WPK-jnsoy-RmstSTLG2Ll03c9fWjKidH0KOxpbqcXJlDxxcuV9L_jqz5aoAfAZsDClFHPQuusnEP5qBfjWuZ-O6GNdvxvWpQOo_yLr8ZqOkufE8KmY0lRy_xfhvjTPUX7hVmSo |
| CitedBy_id | crossref_primary_10_1016_j_cam_2023_115425 crossref_primary_10_1109_TSP_2024_3398496 crossref_primary_10_1007_s12190_022_01722_1 crossref_primary_10_1007_s10915_023_02099_4 crossref_primary_10_1007_s10957_023_02180_w crossref_primary_10_1090_mcom_3965 |
| Cites_doi | 10.1093/imaiai/iay015 10.1137/140961791 10.1137/17M1151031 10.21314/JOR.2000.038 10.1007/BF01584377 10.1137/19M1285457 10.1007/BF01585997 10.1137/15M1031953 10.1080/08927020600643812 10.1007/s10107-015-0943-9 10.1137/18M1178244 10.1137/11082381X 10.1007/s10107-016-1017-3 10.1073/pnas.1908018116 10.1007/s10107-018-1311-3 10.1109/TAC.2012.2215413 10.1057/palgrave.jors.2600425 10.1007/BF00933293 10.1007/s10957-018-01452-0 10.1137/18M1230323 10.1007/BF01588325 10.1137/18M1230542 10.1137/17M1135086 10.1287/educ.1073.0032 10.1287/educ.2013.0110 10.1007/s10589-020-00179-x 10.24963/ijcai.2017/470 10.1609/aaai.v32i1.11795 10.1287/moor.2017.0889 10.1007/978-3-662-39921-7_17 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-021-01709-z |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 691 |
| ExternalDocumentID | A723703928 10_1007_s10107_021_01709_z |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-2244bb218b878481d83e2de3b018a08a48de9cbc237b26c97bb01c5e8ed037033 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704212700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:49:38 EDT 2025 Sat Nov 29 10:53:14 EST 2025 Sat Nov 29 03:34:02 EST 2025 Tue Nov 18 22:34:14 EST 2025 Fri Feb 21 02:47:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 68W20 68Q25 Variance reduction Stochastic composite optimization Nonsmooth optimization 90C26 Sample complexity Prox-linear algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-2244bb218b878481d83e2de3b018a08a48de9cbc237b26c97bb01c5e8ed037033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9759-3898 |
| PQID | 2727218194 |
| PQPubID | 25307 |
| PageCount | 43 |
| ParticipantIDs | proquest_journals_2727218194 gale_infotracacademiconefile_A723703928 crossref_primary_10_1007_s10107_021_01709_z crossref_citationtrail_10_1007_s10107_021_01709_z springer_journals_10_1007_s10107_021_01709_z |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | Fletcher, Watson (CR25) 1980; 18 CR37 Ochs, Fadili, Brox (CR39) 2019; 181 CR36 CR34 CR32 Lewis, Wright (CR33) 2016; 158 Drusvyatskiy (CR19) 2017; 26 CR30 Pham, Nguyen, Phan, Tran-Dinh (CR41) 2020; 21 Asi, Duchi (CR1) 2019; 116 Rockafellar, Uryasev (CR48) 2000; 2 CR3 CR6 Ortega, Rheinboldt (CR40) 1970 CR8 Koshal, Nedić, Shanbhag (CR31) 2013; 58 CR9 CR49 Dann, Neumann, Peters (CR15) 2014; 15 CR47 CR46 CR45 CR44 Drusvyatskiy, Paquette (CR21) 2019; 178 CR43 Wang, Fang, Liu (CR53) 2017; 161 CR42 Asi, Duchi (CR2) 2019; 29 Cartis, Gould, Toint (CR11) 2011; 21 Davis, Drusvyatskiy (CR16) 2019; 29 Hiriart-Urruty, Lemaréchal (CR27) 2013 Nesterov (CR35) 2007; 22 Burke, Ferris (CR10) 1995; 71 Zhang, Xiao (CR59) 2021; 31 CR14 CR58 CR13 CR57 CR12 CR55 CR54 CR52 Duchi, Ruan (CR23) 2019; 8 Ghadimi, Ruszczyński, Wang (CR26) 2020; 30 CR50 Iusem, Jofré, Oliveira, Phompson (CR29) 2017; 27 Sutton, Barto (CR51) 1998 Nocedal, Wright (CR38) 2006 CR28 CR24 Bertsekas (CR5) 1997; 48 Burke (CR7) 1985; 33 CR22 CR20 Dekel, Gilad-Bachrach, Shamir, Xiao (CR18) 2012; 13 CR61 Davis, Grimmer (CR17) 2019; 29 CR60 Xiao, Zhang (CR56) 2014; 24 Bertsekas (CR4) 1977; 23 H Asi (1709_CR1) 2019; 116 1709_CR47 1709_CR46 1709_CR45 H Asi (1709_CR2) 2019; 29 1709_CR49 JM Ortega (1709_CR40) 1970 D Drusvyatskiy (1709_CR21) 2019; 178 JC Duchi (1709_CR23) 2019; 8 1709_CR50 1709_CR55 1709_CR54 1709_CR52 1709_CR14 1709_CR58 1709_CR13 1709_CR57 1709_CR12 M Wang (1709_CR53) 2017; 161 R Fletcher (1709_CR25) 1980; 18 AN Iusem (1709_CR29) 2017; 27 C Dann (1709_CR15) 2014; 15 1709_CR61 1709_CR60 JV Burke (1709_CR10) 1995; 71 1709_CR22 P Ochs (1709_CR39) 2019; 181 1709_CR20 1709_CR24 NH Pham (1709_CR41) 2020; 21 1709_CR28 JV Burke (1709_CR7) 1985; 33 C Cartis (1709_CR11) 2011; 21 1709_CR8 1709_CR9 RT Rockafellar (1709_CR48) 2000; 2 AS Lewis (1709_CR33) 2016; 158 L Xiao (1709_CR56) 2014; 24 D Davis (1709_CR17) 2019; 29 S Ghadimi (1709_CR26) 2020; 30 1709_CR3 O Dekel (1709_CR18) 2012; 13 Y Nesterov (1709_CR35) 2007; 22 J-B Hiriart-Urruty (1709_CR27) 2013 J Koshal (1709_CR31) 2013; 58 1709_CR32 1709_CR6 1709_CR30 1709_CR37 1709_CR36 1709_CR34 J Zhang (1709_CR59) 2021; 31 DP Bertsekas (1709_CR5) 1997; 48 J Nocedal (1709_CR38) 2006 D Drusvyatskiy (1709_CR19) 2017; 26 DP Bertsekas (1709_CR4) 1977; 23 1709_CR44 D Davis (1709_CR16) 2019; 29 1709_CR43 RS Sutton (1709_CR51) 1998 1709_CR42 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 8 start-page: 471 issue: 3 year: 2019 end-page: 529 ident: CR23 article-title: Solving (most) of a set of quadratic equalities: composite optimization for robust phase retrieval publication-title: Inf. Inference A J. IMA doi: 10.1093/imaiai/iay015 – ident: CR49 – volume: 24 start-page: 2057 issue: 4 year: 2014 end-page: 2075 ident: CR56 article-title: A proximal stochastic gradient method with progressive variance reduction publication-title: SIAM J. Optim. doi: 10.1137/140961791 – ident: CR12 – ident: CR54 – ident: CR61 – ident: CR8 – ident: CR58 – volume: 29 start-page: 1908 issue: 3 year: 2019 end-page: 1930 ident: CR17 article-title: Proximally guided stochastic subgradient method for nonsmooth, nonconvex problems publication-title: SIAM J. Optim. doi: 10.1137/17M1151031 – ident: CR42 – volume: 2 start-page: 21 year: 2000 end-page: 42 ident: CR48 article-title: Optimization of conditional value-at-risk. J publication-title: Risk doi: 10.21314/JOR.2000.038 – ident: CR46 – volume: 33 start-page: 260 issue: 3 year: 1985 end-page: 279 ident: CR7 article-title: Descent methods for composite nondifferentiable optimization problems publication-title: Math. Program. doi: 10.1007/BF01584377 – volume: 31 start-page: 1131 issue: 2 year: 2021 end-page: 1157 ident: CR59 article-title: Multi-level composite stochastic optimization via nested variance reduction publication-title: SIAM J. Optim. doi: 10.1137/19M1285457 – ident: CR50 – volume: 71 start-page: 179 issue: 2 year: 1995 end-page: 194 ident: CR10 article-title: A Gauss-Newton method for convex composite optimization publication-title: Math. Program. doi: 10.1007/BF01585997 – volume: 27 start-page: 686 issue: 2 year: 2017 end-page: 724 ident: CR29 article-title: Extragradient method with variance reduction for stochastic variational inequalities publication-title: SIAM J. Optim. doi: 10.1137/15M1031953 – ident: CR9 – volume: 15 start-page: 809 issue: 1 year: 2014 end-page: 883 ident: CR15 article-title: Policy evaluation with temporal differences: a survey and comparison publication-title: J. Mach. Learn. Res. – ident: CR57 – year: 2013 ident: CR27 publication-title: Convex Analysis and Minimization Algorithms I: Fundamentals – ident: CR32 – ident: CR60 – ident: CR36 – volume: 22 start-page: 469 issue: 3 year: 2007 end-page: 483 ident: CR35 article-title: Modified Gauss-Newton scheme with worst case guarantees for global performance publication-title: Optim. Methods Softw. doi: 10.1080/08927020600643812 – volume: 158 start-page: 501 issue: 1–2 year: 2016 end-page: 546 ident: CR33 article-title: A proximal method for composite minimization publication-title: Math. Program. doi: 10.1007/s10107-015-0943-9 – volume: 29 start-page: 207 issue: 1 year: 2019 end-page: 239 ident: CR16 article-title: Stochastic model-based minimization of weakly convex functions publication-title: SIAM J. Optim. doi: 10.1137/18M1178244 – ident: CR43 – ident: CR47 – ident: CR14 – ident: CR37 – ident: CR30 – volume: 21 start-page: 1721 issue: 4 year: 2011 end-page: 1739 ident: CR11 article-title: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming publication-title: SIAM J. Optim. doi: 10.1137/11082381X – volume: 161 start-page: 419 issue: 1–2 year: 2017 end-page: 449 ident: CR53 article-title: Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions publication-title: Math. Program. doi: 10.1007/s10107-016-1017-3 – ident: CR6 – volume: 116 start-page: 22924 issue: 46 year: 2019 end-page: 22930 ident: CR1 article-title: The importance of better models in stochastic optimization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1908018116 – volume: 178 start-page: 503 year: 2019 end-page: 558 ident: CR21 article-title: Efficiency of minimizing compositions of convex functions and smooth maps publication-title: Math. Programm. doi: 10.1007/s10107-018-1311-3 – volume: 58 start-page: 594 issue: 3 year: 2013 end-page: 609 ident: CR31 article-title: Regularized iterative stochastic approximation methods for stochastic variational inequality problems publication-title: IEEE Trans. Automatic Control doi: 10.1109/TAC.2012.2215413 – volume: 48 start-page: 334 issue: 3 year: 1997 ident: CR5 article-title: Nonlinear programming publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2600425 – volume: 23 start-page: 487 issue: 4 year: 1977 end-page: 510 ident: CR4 article-title: Approximation procedures based on the method of multipliers publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00933293 – year: 2006 ident: CR38 publication-title: Numerical Optimization – ident: CR44 – year: 1998 ident: CR51 publication-title: Reinforcement Learning: An Introduction – ident: CR3 – volume: 181 start-page: 244 year: 2019 end-page: 278 ident: CR39 article-title: Non-smooth non-convex Bregman minimization: unification and new algorithms publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-01452-0 – year: 1970 ident: CR40 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – ident: CR52 – ident: CR13 – volume: 29 start-page: 2257 issue: 3 year: 2019 end-page: 2290 ident: CR2 article-title: Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity publication-title: SIAM J. Optim. doi: 10.1137/18M1230323 – volume: 18 start-page: 291 issue: 1 year: 1980 end-page: 307 ident: CR25 article-title: First and second order conditions for a class of nondifferentiable optimization problems publication-title: Math. Program. doi: 10.1007/BF01588325 – ident: CR34 – ident: CR55 – volume: 13 start-page: 165 year: 2012 end-page: 202 ident: CR18 article-title: Optimal distributed online prediction using mini-batches publication-title: J. Mach. Learn. Res. – ident: CR28 – volume: 26 start-page: 1 issue: 1 year: 2017 end-page: 8 ident: CR19 article-title: The proximal point method revisited publication-title: SIAG/OPT Views and News (A Forum for the SIAM Activity Group on Optimization) – ident: CR24 – ident: CR20 – volume: 30 start-page: 960 issue: 1 year: 2020 end-page: 979 ident: CR26 article-title: A single time-scale stochastic approximation method for nested stochastic optimization publication-title: SIAM J. Optim. doi: 10.1137/18M1230542 – volume: 21 start-page: 1 year: 2020 end-page: 48 ident: CR41 article-title: ProxSARAH: An efficient algorithmic framework for stochastic composite nonconvex optimization publication-title: J. Mach. Learn. Res. (JMLR) – volume-title: Convex Analysis and Minimization Algorithms I: Fundamentals year: 2013 ident: 1709_CR27 – ident: 1709_CR22 doi: 10.1137/17M1135086 – volume: 58 start-page: 594 issue: 3 year: 2013 ident: 1709_CR31 publication-title: IEEE Trans. Automatic Control doi: 10.1109/TAC.2012.2215413 – volume: 29 start-page: 2257 issue: 3 year: 2019 ident: 1709_CR2 publication-title: SIAM J. Optim. doi: 10.1137/18M1230323 – volume: 21 start-page: 1 year: 2020 ident: 1709_CR41 publication-title: J. Mach. Learn. Res. (JMLR) – ident: 1709_CR6 – volume: 29 start-page: 1908 issue: 3 year: 2019 ident: 1709_CR17 publication-title: SIAM J. Optim. doi: 10.1137/17M1151031 – volume: 26 start-page: 1 issue: 1 year: 2017 ident: 1709_CR19 publication-title: SIAG/OPT Views and News (A Forum for the SIAM Activity Group on Optimization) – ident: 1709_CR44 – volume: 27 start-page: 686 issue: 2 year: 2017 ident: 1709_CR29 publication-title: SIAM J. Optim. doi: 10.1137/15M1031953 – ident: 1709_CR30 – volume: 2 start-page: 21 year: 2000 ident: 1709_CR48 publication-title: Risk doi: 10.21314/JOR.2000.038 – ident: 1709_CR24 – volume: 116 start-page: 22924 issue: 46 year: 2019 ident: 1709_CR1 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1908018116 – volume: 8 start-page: 471 issue: 3 year: 2019 ident: 1709_CR23 publication-title: Inf. Inference A J. IMA doi: 10.1093/imaiai/iay015 – ident: 1709_CR34 – ident: 1709_CR47 doi: 10.1287/educ.1073.0032 – volume: 181 start-page: 244 year: 2019 ident: 1709_CR39 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-01452-0 – volume: 15 start-page: 809 issue: 1 year: 2014 ident: 1709_CR15 publication-title: J. Mach. Learn. Res. – ident: 1709_CR37 – volume-title: Numerical Optimization year: 2006 ident: 1709_CR38 – ident: 1709_CR50 doi: 10.1287/educ.2013.0110 – ident: 1709_CR12 – volume: 22 start-page: 469 issue: 3 year: 2007 ident: 1709_CR35 publication-title: Optim. Methods Softw. doi: 10.1080/08927020600643812 – ident: 1709_CR43 – ident: 1709_CR60 – volume: 71 start-page: 179 issue: 2 year: 1995 ident: 1709_CR10 publication-title: Math. Program. doi: 10.1007/BF01585997 – ident: 1709_CR3 – volume: 24 start-page: 2057 issue: 4 year: 2014 ident: 1709_CR56 publication-title: SIAM J. Optim. doi: 10.1137/140961791 – volume: 33 start-page: 260 issue: 3 year: 1985 ident: 1709_CR7 publication-title: Math. Program. doi: 10.1007/BF01584377 – ident: 1709_CR54 – ident: 1709_CR58 – volume: 21 start-page: 1721 issue: 4 year: 2011 ident: 1709_CR11 publication-title: SIAM J. Optim. doi: 10.1137/11082381X – volume: 18 start-page: 291 issue: 1 year: 1980 ident: 1709_CR25 publication-title: Math. Program. doi: 10.1007/BF01588325 – volume: 158 start-page: 501 issue: 1–2 year: 2016 ident: 1709_CR33 publication-title: Math. Program. doi: 10.1007/s10107-015-0943-9 – ident: 1709_CR36 – ident: 1709_CR61 – ident: 1709_CR8 – ident: 1709_CR13 – volume: 48 start-page: 334 issue: 3 year: 1997 ident: 1709_CR5 publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2600425 – ident: 1709_CR46 – volume: 29 start-page: 207 issue: 1 year: 2019 ident: 1709_CR16 publication-title: SIAM J. Optim. doi: 10.1137/18M1178244 – volume: 13 start-page: 165 year: 2012 ident: 1709_CR18 publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 960 issue: 1 year: 2020 ident: 1709_CR26 publication-title: SIAM J. Optim. doi: 10.1137/18M1230542 – ident: 1709_CR55 – volume: 31 start-page: 1131 issue: 2 year: 2021 ident: 1709_CR59 publication-title: SIAM J. Optim. doi: 10.1137/19M1285457 – volume-title: Iterative Solution of Nonlinear Equations in Several Variables year: 1970 ident: 1709_CR40 – ident: 1709_CR14 – ident: 1709_CR9 – volume: 161 start-page: 419 issue: 1–2 year: 2017 ident: 1709_CR53 publication-title: Math. Program. doi: 10.1007/s10107-016-1017-3 – ident: 1709_CR32 doi: 10.1007/s10589-020-00179-x – ident: 1709_CR57 doi: 10.24963/ijcai.2017/470 – ident: 1709_CR45 – ident: 1709_CR49 – ident: 1709_CR28 doi: 10.1609/aaai.v32i1.11795 – ident: 1709_CR20 doi: 10.1287/moor.2017.0889 – volume-title: Reinforcement Learning: An Introduction year: 1998 ident: 1709_CR51 – ident: 1709_CR52 – volume: 23 start-page: 487 issue: 4 year: 1977 ident: 1709_CR4 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00933293 – ident: 1709_CR42 doi: 10.1007/978-3-662-39921-7_17 – volume: 178 start-page: 503 year: 2019 ident: 1709_CR21 publication-title: Math. Programm. doi: 10.1007/s10107-018-1311-3 |
| SSID | ssj0001388 |
| Score | 2.444413 |
| Snippet | We consider the problem of minimizing composite functions of the form
f
(
g
(
x
)
)
+
h
(
x
)
, where
f
and
h
are convex functions (which can be nonsmooth)... We consider the problem of minimizing composite functions of the form [Formula omitted], where f and h are convex functions (which can be nonsmooth) and g is a... We consider the problem of minimizing composite functions of the form f(g(x))+h(x), where f and h are convex functions (which can be nonsmooth) and g is a... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 649 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Composite functions Full Length Paper Jacobians Mapping Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Theoretical Variance |
| Title | Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization |
| URI | https://link.springer.com/article/10.1007/s10107-021-01709-z https://www.proquest.com/docview/2727218194 |
| Volume | 195 |
| WOSCitedRecordID | wos000704212700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink [Stanislaus State] customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLYWlgMcgF1ADC_lsBIHiNQ0nWlyRAjEARBidoFblKSZZaRhBrUFIX49dmlnYIGV4FglTSI7sZ3Y_gzwK6jgemnPcyEyyZPECu5EFLjT2tpI-dCpqkRcHKenp-rqSp_VSWFFE-3euCQrSf0i2U3Qs1pM19800vxxCr6julNUsOG8ezGWv0Iq1RRqJeugTpV5f4xX6uhfofzGO1opncOFry13EeZrI5PtPe-KH_AtDH_C3AvoQfw6GeO1Fktw2S1H_toSZjO7x9szbQWeE6pryBhFunCyRm3O7ODvKO-X1zcFQ2uXDUfDKmz9gVFoOsV_BTZCIXRTZ3cuw5_Dg9_7R7wuucC9bKuSo0JPnEO171RKQPuZkiHOgnSRUMg6m6gsaO98LFMXd7xOHbb4NnI8iyQKD7kC0zh1WAVGNy1UkT3hE5UIn9lIauuTXqejhZeq3QLRUN74Go-cymIMzARJmUhokISmIqF5bMHO-J_bZzSO__beJoYaOqo4srd1xgGuj0CvzF4a05p1rFqw0fDc1Ge4MDH5qNEA0kkLdhseT5o_nnftc93XYTamnIoqcG0Dpsv8LmzCjL8v-0W-Ve3tJ8po89c |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLcGm8T2sI2PaceA5QFpDyxS0-SuySNCQ6AdJwQMeIuSNMchwd3Udmjir59d2oMNmASPVdIkshPbie2fAdajjn6YDQMXIpdcKSe4F0nk3hjnEh1ir64ScdzPBgN9emr2m6Swso12b12StaS-k-wm6Fktpetvlhh-PQMvFWosQsw_ODyeyl8htW4LtZJ10KTKPDzGX-roX6F8zztaK53td89b7nt42xiZbPNmV8zDizhegDd3oAfxa2-K11ouwslhNQkjR5jN7Apvz7QVeEGorjFnFOnCyRp1BXMXZ5PivBpdlgytXTaejOuw9d-MQtMp_iuyCQqhyya7cwl-bH872trhTckFHmRXVxwVuvIe1b7XGQHt51rGNI_SJ0Ij65zSeTTBh1RmPu0Fk3lsCV3keJ5IFB7yA8zi1PEjMLppoYociqC0EiF3iTQuqGGvZ0SQutsB0VLehgaPnMpiXNhbJGUioUUS2pqE9roDG9N_ft6gcfy39xdiqKWjiiMH12Qc4PoI9MpuZimt2aS6Aystz21zhkubko8aDSCjOvC15fFt8-PzLj-t-2eY2zna69v-7uD7J3idUn5FHcS2ArNV8SuuwqtwVZ2XxVq9z_8AP732uw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xghB7GAw2URjMD5P2AFbj2G3sx2pQgTaqSYWyN8t2nHXS-qE0q1D_enxp0pXxIaE9RnZsy3e-D_vudwBHXnqbJZmjjKWcCmEYtSzy1CplTCSd75RVIoZnSb8vLy7U-UYWfxntXj9JrnIaEKVpUrRmadbaSHxjeMUWoyucRIout-ChwEB69NcHw7UsZlzKumgrWgpV2syfx_hFNd0V0L-9lJYKqPf0_kt_BjuV8Um6K27ZhQd-8hy2NyAJw9eXNY7r_AV8HxRTNzKI5UwWwatGFqE5or36lGAEDEUr1eTEXF9O86tiNJ6TYAWTyXRShrP_IBiyjnFhnkyDcBpXWZ978K338evJJ1qVYqCOt2VBg6IX1gZzwMoEAfhTyX2cem4jJgNJjZCpV866mCc27jiV2NDi2oET0ogHocL3oRGm9i-BoAcWVGfGnJCCudREXBknsk5HMcdluwmspoJ2FU45lsu41rcIy7iFOmyhLrdQL5vwbv3PbIXS8c_ex0hcjUc4jOxMlYkQ1odgWLqbxLhmFcsmHNT019XZnusY366DYaREE97X9L5t_vu8r_6v-yE8Pv_Q02ef-6ev4UmMaRdlbNsBNIr8xr-BR25RXM3ztyXL_wTxtv-f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+variance-reduced+prox-linear+algorithms+for+nonconvex+composite+optimization&rft.jtitle=Mathematical+programming&rft.au=Zhang%2C+Junyu&rft.au=Xiao%2C+Lin&rft.date=2022-09-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=195&rft.issue=1-2&rft.spage=649&rft_id=info:doi/10.1007%2Fs10107-021-01709-z&rft.externalDocID=A723703928 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |