Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds

We consider the problem of minimizing the sum of a convex–concave function and a convex function over a convex set (SFC). It can be reformulated as a univariate minimization problem, where the objective function is evaluated by solving convex optimization. The optimal Lagrangian multipliers of the c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 77; číslo 2; s. 301 - 318
Hlavní autori: Xia, Yong, Wang, Longfei, Wang, Xiaohui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2020
Springer
Springer Nature B.V
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider the problem of minimizing the sum of a convex–concave function and a convex function over a convex set (SFC). It can be reformulated as a univariate minimization problem, where the objective function is evaluated by solving convex optimization. The optimal Lagrangian multipliers of the convex subproblems are used to construct sawtooth curve lower bounds, which play a key role in developing the branch-and-bound algorithm for globally solving (SFC). In this paper, we improve the existing sawtooth-curve bounds to new wave-curve bounds, which are used to develop a more efficient branch-and-bound algorithm. Moreover, we can show that the new algorithm finds an ϵ -approximate optimal solution in at most O 1 ϵ iterations. Numerical results demonstrate the efficiency of our algorithm.
AbstractList We consider the problem of minimizing the sum of a convex-concave function and a convex function over a convex set (SFC). It can be reformulated as a univariate minimization problem, where the objective function is evaluated by solving convex optimization. The optimal Lagrangian multipliers of the convex subproblems are used to construct sawtooth curve lower bounds, which play a key role in developing the branch-and-bound algorithm for globally solving (SFC). In this paper, we improve the existing sawtooth-curve bounds to new wave-curve bounds, which are used to develop a more efficient branch-and-bound algorithm. Moreover, we can show that the new algorithm finds an [Formula omitted]-approximate optimal solution in at most [Formula omitted] iterations. Numerical results demonstrate the efficiency of our algorithm.
We consider the problem of minimizing the sum of a convex–concave function and a convex function over a convex set (SFC). It can be reformulated as a univariate minimization problem, where the objective function is evaluated by solving convex optimization. The optimal Lagrangian multipliers of the convex subproblems are used to construct sawtooth curve lower bounds, which play a key role in developing the branch-and-bound algorithm for globally solving (SFC). In this paper, we improve the existing sawtooth-curve bounds to new wave-curve bounds, which are used to develop a more efficient branch-and-bound algorithm. Moreover, we can show that the new algorithm finds an ϵ-approximate optimal solution in at most O1ϵ iterations. Numerical results demonstrate the efficiency of our algorithm.
We consider the problem of minimizing the sum of a convex–concave function and a convex function over a convex set (SFC). It can be reformulated as a univariate minimization problem, where the objective function is evaluated by solving convex optimization. The optimal Lagrangian multipliers of the convex subproblems are used to construct sawtooth curve lower bounds, which play a key role in developing the branch-and-bound algorithm for globally solving (SFC). In this paper, we improve the existing sawtooth-curve bounds to new wave-curve bounds, which are used to develop a more efficient branch-and-bound algorithm. Moreover, we can show that the new algorithm finds an ϵ -approximate optimal solution in at most O 1 ϵ iterations. Numerical results demonstrate the efficiency of our algorithm.
Audience Academic
Author Wang, Longfei
Xia, Yong
Wang, Xiaohui
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-3522-7446
  surname: Xia
  fullname: Xia, Yong
  organization: LMIB of the Ministry of Education, School of Mathematical Sciences, Beihang University
– sequence: 2
  givenname: Longfei
  surname: Wang
  fullname: Wang, Longfei
  organization: School of Mathematics and Statistics, Henan University
– sequence: 3
  givenname: Xiaohui
  surname: Wang
  fullname: Wang, Xiaohui
  email: xhwang@buaa.edu.cn
  organization: School of Astronautics, Beihang University
BookMark eNp9kU1uFDEQhS0UJCYDF2BlibVDlXs8di-jCAJSJDZhbbn9Mzh028HuDoQVd-CGnAQPjYjEIqpFlcrvc-npnZKTlJMn5CXCGQLI1xVB9YoB9gxASWD8CdmgkB3jPe5PyAZ6LpgAwGfktNYbAOiV4Bvy-XLMgxnHezrFFKf4PaYDnT95WpeJ5kANtTnd-W-_fvxsgzV3noZi7Bxzoia5f-80LGndDqZ6R9vwtYmZXUpDhrwkV5-Tp8GM1b_427fk49s31xfv2NWHy_cX51fMdkLNDIMXyg7O7N0grJW9QYMBnFJGBtjtnEMnFQ_KIjqBPNgeOlTWGuGhc67bklfrv7clf1l8nfVNXkpqJzXv-r2QHCU01dmqOpjR65hCnpuxVs5PsZnyIbb9uUS140rgEVArYEuutfigbZzN0XMD46gR9DELvWahWxb6Txbt6Jbw_9DbEidT7h-HuhWqTZwOvjzYeIT6DX9LoIc
CitedBy_id crossref_primary_10_1007_s10589_025_00679_8
crossref_primary_10_1016_j_chaos_2024_114757
Cites_doi 10.1007/978-3-662-06409-2
10.1002/zamm.19840640809
10.1016/j.orl.2017.11.010
10.1007/BF00121658
10.1287/mnsc.22.8.858
10.1007/BF00138693
10.1007/978-1-4615-2025-2_10
10.1137/18M1164639
10.1023/A:1008316327038
10.1007/s10898-008-9378-7
10.1137/050624418
10.1007/978-1-4757-9859-3
10.1002/nav.3800090303
10.1007/s10589-012-9479-6
10.1080/02331934.2015.1113532
10.1080/1055678031000105242
10.1007/s11590-010-0210-1
10.1016/j.cam.2013.08.005
10.1287/mnsc.13.7.492
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-019-00870-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Science Database
Engineering Database (subscription)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 318
ExternalDocumentID A718428510
10_1007_s10898_019_00870_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11822103; 11771056
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 41804165
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-1fe58cbda6db5cc79a1a1f0d88a7f044dd1d782f8c11d512fc90318cca5e03dd3
IEDL.DBID K7-
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531426200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Wed Nov 05 01:15:57 EST 2025
Sat Nov 29 10:09:50 EST 2025
Sat Nov 29 01:59:35 EST 2025
Tue Nov 18 22:40:11 EST 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 90C20
Lower bound
Branch and bound
Convex program
90C22
90C26
Fractional programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1fe58cbda6db5cc79a1a1f0d88a7f044dd1d782f8c11d512fc90318cca5e03dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3522-7446
PQID 2396572170
PQPubID 29930
PageCount 18
ParticipantIDs proquest_journals_2396572170
gale_infotracacademiconefile_A718428510
crossref_citationtrail_10_1007_s10898_019_00870_2
crossref_primary_10_1007_s10898_019_00870_2
springer_journals_10_1007_s10898_019_00870_2
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References AvrielMDiewertWESchaibleSZangIGeneralized Concavity, Mathematical Concepts and Methods in Science and Engineering1988New YorkPlenum Press0679.90029
XuCXuXMWangHFThe fractional minimal cost flow problem on networkOptim. Lett.201152307317278247010.1007/s11590-010-0210-1
CharnesACooperWWProgramming with linear fractional functionalsNaval Res. Logist. Q.1962918118615237010.1002/nav.3800090303
FakhriAGhateeMMinimizing the sum of a linear and a linear fractional function applying conic quadratic representation: continuous and discrete problemsOptimization201665510231038347872110.1080/02331934.2015.1113532
Grant, M., Boyd, S.: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1. March; 2014. Available from: http://cvxr.com/cvx (2014)
Hiriart-UrrutyJBLemarechalCConvex Analysis and Minimization Algorithms, Grundlehren der Mathematischen Wissenschaften1993BerlinSpringer10.1007/978-3-662-06409-2
LbarakiTSchaibleSFractional programmingEur. J. Oper. Res.2004124325338703439
WangLXiaYA linear-time algorithm for globally maximizing the sum of a generalized rayleigh quotient and a quadratic form on the unit sphereSIAM J. Optim.201929318441869398026610.1137/18M1164639
SchaibleSFractional programming I: dualityManag. Sci.19762285886742167910.1287/mnsc.22.8.858
DinkelbachWOn nonlinear fractional programmingManag. Sci.196713749249824248810.1287/mnsc.13.7.492
ZhangLHOn optimizing the sum of the Rayleigh quotient and the generalized Rayleigh quotient on the unit sphereComput. Optim. Appl.201354111139300342010.1007/s10589-012-9479-6
FreundRWJarreFSolving the sum-of-ratios problem by an interior-point methodJ. Glob. Optim.20011983102181264910.1023/A:1008316327038
XiaYWangLWangSMinimizing the sum of linear fractional functions over the cone of positive semidefinite matrices: approximation and applicationsOper. Res. Lett.20184617680375917910.1016/j.orl.2017.11.010
BorweinJMLewisASConvex Analysis and Nonlinear Optimization: Theory and Examples2000New YorkSpringer10.1007/978-1-4757-9859-3
SchaibleSShiJMFractional programming: the sum-of-ratios caseOptim. Methods Softw.2003182219229199659010.1080/1055678031000105242
SchaibleSHorstRPardalosPMFractional programmingHandbook of Global Optimization1995DordrechtKluwer Academic Publishers49560810.1007/978-1-4615-2025-2_10
SahinidisNVBARON: a general purpose global optimiztion sofgware packageJ. Glob. Optim.19968220120510.1007/BF00138693
LiuSYShenPPWangCFGlobal optimization for sum of geometric fractional functionsAppl. Math. Comput.201021682263227026470971195.65076
MatsuiTNP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.19969113119141160310.1007/BF00121658
ZhangLHOn a self-consistent-field-like iteration for maximizing the sum of the Rayleigh quotientsJ. Comput. Appl. Math.20142571428310740310.1016/j.cam.2013.08.005
FangSCGaoDYSheuRLXingWXGlobal optimization for a class of fractional programming problemsJ. Glob. Optim.2009453337353255021410.1007/s10898-008-9378-7
BeckABen-TalAOn the solution of the Tikhonov regularization of the total least squares problemSIAM J. Optim.200617198118221914610.1137/050624418
LiWMLiangYCShenPPBranch-reduction-bound algorithm for linear sum-of-ratios fractional programsPac. J. Optim.2015111799933450341352.90077
CambiniAMarteinLSchaibleSOn maximizing a sum of ratiosJ. Inf. Optim. Sci.198910657910005790676.90081
SchaibleSSimultaneous optimization of absolute and relative termsZ. Angew. Math. Mech.198464836336476568610.1002/zamm.19840640809
S Schaible (870_CR19) 1995
W Dinkelbach (870_CR6) 1967; 13
T Lbaraki (870_CR12) 2004; 12
T Matsui (870_CR15) 1996; 9
870_CR10
S Schaible (870_CR17) 1976; 22
A Beck (870_CR2) 2006; 17
RW Freund (870_CR9) 2001; 19
M Avriel (870_CR1) 1988
SC Fang (870_CR8) 2009; 45
LH Zhang (870_CR25) 2014; 257
Y Xia (870_CR22) 2018; 46
A Fakhri (870_CR7) 2016; 65
L Wang (870_CR21) 2019; 29
JB Hiriart-Urruty (870_CR11) 1993
SY Liu (870_CR14) 2010; 216
A Cambini (870_CR4) 1989; 10
S Schaible (870_CR18) 1984; 64
A Charnes (870_CR5) 1962; 9
WM Li (870_CR13) 2015; 11
C Xu (870_CR23) 2011; 5
S Schaible (870_CR20) 2003; 18
LH Zhang (870_CR24) 2013; 54
JM Borwein (870_CR3) 2000
NV Sahinidis (870_CR16) 1996; 8
References_xml – reference: FangSCGaoDYSheuRLXingWXGlobal optimization for a class of fractional programming problemsJ. Glob. Optim.2009453337353255021410.1007/s10898-008-9378-7
– reference: XiaYWangLWangSMinimizing the sum of linear fractional functions over the cone of positive semidefinite matrices: approximation and applicationsOper. Res. Lett.20184617680375917910.1016/j.orl.2017.11.010
– reference: Grant, M., Boyd, S.: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1. March; 2014. Available from: http://cvxr.com/cvx (2014)
– reference: FreundRWJarreFSolving the sum-of-ratios problem by an interior-point methodJ. Glob. Optim.20011983102181264910.1023/A:1008316327038
– reference: LbarakiTSchaibleSFractional programmingEur. J. Oper. Res.2004124325338703439
– reference: BorweinJMLewisASConvex Analysis and Nonlinear Optimization: Theory and Examples2000New YorkSpringer10.1007/978-1-4757-9859-3
– reference: SahinidisNVBARON: a general purpose global optimiztion sofgware packageJ. Glob. Optim.19968220120510.1007/BF00138693
– reference: LiWMLiangYCShenPPBranch-reduction-bound algorithm for linear sum-of-ratios fractional programsPac. J. Optim.2015111799933450341352.90077
– reference: CambiniAMarteinLSchaibleSOn maximizing a sum of ratiosJ. Inf. Optim. Sci.198910657910005790676.90081
– reference: BeckABen-TalAOn the solution of the Tikhonov regularization of the total least squares problemSIAM J. Optim.200617198118221914610.1137/050624418
– reference: SchaibleSHorstRPardalosPMFractional programmingHandbook of Global Optimization1995DordrechtKluwer Academic Publishers49560810.1007/978-1-4615-2025-2_10
– reference: CharnesACooperWWProgramming with linear fractional functionalsNaval Res. Logist. Q.1962918118615237010.1002/nav.3800090303
– reference: AvrielMDiewertWESchaibleSZangIGeneralized Concavity, Mathematical Concepts and Methods in Science and Engineering1988New YorkPlenum Press0679.90029
– reference: WangLXiaYA linear-time algorithm for globally maximizing the sum of a generalized rayleigh quotient and a quadratic form on the unit sphereSIAM J. Optim.201929318441869398026610.1137/18M1164639
– reference: Hiriart-UrrutyJBLemarechalCConvex Analysis and Minimization Algorithms, Grundlehren der Mathematischen Wissenschaften1993BerlinSpringer10.1007/978-3-662-06409-2
– reference: DinkelbachWOn nonlinear fractional programmingManag. Sci.196713749249824248810.1287/mnsc.13.7.492
– reference: FakhriAGhateeMMinimizing the sum of a linear and a linear fractional function applying conic quadratic representation: continuous and discrete problemsOptimization201665510231038347872110.1080/02331934.2015.1113532
– reference: MatsuiTNP-hardness of linear multiplicative programming and related problemsJ. Glob. Optim.19969113119141160310.1007/BF00121658
– reference: SchaibleSShiJMFractional programming: the sum-of-ratios caseOptim. Methods Softw.2003182219229199659010.1080/1055678031000105242
– reference: SchaibleSSimultaneous optimization of absolute and relative termsZ. Angew. Math. Mech.198464836336476568610.1002/zamm.19840640809
– reference: XuCXuXMWangHFThe fractional minimal cost flow problem on networkOptim. Lett.201152307317278247010.1007/s11590-010-0210-1
– reference: ZhangLHOn optimizing the sum of the Rayleigh quotient and the generalized Rayleigh quotient on the unit sphereComput. Optim. Appl.201354111139300342010.1007/s10589-012-9479-6
– reference: ZhangLHOn a self-consistent-field-like iteration for maximizing the sum of the Rayleigh quotientsJ. Comput. Appl. Math.20142571428310740310.1016/j.cam.2013.08.005
– reference: SchaibleSFractional programming I: dualityManag. Sci.19762285886742167910.1287/mnsc.22.8.858
– reference: LiuSYShenPPWangCFGlobal optimization for sum of geometric fractional functionsAppl. Math. Comput.201021682263227026470971195.65076
– volume-title: Convex Analysis and Minimization Algorithms, Grundlehren der Mathematischen Wissenschaften
  year: 1993
  ident: 870_CR11
  doi: 10.1007/978-3-662-06409-2
– ident: 870_CR10
– volume: 216
  start-page: 2263
  issue: 8
  year: 2010
  ident: 870_CR14
  publication-title: Appl. Math. Comput.
– volume: 64
  start-page: 363
  issue: 8
  year: 1984
  ident: 870_CR18
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19840640809
– volume: 46
  start-page: 76
  issue: 1
  year: 2018
  ident: 870_CR22
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2017.11.010
– volume-title: Generalized Concavity, Mathematical Concepts and Methods in Science and Engineering
  year: 1988
  ident: 870_CR1
– volume: 9
  start-page: 113
  year: 1996
  ident: 870_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF00121658
– volume: 12
  start-page: 325
  issue: 4
  year: 2004
  ident: 870_CR12
  publication-title: Eur. J. Oper. Res.
– volume: 22
  start-page: 858
  year: 1976
  ident: 870_CR17
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.22.8.858
– volume: 8
  start-page: 201
  issue: 2
  year: 1996
  ident: 870_CR16
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF00138693
– start-page: 495
  volume-title: Handbook of Global Optimization
  year: 1995
  ident: 870_CR19
  doi: 10.1007/978-1-4615-2025-2_10
– volume: 29
  start-page: 1844
  issue: 3
  year: 2019
  ident: 870_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1164639
– volume: 19
  start-page: 83
  year: 2001
  ident: 870_CR9
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008316327038
– volume: 45
  start-page: 337
  issue: 3
  year: 2009
  ident: 870_CR8
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9378-7
– volume: 17
  start-page: 98
  issue: 1
  year: 2006
  ident: 870_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/050624418
– volume-title: Convex Analysis and Nonlinear Optimization: Theory and Examples
  year: 2000
  ident: 870_CR3
  doi: 10.1007/978-1-4757-9859-3
– volume: 9
  start-page: 181
  year: 1962
  ident: 870_CR5
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800090303
– volume: 54
  start-page: 111
  year: 2013
  ident: 870_CR24
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9479-6
– volume: 10
  start-page: 65
  year: 1989
  ident: 870_CR4
  publication-title: J. Inf. Optim. Sci.
– volume: 65
  start-page: 1023
  issue: 5
  year: 2016
  ident: 870_CR7
  publication-title: Optimization
  doi: 10.1080/02331934.2015.1113532
– volume: 18
  start-page: 219
  issue: 2
  year: 2003
  ident: 870_CR20
  publication-title: Optim. Methods Softw.
  doi: 10.1080/1055678031000105242
– volume: 5
  start-page: 307
  issue: 2
  year: 2011
  ident: 870_CR23
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-010-0210-1
– volume: 11
  start-page: 79
  issue: 1
  year: 2015
  ident: 870_CR13
  publication-title: Pac. J. Optim.
– volume: 257
  start-page: 14
  year: 2014
  ident: 870_CR25
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.08.005
– volume: 13
  start-page: 492
  issue: 7
  year: 1967
  ident: 870_CR6
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.13.7.492
SSID ssj0009852
Score 2.2771077
Snippet We consider the problem of minimizing the sum of a convex–concave function and a convex function over a convex set (SFC). It can be reformulated as a...
We consider the problem of minimizing the sum of a convex-concave function and a convex function over a convex set (SFC). It can be reformulated as a...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Algorithms
Computational geometry
Computer Science
Convexity
Lower bounds
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4h4NAeeGxbdQtUPlSiVWspTuLEPiIE4lBQBbTiZjl-SAi6oM1CW078B_4hv4Sx19mlhSK1tyQeO5Y9Lz_mG4B3UtZhs5FTX5qMlk3TUFH6ihZVzYw1TjsdZ_pzvbcnjo7klxQU1na33bsjyaip7wW7iRAOFoJuMuQyiop3Ds2dCOK4f_BtCrUrYp6dTOacctTCKVTm8TZ-M0d_KuUHp6PR6Gwv_l93l2AhOZlkY8wVyzDjBj1Y7BI4kCTPPXh-D40Q33YnEK5tD5YTVUveJ2jqDy_gZJwi4PQXCZAk34-vsCLBSgT5mZx5okm8xf7z9voGH4y-dMQPx6ETRA_spJwEcxq_BitqCT78QGJqLoZYpQmpntqX8HV763Bzh6Z0DdQUXIwo844L01hd2YYbU0vNNPOZFULXPitLa5lFf8QLw5hFP8MbGTQKshB3WWFt8QpmB2cD9xqIrtHrELJiVvuSOyPQ0DZZk7tSF9oI2QfWzZoyCcs8pNQ4VVMU5jD8CodfxeFXeR8-Tuqcj5E8nqReD8yggphjy0anaAXsXwDMUhto03HlhhqtD6sdv6gk_63KC1lxXFzXWPyp449p8d__--bfyFfgWR42AOK20CrMjoYXbg3mzeXouB2-jXJxB7MCB7o
  priority: 102
  providerName: Springer Nature
Title Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds
URI https://link.springer.com/article/10.1007/s10898-019-00870-2
https://www.proquest.com/docview/2396572170
Volume 77
WOSCitedRecordID wos000531426200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcgBYQC2XlAxIgsIiTOHZOqFStkIBl1fIovUSOH1JF2S2bbXmc-A_8Q34JM15vl4fohcvIih-x9I1nxo-ZAbhT14oOGyUPpc142bYt12WoeFEpYZ31xpuI9HM1GOi9vXqYDty69KxyLhOjoHZjS2fkj_KiriRuV1T2-Ogjp6xRdLuaUmgswYrIc0F8_kzxRdBdHTPuZHUuuUR5nJxmkuucJucycuHJkGd5_pti-lM8_3VPGtXP9uX_nfgVuJQMT7Yx45RVOOdHa3Dxl3CEa7CaFnrH7qVo1PevwvtZVoDDL4yikHw4-IpNGVqNDIdm48AMiw_XP__49h0L1px4FiYzbwlmRu60npEGjV9JcTqGhU_YmNvjCXZpKbtTdw1eb2-92nzKU4YGbgupp1wEL7VtnalcK61VtRFGhMxpbVTIytI54dAECdoK4dC0CLYmIYJcI31WOFdch-XReORvADMKDQ1dV8KZUEpvNerWNmtzX5rCWF33QMzhaWwKX05ZNA6bReBlgrRBSJsIaZP34MFpn6NZ8I4zW98l1Bta2TiyNclBAedHMbKaDVTjuFlDIdaD9TnUTVryXbPAuQcP58yyqP73f2-ePdotuJDTHj-e_KzD8nRy7G_DeXsyPegmfVhSb9_1YeXJ1mC404_sj_RFtkk0fxnpkKjaRTqU-0h3dt_8BPMuDvM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxEC2FgAQcgAQQAwF8AAECC7tX-4BQFIgSZRhxCFJuxu1FiggzYXqSEE78A__BR_ElVPWSYRG55cDN8tZt-7mqXHZVATzQuiRlY85j5gTPqqriKosFT4tSOu-CDbZZ6WE5GqmdHf12Ab73tjD0rLKniQ2h9hNHOvLnSaqLHI8rpXi5_4lT1Ci6Xe1DaLSw2ArHR3hkq19svsL1fZgk66-31zZ4F1WAuzRXMy5jyJWrvC18lTtXaiutjMIrZcsossx76ZFtRuWk9MgOo9MEfBxpHkTqfYr9noPzWYa59FRQrM2d_Komwo_QSc5zpP-dkU5nqqfImI1MhgTuEZ78xgj_ZAd_3cs27G796v82UdfgSidYs9V2JyzBQhgvw-Vf3C0uw1JHyGr2uPO2_eQ6fGijHuwdM_Ky8nH3C1ZlKBUzHAqbRGZZ8zD_84-v3zDh7GFgcdpagzA79ifljCSEJpcEA88wcYSVuTuYYpOKolfVN-DdmUzBTVgcT8bhFjBboiCldCG9jVkenELZoRJVEjKbWqf0AGQPB-M69-wUJWTPzB1LE4QMQsg0EDLJAJ6etNlvnZOcWvsRocwQ5cKene0MMPD_yAeYWUUxBQ-jSKQHsNJDy3QkrTZzXA3gWQ_OefG_v3v79N7uw8WN7TdDM9wcbd2BSwnpMxot1woszqYH4S5ccIez3Xp6r9lsDN6fNWh_ApciZnc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcCi1FLC3gAwgQtZqXE-eAUEVZUbVa7QGkiotx_JAqym7ZbFvKif_Av-nP6S9hJnG6PERvPXCL4kdi-_O87JkBeFyWBRkbBfeZiXhWVRWXmc95mhexscZpp5uV3ikGA7m7Ww7n4LTzhaFrlR1NbAi1HRuyka8naZkLVFeKaN2HaxHDzf6rgy-cMkjRSWuXTqOFyLY7OUb1rX65tYlr_SRJ-m_evX7LQ4YBblIhpzz2TkhTWZ3bShhTlDrWsY-slLrwUZZZG1tkoV6aOLbIGr0paRPgqIWLUmtT7PcKXC1QxyTFbyg-zAL-yibbT1QmggvkBcFhJ7jtSXJsI_ehCPcLT35jin-yhr_OaBvW17_1P0_abVgIAjfbaHfIIsy50RLc_CUM4xIsBgJXs2chCvfzO_CpzYawf8Io-srnvW9YlaG0zHAobOyZZs2F_a9n33_gg9FHjvlJ6yXC9MielzOSHJq3JDBYhg_HWJmbwwk2qSirVb0M7y9lCu7C_Gg8cveA6QIFLFnmsdU-E85IlCmqqEpcplNtZNmDuIOGMiFsO2UP2VezgNMEJ4VwUg2cVNKDF-dtDtqgJRfWfkqIU0TRsGejg2MG_h_FBlMbKL6gkorEuwerHcxUIHW1mmGsB2sdUGfF__7u_Yt7ewTXEatqZ2uwvQI3EjJzNMavVZifTg7dA7hmjqZ79eRhs-8YfLxszP4EYxxviA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Globally+minimizing+the+sum+of+a+convex%E2%80%93concave+fraction+and+a+convex+function+based+on+wave-curve+bounds&rft.jtitle=Journal+of+global+optimization&rft.au=Xia%2C+Yong&rft.au=Wang+Longfei&rft.au=Wang%2C+Xiaohui&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=77&rft.issue=2&rft.spage=301&rft.epage=318&rft_id=info:doi/10.1007%2Fs10898-019-00870-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon