An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms

Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 90; H. 1; S. 73 - 92
Hauptverfasser: He, Jiefei, Zhang, Huiling, Xu, Zi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2024
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an ε -stationary point is upper bounded by O ( ε - 3 ) . Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-024-01383-3