An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms

Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 90; H. 1; S. 73 - 92
Hauptverfasser: He, Jiefei, Zhang, Huiling, Xu, Zi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2024
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an ε -stationary point is upper bounded by O ( ε - 3 ) . Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.
AbstractList Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an ε-stationary point is upper bounded by O(ε-3). Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.
Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an [Formula omitted]-stationary point is upper bounded by [Formula omitted]. Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.
Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an ε -stationary point is upper bounded by O ( ε - 3 ) . Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.
Audience Academic
Author He, Jiefei
Zhang, Huiling
Xu, Zi
Author_xml – sequence: 1
  givenname: Jiefei
  surname: He
  fullname: He, Jiefei
  organization: Department of Mathematics, College of Sciences, Shanghai University
– sequence: 2
  givenname: Huiling
  surname: Zhang
  fullname: Zhang, Huiling
  organization: Department of Mathematics, College of Sciences, Shanghai University
– sequence: 3
  givenname: Zi
  orcidid: 0000-0003-0968-8027
  surname: Xu
  fullname: Xu, Zi
  email: xuzi@shu.edu.cn
  organization: Department of Mathematics, College of Sciences, Shanghai University, Newtouch Center for Mathematics of Shanghai University, Shanghai University
BookMark eNp9kUFvGyEUhFGUSrGd_oGeVsqZ9LEsazhaUZtWitRLc0bAsi7WLjiwTt1_n2dvpEg9WBxAT_MxDLMk1zFFT8gXBvcMYP21MJBKUqgbCoxLTvkVWTCx5rRWrL0mC1C1oAKA3ZBlKTsAUFLUC_KyiZXZ73M6htFMIcXq_TxU22y64ONUmWGbcpj-jFWfcoXOLsVXf6RDiN7kagwR9ccTaAc_luovaj9kp1MZU8LZ5PNYbsmn3gzFf37fV-T5-7ffDz_o06_Hnw-bJ-q4kBNlvVRGSGed45YJyWynWuPA865ppbK2lb10UvRN6zHKGjreNsxa5VFmG8NX5G6-F9_1cvBl0rt0yBEtNQfFaiYZ56i6n1VbM3gdYp-mbByuzo8BA_g-4HwjoRHARbNGoJ4Bl1Mp2fd6nzF-_qcZ6FMXeu5CYxf63IU-ucj_IBem83ejWxguo3xGC_rErc8fMS5Qb4pcoxk
CitedBy_id crossref_primary_10_1007_s40305_024_00550_3
Cites_doi 10.1109/TSP.2020.2986363
10.1109/ICASSP.2019.8683795
10.1109/TSP.2008.919636
10.1007/s10107-015-0957-3
10.1080/10556788.2021.1895152
10.1007/s10898-022-01169-5
10.1109/TWC.2018.2868369
10.1007/s10107-019-01365-4
10.1007/s10107-022-01919-z
10.1137/20M1337600
10.1137/20M1313222
10.1007/s10589-020-00237-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-024-01383-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Research Library
Science Database
Engineering Database (ProQuest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 92
ExternalDocumentID A804503547
10_1007_s10898_024_01383_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12071279
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-1f89a58cbcc3b1581bd96ac0e3d4689bb68f8c85f46e98570d3641bb9e96ab4a3
IEDL.DBID K7-
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190203600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Wed Nov 05 08:39:57 EST 2025
Sat Nov 29 10:28:26 EST 2025
Sat Nov 29 01:59:37 EST 2025
Tue Nov 18 22:44:09 EST 2025
Fri Feb 21 02:38:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonsmooth problem
Iteration complexity
90C30
90C47
90C26
Nonconvex-linear minimax problem
Approximation proximal gradient algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1f89a58cbcc3b1581bd96ac0e3d4689bb68f8c85f46e98570d3641bb9e96ab4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0968-8027
PQID 3091218133
PQPubID 29930
PageCount 20
ParticipantIDs proquest_journals_3091218133
gale_infotracacademiconefile_A804503547
crossref_primary_10_1007_s10898_024_01383_3
crossref_citationtrail_10_1007_s10898_024_01383_3
springer_journals_10_1007_s10898_024_01383_3
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References ShenJWangZXuZZeroth-order single-loop algorithms for nonconvex-linear minimax problemsJ. Glob. Optim.2023872551580466181310.1007/s10898-022-01169-5
YildizMEScaglioneACoding with side information for rate-constrained consensusIEEE Trans. Signal Process.200856837533764251705910.1109/TSP.2008.919636
Xu, Z., Zhang, H., Xu, Y., Lan, G.: A unified single-loop alternating gradient projection algorithm for nonconvex-concave and convex-nonconcave minimax problems. Math. Progr., Ser. A (2023). https://doi.org/10.1007/s10107-022-01919-z
ThekumparampilKKJainPNetrapalliPOhSEfficient algorithms for smooth minimax optimizationAdv. Neural Inf. Process. Syst.2019321265912670
Nouiehed, M., Sanjabi, M., Huang, T., Lee, J.D., Razaviyayn, M.: Solving a class of non-convex min-max games using iterative first order methods. In: Advances in Neural Information Processing Systems (2019)
YangJZhangSKiyavashNHeNA catalyst framework for minimax optimizationAdv. Neural. Inf. Process. Syst.20203356675678
JinCNetrapalliPJordanMWhat is local optimality in nonconvex-nonconcave minimax optimization?Int. Confer. Mach. Learn.202011948804889
LiAMasourosCLiuFSwindlehurstALMassive MIMO 1-bit DAC transmission: a low-complexity symbol scaling approachIEEE Trans. Wirel. Commun.201817117559757510.1109/TWC.2018.2868369
ZhangJXiaoPSunRLuoZA single-loop smoothed gradient descent-ascent algorithm for nonconvex-concave min-max problemsAdv. Neural. Inf. Process. Syst.20203373777389
Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: International Conference on Machine Learning, pp. 4615–4625 (2019)
HajinezhadDHongMPerturbed proximal primal-dual algorithm for nonconvex nonsmooth optimizationMath. Program.20191761–2207245396080910.1007/s10107-019-01365-4
LinTJinCJordanMOn gradient descent ascent for nonconvex-concave minimax problemsInt. Confer. Mach. Learn.202011960836093
OstrovskiiDMLowyARazaviyaynMEfficient search of first-order Nash equilibria in nonconvex-concave smooth min-max problemsSIAM J. Optim.202131425082538432851610.1137/20M1337600
XuZWangZQWangJLDaiYHZeroth-order alternating gradient descent ascent algorithms for a class of nonconvex-nonconcave minimax problemsJ. Mach. Learn. Res2023243131254664750
HoJErmonSGenerative adversarial imitation learningAdv. Neural Inf. Process. Syst.20162945654573
LinTJinCJordanMINear-optimal algorithms for minimax optimizationProc. Mach. Learn. Res.2020125142
LetcherABalduzziDRacaniereSMartensJFoersterJTuylsKGraepelTDifferentiable game mechanicsJ. Mach. Learn. Res.2019201303230713960938
QianQZhuSTangJJinRSunBLiHRobust optimization over multiple domainsProc. AAAI Confer. Artif. Intell.2019330147394746
DaskalakisCPanageasIThe limit points of (optimistic) gradient descent in min-max optimizationAdv. Neural Inf. Process. Syst.20183192569266
Lu, S., Tsaknakis, I., Hong, M.: Block alternating optimization for non-convex min-max problems: algorithms and applications in signal processing and communications. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4754–4758 (2019)
ChambolleAPockTOn the ergodic convergence rates of a first-order primal-dual algorithmMath. Program.20161591–2253287353592510.1007/s10107-015-0957-3
Xu, Z., Shen, J., Wang, Z., Dai, Y.H.: Derivative-free Alternating Projection Algorithms for General Nonconvex-Concave Minimax Problems. SIAM Journal on Optimization, accepted, arXiv preprint arXiv:2108.00473
KongWMonteiroRDCAn accelerated inexact proximal point method for solving nonconvex-concave min-max problemsSIAM J. Optim.202131425582585432998710.1137/20M1313222
Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with optimism. In: International Conference on Learning Representations (2018)
LuSTsaknakisIHongMChenYHybrid block successive approximation for one-sided non-convex min-max problems: algorithms and applicationsIEEE Trans. Signal Process.20206836763691412810610.1109/TSP.2020.2986363
Wu, Z., Jiang, B., Liu, Y.F., Dai, Y.H.: CI-based one-bit precoding for multiuser downlink massive MIMO systems with PSK modulation: a negative ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1 $$\end{document} penalty approach (2021). arXiv preprint arXiv:2110.11628
Gidel, G., Berard, H., Vignoud, G., Vincent, P., Lacoste-Julien, S.: A variational inequality perspective on generative adversarial networks. In: International Conference on Learning Representations (2019)
PanWShenJXuZAn efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problemComput. Optim. Appl.202178287306419873410.1007/s10589-020-00237-4
RafiqueHLiuMLinQYangTWeakly-convex-concave min-max optimization: provable algorithms and applications in machine learningOptim. Methods Softw.202237310871121449200910.1080/10556788.2021.1895152
AsterisMPapailiopoulosDDimakisANonnegative sparse PCA with provable guaranteesInt. Confer. Mach. Learn.201432217281736
GiannakisGBLingQMateosGSchizasIDZhuHDecentralized learning for wireless communications and networking. Splitting methods in communication, imaging, science, and engineering2017ChamSpringer461497
M Asteris (1383_CR30) 2014; 32
T Lin (1383_CR21) 2020; 119
1383_CR3
1383_CR10
1383_CR6
1383_CR5
1383_CR15
C Jin (1383_CR24) 2020; 119
DM Ostrovskii (1383_CR11) 2021; 31
1383_CR18
J Shen (1383_CR29) 2023; 87
S Lu (1383_CR25) 2020; 68
GB Giannakis (1383_CR1) 2017
ME Yildiz (1383_CR31) 2008; 56
W Kong (1383_CR8) 2021; 31
J Yang (1383_CR14) 2020; 33
1383_CR22
W Pan (1383_CR28) 2021; 78
1383_CR26
KK Thekumparampil (1383_CR13) 2019; 32
Z Xu (1383_CR23) 2023; 24
D Hajinezhad (1383_CR2) 2019; 176
A Letcher (1383_CR20) 2019; 20
A Li (1383_CR4) 2018; 17
J Ho (1383_CR19) 2016; 29
J Zhang (1383_CR27) 2020; 33
H Rafique (1383_CR12) 2022; 37
C Daskalakis (1383_CR16) 2018; 31
T Lin (1383_CR9) 2020; 125
Q Qian (1383_CR7) 2019; 33
A Chambolle (1383_CR17) 2016; 159
References_xml – reference: YangJZhangSKiyavashNHeNA catalyst framework for minimax optimizationAdv. Neural. Inf. Process. Syst.20203356675678
– reference: Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with optimism. In: International Conference on Learning Representations (2018)
– reference: Lu, S., Tsaknakis, I., Hong, M.: Block alternating optimization for non-convex min-max problems: algorithms and applications in signal processing and communications. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4754–4758 (2019)
– reference: HajinezhadDHongMPerturbed proximal primal-dual algorithm for nonconvex nonsmooth optimizationMath. Program.20191761–2207245396080910.1007/s10107-019-01365-4
– reference: JinCNetrapalliPJordanMWhat is local optimality in nonconvex-nonconcave minimax optimization?Int. Confer. Mach. Learn.202011948804889
– reference: PanWShenJXuZAn efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problemComput. Optim. Appl.202178287306419873410.1007/s10589-020-00237-4
– reference: HoJErmonSGenerative adversarial imitation learningAdv. Neural Inf. Process. Syst.20162945654573
– reference: LuSTsaknakisIHongMChenYHybrid block successive approximation for one-sided non-convex min-max problems: algorithms and applicationsIEEE Trans. Signal Process.20206836763691412810610.1109/TSP.2020.2986363
– reference: ThekumparampilKKJainPNetrapalliPOhSEfficient algorithms for smooth minimax optimizationAdv. Neural Inf. Process. Syst.2019321265912670
– reference: YildizMEScaglioneACoding with side information for rate-constrained consensusIEEE Trans. Signal Process.200856837533764251705910.1109/TSP.2008.919636
– reference: Xu, Z., Shen, J., Wang, Z., Dai, Y.H.: Derivative-free Alternating Projection Algorithms for General Nonconvex-Concave Minimax Problems. SIAM Journal on Optimization, accepted, arXiv preprint arXiv:2108.00473
– reference: Nouiehed, M., Sanjabi, M., Huang, T., Lee, J.D., Razaviyayn, M.: Solving a class of non-convex min-max games using iterative first order methods. In: Advances in Neural Information Processing Systems (2019)
– reference: LinTJinCJordanMOn gradient descent ascent for nonconvex-concave minimax problemsInt. Confer. Mach. Learn.202011960836093
– reference: LiAMasourosCLiuFSwindlehurstALMassive MIMO 1-bit DAC transmission: a low-complexity symbol scaling approachIEEE Trans. Wirel. Commun.201817117559757510.1109/TWC.2018.2868369
– reference: DaskalakisCPanageasIThe limit points of (optimistic) gradient descent in min-max optimizationAdv. Neural Inf. Process. Syst.20183192569266
– reference: Wu, Z., Jiang, B., Liu, Y.F., Dai, Y.H.: CI-based one-bit precoding for multiuser downlink massive MIMO systems with PSK modulation: a negative ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1 $$\end{document} penalty approach (2021). arXiv preprint arXiv:2110.11628
– reference: QianQZhuSTangJJinRSunBLiHRobust optimization over multiple domainsProc. AAAI Confer. Artif. Intell.2019330147394746
– reference: KongWMonteiroRDCAn accelerated inexact proximal point method for solving nonconvex-concave min-max problemsSIAM J. Optim.202131425582585432998710.1137/20M1313222
– reference: Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: International Conference on Machine Learning, pp. 4615–4625 (2019)
– reference: RafiqueHLiuMLinQYangTWeakly-convex-concave min-max optimization: provable algorithms and applications in machine learningOptim. Methods Softw.202237310871121449200910.1080/10556788.2021.1895152
– reference: GiannakisGBLingQMateosGSchizasIDZhuHDecentralized learning for wireless communications and networking. Splitting methods in communication, imaging, science, and engineering2017ChamSpringer461497
– reference: Xu, Z., Zhang, H., Xu, Y., Lan, G.: A unified single-loop alternating gradient projection algorithm for nonconvex-concave and convex-nonconcave minimax problems. Math. Progr., Ser. A (2023). https://doi.org/10.1007/s10107-022-01919-z
– reference: Gidel, G., Berard, H., Vignoud, G., Vincent, P., Lacoste-Julien, S.: A variational inequality perspective on generative adversarial networks. In: International Conference on Learning Representations (2019)
– reference: ChambolleAPockTOn the ergodic convergence rates of a first-order primal-dual algorithmMath. Program.20161591–2253287353592510.1007/s10107-015-0957-3
– reference: OstrovskiiDMLowyARazaviyaynMEfficient search of first-order Nash equilibria in nonconvex-concave smooth min-max problemsSIAM J. Optim.202131425082538432851610.1137/20M1337600
– reference: XuZWangZQWangJLDaiYHZeroth-order alternating gradient descent ascent algorithms for a class of nonconvex-nonconcave minimax problemsJ. Mach. Learn. Res2023243131254664750
– reference: AsterisMPapailiopoulosDDimakisANonnegative sparse PCA with provable guaranteesInt. Confer. Mach. Learn.201432217281736
– reference: ZhangJXiaoPSunRLuoZA single-loop smoothed gradient descent-ascent algorithm for nonconvex-concave min-max problemsAdv. Neural. Inf. Process. Syst.20203373777389
– reference: LinTJinCJordanMINear-optimal algorithms for minimax optimizationProc. Mach. Learn. Res.2020125142
– reference: ShenJWangZXuZZeroth-order single-loop algorithms for nonconvex-linear minimax problemsJ. Glob. Optim.2023872551580466181310.1007/s10898-022-01169-5
– reference: LetcherABalduzziDRacaniereSMartensJFoersterJTuylsKGraepelTDifferentiable game mechanicsJ. Mach. Learn. Res.2019201303230713960938
– volume: 68
  start-page: 3676
  year: 2020
  ident: 1383_CR25
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2986363
– ident: 1383_CR3
  doi: 10.1109/ICASSP.2019.8683795
– volume: 56
  start-page: 3753
  issue: 8
  year: 2008
  ident: 1383_CR31
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.919636
– ident: 1383_CR10
– volume: 159
  start-page: 253
  issue: 1–2
  year: 2016
  ident: 1383_CR17
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0957-3
– volume: 32
  start-page: 1728
  issue: 2
  year: 2014
  ident: 1383_CR30
  publication-title: Int. Confer. Mach. Learn.
– ident: 1383_CR5
– volume: 37
  start-page: 1087
  issue: 3
  year: 2022
  ident: 1383_CR12
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2021.1895152
– volume: 33
  start-page: 4739
  issue: 01
  year: 2019
  ident: 1383_CR7
  publication-title: Proc. AAAI Confer. Artif. Intell.
– start-page: 461
  volume-title: Decentralized learning for wireless communications and networking. Splitting methods in communication, imaging, science, and engineering
  year: 2017
  ident: 1383_CR1
– volume: 29
  start-page: 4565
  year: 2016
  ident: 1383_CR19
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 7377
  year: 2020
  ident: 1383_CR27
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 87
  start-page: 551
  issue: 2
  year: 2023
  ident: 1383_CR29
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-022-01169-5
– ident: 1383_CR22
– volume: 17
  start-page: 7559
  issue: 11
  year: 2018
  ident: 1383_CR4
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2868369
– volume: 32
  start-page: 12659
  year: 2019
  ident: 1383_CR13
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 176
  start-page: 207
  issue: 1–2
  year: 2019
  ident: 1383_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01365-4
– ident: 1383_CR26
  doi: 10.1007/s10107-022-01919-z
– volume: 31
  start-page: 2508
  issue: 4
  year: 2021
  ident: 1383_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1337600
– volume: 33
  start-page: 5667
  year: 2020
  ident: 1383_CR14
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 31
  start-page: 2558
  issue: 4
  year: 2021
  ident: 1383_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1313222
– volume: 125
  start-page: 1
  year: 2020
  ident: 1383_CR9
  publication-title: Proc. Mach. Learn. Res.
– ident: 1383_CR18
– ident: 1383_CR6
– ident: 1383_CR15
– volume: 24
  start-page: 1
  issue: 313
  year: 2023
  ident: 1383_CR23
  publication-title: J. Mach. Learn. Res
– volume: 78
  start-page: 287
  year: 2021
  ident: 1383_CR28
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00237-4
– volume: 119
  start-page: 4880
  year: 2020
  ident: 1383_CR24
  publication-title: Int. Confer. Mach. Learn.
– volume: 20
  start-page: 3032
  issue: 1
  year: 2019
  ident: 1383_CR20
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 9256
  year: 2018
  ident: 1383_CR16
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 119
  start-page: 6083
  year: 2020
  ident: 1383_CR21
  publication-title: Int. Confer. Mach. Learn.
SSID ssj0009852
Score 2.4120517
Snippet Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms Algorithms
Approximation
Computer Science
Convex analysis
Convexity
Machine learning
Mathematics
Mathematics and Statistics
MIMO communications
Minimax technique
Operations Research/Decision Theory
Optimization
Real Functions
Wireless communications
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4QCHPhYQpQ_5gAQILCVxHvZxVbXiQoV4qTfLdpyy0j7aJK325zPjdboFChLcHGViW5qn45lvAF4akeamqRPuMFbleVY1XBrreaVs0bhSJMqb0GyiOj2VZ2fqYywK64Zs9-FKMljqW8VuksrBMsqawHMVF_fhAbo7Ser46fO3NdSuDH12EpUVvEArHEtl7p7jJ3f0q1H-7XY0OJ2Trf_b7jZsxiCTjVdSsQP3_HwEW0MDBxb1eQSPb6ER4tOHGwjXbgQ7kapjryM09ZsncDmes4BCvpysSh5ZHE_ZeRuSx3pmpueLdtJ_nzGMh9l8MQ-J7UtO8axpGWGZzMySxU42HaM_wWsyGnWzBcoPI6fRPYWvJ8dfjt7z2LSBO1HInqeNVKaQzjonbFpgVFyr0rjEizovpbK2lI10smjy0itC169FmafWKo9kNjfiGWzgSv45sNJkWV0R6JnHc1UqTGNEYxOjcpGlrqp2IR14p11ENKfGGlO9xmImJmhkgg5M0GIX3t58c7HC8_gr9SsSCU3KjjM7E2sWcH8Em6XHEiPiRBQ57mV_kBodrUCnUdJTCqEETvRukJL16z-v--LfyPfgURYEjVLf9mGjb6_8ATx01_2kaw-DdvwArvEKDg
  priority: 102
  providerName: Springer Nature
Title An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms
URI https://link.springer.com/article/10.1007/s10898-024-01383-3
https://www.proquest.com/docview/3091218133
Volume 90
WOSCitedRecordID wos001190203600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMcgBYQgRL5gAQILNb2PuwTClUrJNQQtTwKl5Xt3S2V8mizC8rPZ8ZxGh6iFy4jr9YvacbjsT3zDcATq0RqmyrhHm1Vnsqi4dq6mhfGZY3PVWJqG5JNFMOhPjkxo3jh1ka3ypVODIq6mnm6I3-FrQRtR0q9Pr_glDWKXldjCo0N2BJSCpLzdwVfg-7qkHEnMTLjGerjGDQTQ-c0BZdJ8sHAUxpXv21Mf6rnv95Jw_ZzcPt_J34HbkXDkw2WkrIN1-rpDtz8BY4Qvw4vMVzbHdiOy75lzyI29fO7cDGYsgBDvjhbxjyyWB6z03nwHuuYHZ_i-N23CUODmE1n0-DZvuBk0No5IzCTiV2wmMqmZXQVvK5GpXYyQwFitGu09-Djwf6Hvbc8Zm3gXmW646LRxmbaO--VExmaxZXJrU9qVaW5Ns7lutFeZ02a14bg9SuVp8I5U2M1l1p1HzZxpPoBsNxKWRWEelbjwUoo21jVuMSaVEnhi6IHYsWy0kdIc8qsMS7XYMzE5hLZXAY2l6oHLy7bnC8BPa6s_ZQkoaTVjj17G4MWcH6Em1UONJrEicpSnMvuiv1lVANtueZ9D16uBGj9-9_jPry6t0dwQwbRJV-3Xdjs5t_rx3Dd_-jO2nkfNorPX_qw9WZ_ODrqhyWB9DDZIyrfBzoiWhwjHWVfkR4df_oJDw0VvQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOQAuIhQI-gACBRRw7iX1AaFWoWrVdcShSb8Z2nFJpH-0mwPKn-I3MZJ2Gh-itB26O4thO8s3Dycw3hDyxgktblQnz4KsymRYVU9YFVmiXVT4XiQ62LTZRjEbq8FB_WCE_ulwYDKvsdGKrqMuZx2_kr-EqjuZIiLcnpwyrRuHf1a6ExhIWu-H7N9iy1W923sH7fZqmW-8PNrdZrCrAvMhUw3iltM2Ud94LxzNw20qdW58EUcpcaedyVSmvskrmQSP9eylyyZ3TAbo5aQWMe4lclhLEAUMFk82e5Fe1FX4SnWYsA_0fk3Riqp7CZLYUYz5gV8jEb4bwT3Pw13_Z1txt3fzfHtQtciM61nS4lIQ1shKm6-T6L3SLcLR_xlFbr5O1qNZq-jxyb7-4TU6HU9rSrC-OlzmdNLbH9GjeRsc11I6P4H6bzxMKDj-dzqZt5P6CocNu5xTJWiZ2QWOpnprip-6-G7bqyQwEhKJVrO-QjxfyWO6SVZgp3CM0t2laFsjqFmDjyIWtrKhcYrUUKfdFMSC8g4jxkbIdK4eMTU82jbAyACvTwsqIAXl5ds3JkrDk3N7PEHkGtRmM7G1MyoD1IS-YGSpw-RORSVjLRgc3E9VcbXqsDcirDrD96X_Pe__80R6Tq9sH-3tmb2e0-4BcSzGOKOGM8w2y2sy_hIfkiv_aHNfzR60AUvLpooH8E1rva34
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgBYQCwV8AAECq0mch31AaEVZURVWewCp4uI6jlMq7aPdBFj-Gr-OGa_T5SF664Gbozi2k3yeRzLzDcAjI-LU1FXELdqqPE2KmktTOl6oMqttLiLljC82UQyHcn9fjdbgR5cLQ2GVnUz0grqaWfpGvo1XxaSOhNiuQ1jEaGfw6viEUwUp-tPaldNYQmTPff-G7lvzcncH3_XjJBm8-fD6LQ8VBrgVmWx5XEtlMmlLa0UZZ2jCVSo3NnKiSnOpyjKXtbQyq9PcKaKCr0SexmWpHHYrUyNw3AtwsUAfkxy_UfZpRfgrfbWfSCUZz1AXhISdkLYnKbEtofgP9BC5-E0p_qka_vpH61Xf4Pr__NBuwLVgcLP-codswJqbbsLVX2gY8ej9KXdtswkbQdw17Gng5H52E076U-bp1xdHy1xPFtpjdjj3UXMtM-NDvN_284ShI8Cms6mP6F9wMuTNnBGJy8QsWCjh0zD6BL7qRq1mMsONw0hbNrfg47k8ltuwjjO5O8BykyRVQWxvDh3KWJjaiLqMjEpFEtui6EHcwUXbQOVOFUXGekVCTRDTCDHtIaZFD56fXnO8JDI5s_cTQqEmKYcjWxOSNXB9xBem-xJdgUhkKa5lq4OeDuKv0Svc9eBFB97V6X_Pe_fs0R7CZcSvfrc73LsHVxK_gyjcbwvW2_kXdx8u2a_tUTN_4Pcig4PzxvFP3D10mQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximation+proximal+gradient+algorithm+for+nonconvex-linear+minimax+problems+with+nonconvex+nonsmooth+terms&rft.jtitle=Journal+of+global+optimization&rft.au=He%2C+Jiefei&rft.au=Zhang%2C+Huiling&rft.au=Xu%2C+Zi&rft.date=2024-09-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=90&rft.issue=1&rft.spage=73&rft_id=info:doi/10.1007%2Fs10898-024-01383-3&rft.externalDocID=A804503547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon