Solvability Conditions for the Nonlocal Boundary-Value Problem for a Differential-Operator Equation with Weak Nonlinearity in the Refined Sobolev Scale of Spaces of Functions of Many Real Variables
We study the solvability of the nonlocal boundary-value problem for a differential equation with weak nonlinearity. By using the Nash–Mozer iterative scheme, we establish the solvability conditions for the posed problem in the Hilbert H¨ormander spaces of functions of several real variables, which f...
Uložené v:
| Vydané v: | Ukrainian mathematical journal Ročník 72; číslo 4; s. 515 - 535 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2020
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0041-5995, 1573-9376 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the solvability of the nonlocal boundary-value problem for a differential equation with weak nonlinearity. By using the Nash–Mozer iterative scheme, we establish the solvability conditions for the posed problem in the Hilbert H¨ormander spaces of functions of several real variables, which form a refined Sobolev scale. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0041-5995 1573-9376 |
| DOI: | 10.1007/s11253-020-01798-7 |