A survey on parallel clustering algorithms for Big Data

Data clustering is one of the most studied data mining tasks. It aims, through various methods, to discover previously unknown groups within the data sets. In the past years, considerable progress has been made in this field leading to the development of innovative and promising clustering algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial intelligence review Ročník 54; číslo 4; s. 2411 - 2443
Hlavní autoři: Dafir, Zineb, Lamari, Yasmine, Slaoui, Said Chah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.04.2021
Springer
Springer Nature B.V
Témata:
ISSN:0269-2821, 1573-7462
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data clustering is one of the most studied data mining tasks. It aims, through various methods, to discover previously unknown groups within the data sets. In the past years, considerable progress has been made in this field leading to the development of innovative and promising clustering algorithms. These traditional clustering algorithms present some serious issues in connection with the speed-up, the throughput, and the scalability. Thus, they can no longer be directly used in the context of Big Data, where data are mainly characterized by their volume, velocity, and variety. In order to overcome their limitations, the research today is heading to the parallel computing concept by giving rise to the so-called parallel clustering algorithms. This paper presents an overview of the latest parallel clustering algorithms categorized according to the computing platforms used to handle the Big Data, namely, the horizontal and vertical scaling platforms. The former category includes peer-to-peer networks, MapReduce, and Spark platforms, while the latter category includes Multi-core processors, Graphics Processing Unit, and Field Programmable Gate Arrays platforms. In addition, it includes a comparison of the performance of the reviewed algorithms based on some common criteria of clustering validation in the Big Data context. Therefore, it provides the reader with an overall vision of the current parallel clustering techniques.
AbstractList Data clustering is one of the most studied data mining tasks. It aims, through various methods, to discover previously unknown groups within the data sets. In the past years, considerable progress has been made in this field leading to the development of innovative and promising clustering algorithms. These traditional clustering algorithms present some serious issues in connection with the speed-up, the throughput, and the scalability. Thus, they can no longer be directly used in the context of Big Data, where data are mainly characterized by their volume, velocity, and variety. In order to overcome their limitations, the research today is heading to the parallel computing concept by giving rise to the so-called parallel clustering algorithms. This paper presents an overview of the latest parallel clustering algorithms categorized according to the computing platforms used to handle the Big Data, namely, the horizontal and vertical scaling platforms. The former category includes peer-to-peer networks, MapReduce, and Spark platforms, while the latter category includes Multi-core processors, Graphics Processing Unit, and Field Programmable Gate Arrays platforms. In addition, it includes a comparison of the performance of the reviewed algorithms based on some common criteria of clustering validation in the Big Data context. Therefore, it provides the reader with an overall vision of the current parallel clustering techniques.
Audience Academic
Author Lamari, Yasmine
Slaoui, Said Chah
Dafir, Zineb
Author_xml – sequence: 1
  givenname: Zineb
  orcidid: 0000-0002-9438-3262
  surname: Dafir
  fullname: Dafir, Zineb
  email: zineb.dafir@um5s.net.ma
  organization: Faculty of Science of Rabat, Mohammed V University
– sequence: 2
  givenname: Yasmine
  surname: Lamari
  fullname: Lamari, Yasmine
  organization: Faculty of Science of Rabat, Mohammed V University
– sequence: 3
  givenname: Said Chah
  surname: Slaoui
  fullname: Slaoui, Said Chah
  organization: Faculty of Science of Rabat, Mohammed V University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1vzsZtkj7V-QsGLnkM2TWpKulmTXaH_3tQVBA8lh4GZ98kwzwxM2tAaAK4xWmCE-G3CqGSkQAQVqK6xKMgZmOKK04Ln_gRMEWF1QQTBF2CW0g4hVJGSTgFfwjTEL3OAoYWdisp746H2Q-pNdO0WKr8N0fUf-wRtiPDObeG96tUlOLfKJ3P1W-fg_fHhbfVcrF-fXlbLdaFpJfoCq1JxoSqmkaUNVYJUNavtRnNNjSVNHjaW0boWbMMaJihjwpbMlhVrjOaMzsHN-G8Xw-dgUi93YYhtXilJhThlJIdyajGmtsob6Vob-qh0fhuzdzqrsi73lxxnASUSOANkBHQMKUVjZRfdXsWDxEgejcrRqMxG5Y9RSTIk_kHa9ap3oc3bnD-N0hFN3dGqiX9nnKC-AR4jitk
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_111016
crossref_primary_10_1016_j_engappai_2022_104743
crossref_primary_10_3233_JCM_226152
crossref_primary_10_1109_ACCESS_2021_3084057
crossref_primary_10_1109_TSP_2025_3531292
crossref_primary_10_3389_fninf_2021_727859
crossref_primary_10_3390_math13142272
crossref_primary_10_1016_j_engappai_2023_107653
crossref_primary_10_3390_s23062952
crossref_primary_10_1108_JFC_11_2024_0356
crossref_primary_10_1109_JSTARS_2024_3521034
crossref_primary_10_1155_2021_8266436
crossref_primary_10_1016_j_jestch_2021_11_003
crossref_primary_10_1016_j_ins_2022_11_107
crossref_primary_10_1155_2022_5360302
crossref_primary_10_32604_cmc_2023_042222
crossref_primary_10_1002_wics_1566
crossref_primary_10_1007_s11280_023_01158_y
crossref_primary_10_1109_ACCESS_2022_3164192
crossref_primary_10_3390_s24134276
crossref_primary_10_1049_rpg2_70006
crossref_primary_10_3390_math12131930
crossref_primary_10_3390_app13063529
crossref_primary_10_1016_j_heliyon_2023_e20468
crossref_primary_10_1016_j_ins_2023_119634
crossref_primary_10_1007_s10462_022_10310_5
crossref_primary_10_1080_15567036_2024_2334923
crossref_primary_10_1007_s10044_021_01045_0
crossref_primary_10_1007_s12530_022_09447_z
crossref_primary_10_1007_s11227_021_04204_6
crossref_primary_10_1016_j_jocs_2022_101911
crossref_primary_10_1007_s12652_022_04428_1
crossref_primary_10_1016_j_eij_2025_100641
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_1109_ACCESS_2024_3461798
crossref_primary_10_3390_electronics11060883
crossref_primary_10_1016_j_softx_2024_101666
crossref_primary_10_1145_3698875
crossref_primary_10_1007_s10489_022_03661_7
crossref_primary_10_1007_s12065_022_00720_3
crossref_primary_10_1007_s42044_022_00102_z
crossref_primary_10_1016_j_jpdc_2025_105067
crossref_primary_10_3390_electronics13214215
crossref_primary_10_1016_j_jksuci_2024_101973
crossref_primary_10_1364_JOSAA_555355
Cites_doi 10.1016/j.jpdc.2011.03.007
10.1016/j.patrec.2016.07.027
10.1007/s10922-005-4441-x
10.1109/MCSE.2010.69
10.1016/j.sysarc.2006.02.003
10.1587/transinf.E95.D.2327
10.1145/304182.304187
10.1016/j.procs.2017.03.138
10.1109/WETICE.2016.26
10.1145/2487575.2487628
10.1007/s00500-013-1074-y
10.1109/JPROC.2008.917757
10.1186/2192-113X-2-18
10.1109/TPAMI.2002.1017616
10.1016/j.compeleceng.2017.12.002
10.6028/jres.045.026
10.1186/1471-2105-11-169
10.1016/j.procs.2013.05.200
10.1109/TBDATA.2016.2622288
10.3906/elk-1202-83
10.1145/2903220.2903255
10.1109/BDCloud-SocialCom-SustainCom.2016.85
10.1145/2724722
10.1145/2608029.2608033
10.1137/040608635
10.1109/PARELEC.2006.54
10.1109/IPDPSW.2010.5470922
10.1007/978-1-4614-3594-5_2
10.1007/978-3-319-27122-4_8
10.1016/B978-012722442-8/50016-1
10.1007/s11704-013-3158-3
10.1137/S1064827595287997
10.1109/AHS.2011.5963944
10.1109/HPCSim.2015.7237086
10.1109/TETC.2014.2330519
10.1089/106652799318274
10.1145/2020408.2020516
10.1109/HOTCHIPS.2008.7476525
10.1145/2503210.2503255
10.1109/TNS.2014.2364183
10.1007/s10586-014-0413-9
10.1016/j.jpdc.2012.06.009
10.1145/1851476.1851593
10.1007/s11227-014-1185-y
10.1007/s11227-014-1225-7
10.1109/IPDPSW.2016.57
10.1007/s007780050009
10.1109/TCBB.2011.68
10.1016/B978-0-12-381479-1.00010-1
10.1093/nar/30.7.1575
10.1016/j.procs.2016.05.389
10.1186/s40537-014-0008-6
10.1145/2851613.2851643
10.1109/TFUZZ.2012.2201485
10.1007/s11227-014-1174-1
10.1109/FPL.2013.6645501
10.1007/978-1-4615-3572-0
10.1016/j.asoc.2016.11.045
10.1007/s10844-006-9953-7
10.1109/4434.806976
10.2307/2346830
10.1109/CBD.2016.016
10.1145/2806416.2806545
10.1109/ICCT.2012.6511380
10.1145/1081870.1081955
10.1007/978-3-540-77220-0_21
10.1109/ICACCI.2016.7732323
10.1109/SMC.2013.480
10.1007/978-3-642-10665-1_71
10.1016/j.patcog.2015.02.020
10.1145/79173.79181
10.1109/BigData.2016.7840708
10.1126/science.1242072
10.1007/978-3-319-48472-3_20
10.1109/IPDPS.2010.5470429
ContentType Journal Article
Copyright Springer Nature B.V. 2020
COPYRIGHT 2021 Springer
Copyright Springer Nature B.V. Apr 2021
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: COPYRIGHT 2021 Springer
– notice: Copyright Springer Nature B.V. Apr 2021
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-020-09918-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Social Science Premium Collection - Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 2443
ExternalDocumentID A718214081
10_1007_s10462_020_09918_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-1a4a78a56c0f3b3a825969fdc7c3ef2ba78bf639986d6b683668f46f456bec763
IEDL.DBID RSV
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000575762200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Sat Nov 15 08:11:31 EST 2025
Sat Nov 29 09:49:08 EST 2025
Sat Nov 29 02:43:25 EST 2025
Tue Nov 18 22:34:16 EST 2025
Fri Feb 21 02:49:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords means
Algorithms
FPGA
MPI
Big Data
DBSCAN
Spark
Clustering
Data mining
GPU
Multi-cores CPU
MapReduce
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1a4a78a56c0f3b3a825969fdc7c3ef2ba78bf639986d6b683668f46f456bec763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9438-3262
PQID 2507362763
PQPubID 36790
PageCount 33
ParticipantIDs proquest_journals_2507362763
gale_infotracacademiconefile_A718214081
crossref_primary_10_1007_s10462_020_09918_2
crossref_citationtrail_10_1007_s10462_020_09918_2
springer_journals_10_1007_s10462_020_09918_2
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2021
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References AkhterSRobertsJMulti-core programming: increasing performance through software multi-threading20061HillsboroIntel Press
Harish P, Narayanan PJ (2007) Accelerating large graph algorithms on the GPU using CUDA. In: High performance computing—HiPC 2007. Lecture notes in computer science. Springer, Berlin, pp 197–208. https://doi.org/10.1007/978-3-540-77220-0_21
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computing, HotCloud’10. USENIX Association, Berkeley
Zhao W, Ma H, He Q (2009) Parallel k-means clustering based on MapReduce. In: Cloud computing. Lecture notes in computer science. Springer, Berlin, pp 674–679. https://doi.org/10.1007/978-3-642-10665-1_71
SinghDReddyCKA survey on platforms for big data analyticsJ Big Data201421810.1186/s40537-014-0008-6
YanWBrahmakshatriyaUXueYGilderMWiseBp-PIC: parallel power iteration clustering for big dataJ Parallel Distrib Comput201373335235910.1016/j.jpdc.2012.06.009
Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, KDD’96. AAAI Press, Portland, pp 226–231
HavensTCBezdekJCLeckieCHallLOPalaniswamiMFuzzy c-means algorithms for very large dataIEEE Trans Fuzzy Syst20122061130114610.1109/TFUZZ.2012.2201485
BharillNTiwariAMalviyaAFuzzy based scalable clustering algorithms for handling big data using apache sparkIEEE Trans Big Data20162433935210.1109/TBDATA.2016.2622288
HeYTanHLuoWFengSFanJMR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed dataFront Comput Sci2014818399315159110.1007/s11704-013-3158-3
HadianAShahrivariSHigh performance parallel k-means clustering for disk-resident datasets on multi-core CPUsJ Supercomput201469284586310.1007/s11227-014-1185-y
Nickolls J, Buck I, Garland M (2008) Scalable parallel programming. In: IEEE hot chips 20 symposium (HCS). IEEE, pp 40–53
CuomoSDe AngelisVFarinaGMarcellinoLToraldoGA GPU-accelerated parallel k-means algorithmComput Electr Eng201710.1016/j.compeleceng.2017.12.002
Farooq U, Marrakchi Z, Mehrez H (2012) FPGA architectures: an overview. In: Tree-based heterogeneous FPGA architectures, chap. 2. Springer, New York, pp 7–48. https://doi.org/10.1007/978-1-4614-3594-5_2
Tsapanos N, Tefas A, Nikolaidis N, Pitas I (2016) Efficient mapreduce kernel k-means for big data clustering. In: Proceedings of the 9th hellenic conference on artificial intelligence, SETN ’16. ACM, Thessaloniki, pp 28:1–28:5. https://doi.org/10.1145/2903220.2903255
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of the 29th international conference on very large data bases, VLDB ’03, vol 29. VLDB Endowment, Berlin, pp 81–92
BustamamABurrageKHamiltonNAFast parallel markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse formatIEEE/ACM Trans Comput Biol Bioinform20129367969210.1109/TCBB.2011.68
Savvas IK, Tselios D (2016) Parallelizing DBSCAN algorithm using MPI. In: IEEE 25th International conference on enabling technologies: infrastructure for collaborative enterprises (WETICE). IEEE, Paris, pp 77–82. https://doi.org/10.1109/WETICE.2016.26
SkillicornDStrategies for parallel data miningIEEE Concurr199974263510.1109/4434.806976
DengZHuYZhuMHuangXDuBA scalable and fast optics for clustering trajectory big dataCluster Comput201518254956210.1007/s10586-014-0413-9
FahadAAlshatriNTariZAlamriAKhalilIZomayaAYFoufouSBourasAA survey of clustering algorithms for Big Data: taxonomy and empirical analysisIEEE Trans Emerg Top Comput20142326727910.1109/TETC.2014.2330519
Ben-DorAShamirRYakhiniZClustering gene expression patternsJ Comput Biol199963–428129710.1089/106652799318274
KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J Sci Comput1998201359392163907310.1137/S10648275952879970915.68129
Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, SIGMOD ’99. ACM, Philadelphia, pp 49–60. https://doi.org/10.1145/304182.304187
Mallios X, Vassalos V, Venetis T, Vlachou A (2016) A framework for clustering and classification of big data using spark. In: Debruyne C, Panetto H, Meersman R, Dillon T, Kühn E, O’Sullivan D, Ardagna CA (eds) On the move to meaningful internet systems: OTM 2016 conferences, vol 10033. Springer, Cham, pp 344–362. https://doi.org/10.1007/978-3-319-48472-3_20
Ferreira Cordeiro RL, Traina Junior C, Machado Traina AJ, López J, Kang U, Faloutsos C (2011) Clustering very large multi-dimensional datasets with mapreduce. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11. ACM, San Diego, pp 690–698. https://doi.org/10.1145/2020408.2020516
Van DongenSGraph clustering via a discrete uncoupling processSIAM J Matrix Anal Appl2008301121141239957210.1137/0406086351161.68041
AzimiRSajediHGhayekhlooMA distributed data clustering algorithm in p2p networksAppl Soft Comput201751Supplement C14716710.1016/j.asoc.2016.11.045
Laney D (2001) 3D data management: controlling data volume, velocity, and variety. Technical Report, 949, Gartner
ShiSYueQWangQFPGA based accelerator for parallel DBSCAN algorithmComput Model New Technol2014182135142
Wang B, Yin J, Hua Q, Wu Z, Cao J (2016) Parallelizing k-means-based clustering on spark. In: International conference on advanced cloud and Big Data (CBD). IEEE, Chengdu, pp 31–36. https://doi.org/10.1109/CBD.2016.016
Kriegel HP, Pfeifle M (2005) Density-based clustering of uncertain data. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, Chicago, pp 672–677. https://doi.org/10.1145/1081870.1081955
SunZFoxGGuWLiZA parallel clustering method combined information bottleneck theory and centroid-based clusteringJ Supercomput201469145246710.1007/s11227-014-1174-1
Hussain HM, Benkrid K, Seker H, Erdogan AT (2011) FPGA implementation of k-means algorithm for bioinformatics application: an accelerated approach to clustering microarray data. In: NASA/ESA conference on adaptive hardware and systems (AHS). IEEE, San Diego, pp 248–255. https://doi.org/10.1109/AHS.2011.5963944
HartiganJAWongMAAlgorithm as 136: a k-means clustering algorithmAppl Stat197928110010.2307/23468300447.62062
AndradeGRamosGMadeiraDSachettoRFerreiraRRochaLG-DBSCAN: a GPU accelerated algorithm for density-based clusteringProcedia Comput Sci201318Supplement C36937810.1016/j.procs.2013.05.200
Lin F, Cohen WW (2010) Power iteration clustering. In: Proceedings of the 27th international conference on machine learning (ICML-10). Omnipress, Haifa, pp 655–662
Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu J, Fox G (2010) Twister: a runtime for iterative MapReduce. In: Proceedings of the 19th ACM international symposium on high performance distributed computing. ACM, pp 810–818
Gouineau F, Landry T, Triplet T (2016) Patchwork, a scalable density-grid clustering algorithm. In: Proceedings of the 31st annual ACM symposium on applied computing, SAC ’16. ACM, Pisa, pp 824–831. https://doi.org/10.1145/2851613.2851643
Yang J, Li X (2013) MapReduce based method for big data semantic clustering. In: IEEE international conference on systems, man, and cybernetics. IEEE, pp 2814–2819. https://doi.org/10.1109/SMC.2013.480
NanniMPedreschiDTime-focused clustering of trajectories of moving objectsJ Intell Inf Syst200627326728910.1007/s10844-006-9953-7
SheikholeslamiGChatterjeeSZhangAWavecluster: a wavelet-based clustering approach for spatial data in very large databasesVLDB J Int J Very Large Data Bases200083–428930410.1007/s007780050009
Patwary MA, Palsetia D, Agrawal A, Liao WK, Manne F, Choudhary A (2013) Scalable parallel optics data clustering using graph algorithmic techniques. In: Proceedings of the international conference on high performance computing, networking, storage and analysis, SC ’13. ACM, Denver, pp 49:1–49:12. https://doi.org/10.1145/2503210.2503255
Luo G, Luo X, Gooch TF, Tian L, Qin K (2016) A parallel DBSCAN algorithm based on spark. In: IEEE international conferences on big data and cloud computing, social computing and networking, sustainable computing and communications. IEEE, Atlanta, pp 548–553. https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.85
SotiropoulouCLGkaitatzisSAnnoviABerettaMGiannettiPKordasKLucianoPNikolaidisSPetridouCVolpiGA multi-core FPGA-based 2D-clustering implementation for real-time image processingIEEE Trans Nuclear Sci20146163599360610.1109/TNS.2014.2364183
StoneJEGoharaDShiGOpenCL: a parallel programming standard for heterogeneous computing systemsComput Sci Eng20101236610.1109/MCSE.2010.69
KrausJMKestlerHAA highly efficient multi-core algorithm for clustering extremely large datasetsBMC Bioinform201011116910.1186/1471-2105-11-169
VoulgarisSGavidiaDvan SteenMCyclon: inexpensive membership management for unstructured p2p overlaysJ Netw Syst Manag200513219721710.1007/s10922-005-4441-x
Han J, Kamber M, Pei J (2012) Cluster analysis: basic concepts and methods. In: Data mining, The Morgan Kaufmann series in data management systems, 3rd edn, chap. 10. Morgan Kaufmann, pp 443–495. https://doi.org/10.1016/B978-0-12-381479-1.00010-1
AnFKoideTMattauschHJA k-means-based multi-prototype high-speed learning system with FPGA-implemented coprocessor for 1-NN searchingIEICE Trans Inf Syst2012E95–D92327233810.1587/transinf.E95.D.2327
Gehweiler J, Meyerhenke H (2010) A distributed diffusive heuristic for clustering a virtual p2p supercomputer. In: IEEE international symposium on parallel distributed processing, workshops and Phd forum (IPDPSW). IEEE, Atlanta, pp 1–8. https://doi.org/10.1109/IPDPSW.2010.5470922
LiuRLiXDu
A Erdem (9918_CR21) 2014; 22
AA Yıldırım (9918_CR79) 2011; 71
D Singh (9918_CR63) 2014; 2
KW Lin (9918_CR46) 2014; 18
9918_CR59
W Yan (9918_CR77) 2013; 73
JE Stone (9918_CR67) 2010; 12
9918_CR13
X Cui (9918_CR14) 2006; 52
9918_CR57
9918_CR19
9918_CR17
9918_CR50
9918_CR51
9918_CR55
9918_CR53
JA Hartigan (9918_CR33) 1979; 28
A Fahad (9918_CR23) 2014; 2
R Jin (9918_CR39) 2013; 2
X Cui (9918_CR15) 2014; 70
SD Brown (9918_CR11) 1992
9918_CR25
A Hadian (9918_CR29) 2014; 69
9918_CR26
Y He (9918_CR35) 2014; 8
9918_CR24
N Tsapanos (9918_CR69) 2015; 48
A Bustamam (9918_CR12) 2012; 9
9918_CR27
9918_CR28
S Shi (9918_CR62) 2014; 18
R Liu (9918_CR48) 2017; 107
G Andrade (9918_CR5) 2013; 18
9918_CR22
G Sheikholeslami (9918_CR61) 2000; 8
9918_CR64
Z Deng (9918_CR18) 2015; 18
R Azimi (9918_CR7) 2017; 51
LG Valiant (9918_CR71) 1990; 33
9918_CR80
CL Sotiropoulou (9918_CR66) 2014; 61
TC Havens (9918_CR34) 2012; 20
A Banharnsakun (9918_CR8) 2017; 93
S Cuomo (9918_CR16) 2017
9918_CR36
9918_CR37
9918_CR78
S Akhter (9918_CR2) 2006
A Ben-Dor (9918_CR9) 1999; 6
9918_CR38
M Nanni (9918_CR54) 2006; 27
9918_CR70
9918_CR32
D Skillicorn (9918_CR65) 1999; 7
9918_CR76
9918_CR30
9918_CR74
9918_CR31
S Voulgaris (9918_CR73) 2005; 13
9918_CR75
T Kanungo (9918_CR40) 2002; 24
N Bharill (9918_CR10) 2016; 2
J Owens (9918_CR56) 2008; 96
9918_CR3
9918_CR6
9918_CR1
G Karypis (9918_CR41) 1998; 20
9918_CR47
9918_CR45
S Van Dongen (9918_CR72) 2008; 30
F An (9918_CR4) 2012; E95–D
Z Sun (9918_CR68) 2014; 69
9918_CR49
D Melo (9918_CR52) 2016; 80
9918_CR83
N Scicluna (9918_CR60) 2015; 9
A Rodriguez (9918_CR58) 2014; 344
9918_CR81
AJ Enright (9918_CR20) 2002; 30
JM Kraus (9918_CR42) 2010; 11
9918_CR82
9918_CR43
9918_CR44
References_xml – reference: SheikholeslamiGChatterjeeSZhangAWavecluster: a wavelet-based clustering approach for spatial data in very large databasesVLDB J Int J Very Large Data Bases200083–428930410.1007/s007780050009
– reference: Wang B, Yin J, Hua Q, Wu Z, Cao J (2016) Parallelizing k-means-based clustering on spark. In: International conference on advanced cloud and Big Data (CBD). IEEE, Chengdu, pp 31–36. https://doi.org/10.1109/CBD.2016.016
– reference: Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of the 29th international conference on very large data bases, VLDB ’03, vol 29. VLDB Endowment, Berlin, pp 81–92
– reference: HadianAShahrivariSHigh performance parallel k-means clustering for disk-resident datasets on multi-core CPUsJ Supercomput201469284586310.1007/s11227-014-1185-y
– reference: HavensTCBezdekJCLeckieCHallLOPalaniswamiMFuzzy c-means algorithms for very large dataIEEE Trans Fuzzy Syst20122061130114610.1109/TFUZZ.2012.2201485
– reference: Altinigneli MC, Plant C, Böhm C (2013) Massively parallel expectation maximization using graphics processing units. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13. ACM, Chicago, pp 838–846. https://doi.org/10.1145/2487575.2487628
– reference: Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, SIGMOD ’99. ACM, Philadelphia, pp 49–60. https://doi.org/10.1145/304182.304187
– reference: MeloDToledoSMouraoFSachettoRAndradeGFerreiraRParthasarathySRochaLHierarchical density-based clustering based on GPU accelerated data indexing strategyProcedia Comput Sci20168095196110.1016/j.procs.2016.05.389
– reference: RodriguezALaioAClustering by fast search and find of density peaksScience201434461911492149610.1126/science.1242072
– reference: CuomoSDe AngelisVFarinaGMarcellinoLToraldoGA GPU-accelerated parallel k-means algorithmComput Electr Eng201710.1016/j.compeleceng.2017.12.002
– reference: SciclunaNBouganisCSARC 2014: a multidimensional FPGA-based parallel DBSCAN architectureACM Trans Reconfig Technol Syst2015912:12:1510.1145/2724722
– reference: Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Governm., Press Office Los Angeles
– reference: Luo G, Luo X, Gooch TF, Tian L, Qin K (2016) A parallel DBSCAN algorithm based on spark. In: IEEE international conferences on big data and cloud computing, social computing and networking, sustainable computing and communications. IEEE, Atlanta, pp 548–553. https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.85
– reference: Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu J, Fox G (2010) Twister: a runtime for iterative MapReduce. In: Proceedings of the 19th ACM international symposium on high performance distributed computing. ACM, pp 810–818
– reference: BharillNTiwariAMalviyaAFuzzy based scalable clustering algorithms for handling big data using apache sparkIEEE Trans Big Data20162433935210.1109/TBDATA.2016.2622288
– reference: Huang P, Li X, Yuan B (2015) A parallel gpu-based approach to clustering very fast data streams. In: Proceedings of the 24th ACM international on conference on information and knowledge management, CIKM ’15. ACM, Melbourne, pp 23–32. https://doi.org/10.1145/2806416.2806545
– reference: Wang J, Yuan D, Jiang M (2012) Parallel K-PSO based on MapReduce. In: IEEE 14th international conference on communication technology, pp 1203–1208. IEEE, Chengdu. https://doi.org/10.1109/ICCT.2012.6511380
– reference: Han D, Agrawal A, Liao WK, Choudhary A (2016) A novel scalable DBSCAN algorithm with Spark. In: IEEE international parallel and distributed processing symposium workshops (IPDPSW). IEEE, Chicago, pp 1393–1402. https://doi.org/10.1109/IPDPSW.2016.57
– reference: Harish P, Narayanan PJ (2007) Accelerating large graph algorithms on the GPU using CUDA. In: High performance computing—HiPC 2007. Lecture notes in computer science. Springer, Berlin, pp 197–208. https://doi.org/10.1007/978-3-540-77220-0_21
– reference: VoulgarisSGavidiaDvan SteenMCyclon: inexpensive membership management for unstructured p2p overlaysJ Netw Syst Manag200513219721710.1007/s10922-005-4441-x
– reference: Ben-DorAShamirRYakhiniZClustering gene expression patternsJ Comput Biol199963–428129710.1089/106652799318274
– reference: Hussain HM, Benkrid K, Seker H, Erdogan AT (2011) FPGA implementation of k-means algorithm for bioinformatics application: an accelerated approach to clustering microarray data. In: NASA/ESA conference on adaptive hardware and systems (AHS). IEEE, San Diego, pp 248–255. https://doi.org/10.1109/AHS.2011.5963944
– reference: LiuRLiXDuLZhiSWeiMParallel implementation of density peaks clustering algorithm based on sparkProcedia Comput Sci2017107Supplement C44244710.1016/j.procs.2017.03.138
– reference: Nickolls J, Buck I, Garland M (2008) Scalable parallel programming. In: IEEE hot chips 20 symposium (HCS). IEEE, pp 40–53
– reference: TsapanosNTefasANikolaidisNPitasIA distributed framework for trimmed kernel k-means clusteringPattern Recognit20154882685269810.1016/j.patcog.2015.02.0201394.68315
– reference: FahadAAlshatriNTariZAlamriAKhalilIZomayaAYFoufouSBourasAA survey of clustering algorithms for Big Data: taxonomy and empirical analysisIEEE Trans Emerg Top Comput20142326727910.1109/TETC.2014.2330519
– reference: KanungoTMountDMNetanyahuNSPiatkoCDSilvermanRWuAYAn efficient k-means clustering algorithm: analysis and implementationIEEE Trans Pattern Anal Mach Intell200224788189210.1109/TPAMI.2002.10176161414.68128
– reference: BrownSDFrancisRJRoseJVranesicZGField-programmable gate arrays1992BostonSpringer10.1007/978-1-4615-3572-00780.68114
– reference: Gouineau F, Landry T, Triplet T (2016) Patchwork, a scalable density-grid clustering algorithm. In: Proceedings of the 31st annual ACM symposium on applied computing, SAC ’16. ACM, Pisa, pp 824–831. https://doi.org/10.1145/2851613.2851643
– reference: Zhao W, Ma H, He Q (2009) Parallel k-means clustering based on MapReduce. In: Cloud computing. Lecture notes in computer science. Springer, Berlin, pp 674–679. https://doi.org/10.1007/978-3-642-10665-1_71
– reference: HartiganJAWongMAAlgorithm as 136: a k-means clustering algorithmAppl Stat197928110010.2307/23468300447.62062
– reference: OwensJHoustonMLuebkeDGreenSStoneJPhillipsJGPU computingProc IEEE200896587989910.1109/JPROC.2008.917757
– reference: Patwary MA, Palsetia D, Agrawal A, Liao WK, Manne F, Choudhary A (2013) Scalable parallel optics data clustering using graph algorithmic techniques. In: Proceedings of the international conference on high performance computing, networking, storage and analysis, SC ’13. ACM, Denver, pp 49:1–49:12. https://doi.org/10.1145/2503210.2503255
– reference: YıldırımAAÖzdoğanCParallel wavecluster: a linear scaling parallel clustering algorithm implementation with application to very large datasetsJ Parallel Distrib Comput201171795596210.1016/j.jpdc.2011.03.007
– reference: Farooq U, Marrakchi Z, Mehrez H (2012) FPGA architectures: an overview. In: Tree-based heterogeneous FPGA architectures, chap. 2. Springer, New York, pp 7–48. https://doi.org/10.1007/978-1-4614-3594-5_2
– reference: CuiXZhuPYangXLiKJiCOptimized big data k-means clustering using MapReduceJ Supercomput20147031249125910.1007/s11227-014-1225-7
– reference: Yang J, Li X (2013) MapReduce based method for big data semantic clustering. In: IEEE international conference on systems, man, and cybernetics. IEEE, pp 2814–2819. https://doi.org/10.1109/SMC.2013.480
– reference: Zayani A, Ben N’Cir CE, Essoussi N (2016) Parallel clustering method for non-disjoint partitioning of large-scale data based on spark framework. In: IEEE international conference on big data (Big Data). IEEE, Washington, DC, pp 1064–1069. https://doi.org/10.1109/BigData.2016.7840708
– reference: Van DongenSGraph clustering via a discrete uncoupling processSIAM J Matrix Anal Appl2008301121141239957210.1137/0406086351161.68041
– reference: Lin F, Cohen WW (2010) Power iteration clustering. In: Proceedings of the 27th international conference on machine learning (ICML-10). Omnipress, Haifa, pp 655–662
– reference: AzimiRSajediHGhayekhlooMA distributed data clustering algorithm in p2p networksAppl Soft Comput201751Supplement C14716710.1016/j.asoc.2016.11.045
– reference: Sinha A, Jana PK (2016) A novel k-means based clustering algorithm for big data. In: International conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 1875–1879. https://doi.org/10.1109/ICACCI.2016.7732323
– reference: LinKWLinCHHsiaoCYA parallel and scalable cast-based clustering algorithm on GPUSoft Comput201418353954710.1007/s00500-013-1074-y
– reference: SkillicornDStrategies for parallel data miningIEEE Concurr199974263510.1109/4434.806976
– reference: AndradeGRamosGMadeiraDSachettoRFerreiraRRochaLG-DBSCAN: a GPU accelerated algorithm for density-based clusteringProcedia Comput Sci201318Supplement C36937810.1016/j.procs.2013.05.200
– reference: Gehweiler J, Meyerhenke H (2010) A distributed diffusive heuristic for clustering a virtual p2p supercomputer. In: IEEE international symposium on parallel distributed processing, workshops and Phd forum (IPDPSW). IEEE, Atlanta, pp 1–8. https://doi.org/10.1109/IPDPSW.2010.5470922
– reference: Savvas IK, Tselios D (2016) Parallelizing DBSCAN algorithm using MPI. In: IEEE 25th International conference on enabling technologies: infrastructure for collaborative enterprises (WETICE). IEEE, Paris, pp 77–82. https://doi.org/10.1109/WETICE.2016.26
– reference: SinghDReddyCKA survey on platforms for big data analyticsJ Big Data201421810.1186/s40537-014-0008-6
– reference: CuiXGaoJPotokTEA flocking based algorithm for document clustering analysisJ Syst Archit200652850551510.1016/j.sysarc.2006.02.003
– reference: Han J, Kamber M, Pei J (2012) Cluster analysis: basic concepts and methods. In: Data mining, The Morgan Kaufmann series in data management systems, 3rd edn, chap. 10. Morgan Kaufmann, pp 443–495. https://doi.org/10.1016/B978-0-12-381479-1.00010-1
– reference: Laney D (2001) 3D data management: controlling data volume, velocity, and variety. Technical Report, 949, Gartner
– reference: KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J Sci Comput1998201359392163907310.1137/S10648275952879970915.68129
– reference: Zhang Y, Mueller F, Cui X, Potok T (2010) Large-scale multi-dimensional document clustering on GPU clusters. In: IEEE international symposium on parallel distributed processing (IPDPS). IEEE, pp 1–10. https://doi.org/10.1109/IPDPS.2010.5470429
– reference: Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on symposium on opearting systems design and implementation, OSDI’04, vol 6. USENIX Association, Berkeley
– reference: KrausJMKestlerHAA highly efficient multi-core algorithm for clustering extremely large datasetsBMC Bioinform201011116910.1186/1471-2105-11-169
– reference: AnFKoideTMattauschHJA k-means-based multi-prototype high-speed learning system with FPGA-implemented coprocessor for 1-NN searchingIEICE Trans Inf Syst2012E95–D92327233810.1587/transinf.E95.D.2327
– reference: EnrightAJVan DongenSOuzounisCAAn efficient algorithm for large-scale detection of protein familiesNucleic Acids Res20023071575158410.1093/nar/30.7.1575
– reference: Ferreira Cordeiro RL, Traina Junior C, Machado Traina AJ, López J, Kang U, Faloutsos C (2011) Clustering very large multi-dimensional datasets with mapreduce. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11. ACM, San Diego, pp 690–698. https://doi.org/10.1145/2020408.2020516
– reference: Milojicic DS, Kalogeraki V, Lukose R, Nagaraja K, Pruyne J, Richard B, Rollins S, Xu Z (2002) Peer-to-peer computing. Technical Report. HPL-2002-57, HP Labs
– reference: Cordova I, Moh TS (2015) DBSCAN on resilient distributed datasets. In: International conference on high performance computing simulation (HPCS). IEEE, Amsterdam, pp 531–540. https://doi.org/10.1109/HPCSim.2015.7237086
– reference: StoneJEGoharaDShiGOpenCL: a parallel programming standard for heterogeneous computing systemsComput Sci Eng20101236610.1109/MCSE.2010.69
– reference: Mallios X, Vassalos V, Venetis T, Vlachou A (2016) A framework for clustering and classification of big data using spark. In: Debruyne C, Panetto H, Meersman R, Dillon T, Kühn E, O’Sullivan D, Ardagna CA (eds) On the move to meaningful internet systems: OTM 2016 conferences, vol 10033. Springer, Cham, pp 344–362. https://doi.org/10.1007/978-3-319-48472-3_20
– reference: SunZFoxGGuWLiZA parallel clustering method combined information bottleneck theory and centroid-based clusteringJ Supercomput201469145246710.1007/s11227-014-1174-1
– reference: HeYTanHLuoWFengSFanJMR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed dataFront Comput Sci2014818399315159110.1007/s11704-013-3158-3
– reference: BustamamABurrageKHamiltonNAFast parallel markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse formatIEEE/ACM Trans Comput Biol Bioinform20129367969210.1109/TCBB.2011.68
– reference: BanharnsakunAA mapreduce-based artificial bee colony for large-scale data clusteringPattern Recognit Lett201793Supplement C788410.1016/j.patrec.2016.07.027
– reference: Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, KDD’96. AAAI Press, Portland, pp 226–231
– reference: ErdemAGündemTİM-FDBSCAN: a multicore density-based uncertain data clustering algorithmTurk J Electr Eng Comput Sci20142214315410.3906/elk-1202-83
– reference: Gepner P, Kowalik MF (2006) Multi-core processors: New way to achieve high system performance. In: International symposium on parallel computing in electrical engineering (PARELEC’06). Bialystok, Poland, pp 9–13. https://doi.org/10.1109/PARELEC.2006.54
– reference: Tsapanos N, Tefas A, Nikolaidis N, Pitas I (2016) Efficient mapreduce kernel k-means for big data clustering. In: Proceedings of the 9th hellenic conference on artificial intelligence, SETN ’16. ACM, Thessaloniki, pp 28:1–28:5. https://doi.org/10.1145/2903220.2903255
– reference: AkhterSRobertsJMulti-core programming: increasing performance through software multi-threading20061HillsboroIntel Press
– reference: NanniMPedreschiDTime-focused clustering of trajectories of moving objectsJ Intell Inf Syst200627326728910.1007/s10844-006-9953-7
– reference: JinRKouCLiuRLiYEfficient parallel spectral clustering algorithm design for large data sets under cloud computing environmentJ Cloud Comput Adv Syst Appl2013211810.1186/2192-113X-2-18
– reference: Jia F, Wang C, Li X, Zhou X (2015) SAKMA: specialized FPGA-based accelerator architecture for data-intensive k-means algorithms. In: Algorithms and architectures for parallel processing. Springer, Cham, pp 106–119. https://doi.org/10.1007/978-3-319-27122-4_8
– reference: Winterstein F, Bayliss S, Constantinides GA (2013) FPGA-based k-means clustering using tree-based data structures. In: The 23rd international conference on field programmable logic and applications. IEEE, Porto, pp 1–6. https://doi.org/10.1109/FPL.2013.6645501
– reference: Kriegel HP, Pfeifle M (2005) Density-based clustering of uncertain data. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, Chicago, pp 672–677. https://doi.org/10.1145/1081870.1081955
– reference: SotiropoulouCLGkaitatzisSAnnoviABerettaMGiannettiPKordasKLucianoPNikolaidisSPetridouCVolpiGA multi-core FPGA-based 2D-clustering implementation for real-time image processingIEEE Trans Nuclear Sci20146163599360610.1109/TNS.2014.2364183
– reference: Li C, Zhang Y, Jiao M, Yu G (2014) Mux-Kmeans: multiplex Kmeans for clustering large-scale data set. In: Proceedings of the 5th ACM workshop on scientific cloud computing, ScienceCloud ’14. ACM, Vancouver, pp 25–32. https://doi.org/10.1145/2608029.2608033
– reference: ShiSYueQWangQFPGA based accelerator for parallel DBSCAN algorithmComput Model New Technol2014182135142
– reference: Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computing, HotCloud’10. USENIX Association, Berkeley
– reference: ValiantLGA bridging model for parallel computationCommun ACM199033810311110.1145/79173.79181
– reference: YanWBrahmakshatriyaUXueYGilderMWiseBp-PIC: parallel power iteration clustering for big dataJ Parallel Distrib Comput201373335235910.1016/j.jpdc.2012.06.009
– reference: DengZHuYZhuMHuangXDuBA scalable and fast optics for clustering trajectory big dataCluster Comput201518254956210.1007/s10586-014-0413-9
– volume: 71
  start-page: 955
  issue: 7
  year: 2011
  ident: 9918_CR79
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2011.03.007
– volume: 93
  start-page: 78
  issue: Supplement C
  year: 2017
  ident: 9918_CR8
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2016.07.027
– volume-title: Multi-core programming: increasing performance through software multi-threading
  year: 2006
  ident: 9918_CR2
– volume: 13
  start-page: 197
  issue: 2
  year: 2005
  ident: 9918_CR73
  publication-title: J Netw Syst Manag
  doi: 10.1007/s10922-005-4441-x
– volume: 12
  start-page: 66
  issue: 3
  year: 2010
  ident: 9918_CR67
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2010.69
– volume: 52
  start-page: 505
  issue: 8
  year: 2006
  ident: 9918_CR14
  publication-title: J Syst Archit
  doi: 10.1016/j.sysarc.2006.02.003
– volume: E95–D
  start-page: 2327
  issue: 9
  year: 2012
  ident: 9918_CR4
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.E95.D.2327
– ident: 9918_CR6
  doi: 10.1145/304182.304187
– volume: 107
  start-page: 442
  issue: Supplement C
  year: 2017
  ident: 9918_CR48
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.03.138
– ident: 9918_CR59
  doi: 10.1109/WETICE.2016.26
– ident: 9918_CR3
  doi: 10.1145/2487575.2487628
– volume: 18
  start-page: 539
  issue: 3
  year: 2014
  ident: 9918_CR46
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1074-y
– volume: 96
  start-page: 879
  issue: 5
  year: 2008
  ident: 9918_CR56
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2008.917757
– volume: 2
  start-page: 18
  issue: 1
  year: 2013
  ident: 9918_CR39
  publication-title: J Cloud Comput Adv Syst Appl
  doi: 10.1186/2192-113X-2-18
– ident: 9918_CR17
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 9918_CR40
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2002.1017616
– year: 2017
  ident: 9918_CR16
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.12.002
– ident: 9918_CR80
– ident: 9918_CR44
  doi: 10.6028/jres.045.026
– volume: 11
  start-page: 169
  issue: 1
  year: 2010
  ident: 9918_CR42
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-169
– volume: 18
  start-page: 369
  issue: Supplement C
  year: 2013
  ident: 9918_CR5
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2013.05.200
– volume: 2
  start-page: 339
  issue: 4
  year: 2016
  ident: 9918_CR10
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2016.2622288
– volume: 18
  start-page: 135
  issue: 2
  year: 2014
  ident: 9918_CR62
  publication-title: Comput Model New Technol
– volume: 22
  start-page: 143
  year: 2014
  ident: 9918_CR21
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1202-83
– ident: 9918_CR70
  doi: 10.1145/2903220.2903255
– ident: 9918_CR50
  doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.85
– volume: 9
  start-page: 2:1
  issue: 1
  year: 2015
  ident: 9918_CR60
  publication-title: ACM Trans Reconfig Technol Syst
  doi: 10.1145/2724722
– ident: 9918_CR49
  doi: 10.1145/2608029.2608033
– ident: 9918_CR47
– ident: 9918_CR22
– volume: 30
  start-page: 121
  issue: 1
  year: 2008
  ident: 9918_CR72
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/040608635
– ident: 9918_CR27
  doi: 10.1109/PARELEC.2006.54
– ident: 9918_CR26
  doi: 10.1109/IPDPSW.2010.5470922
– ident: 9918_CR24
  doi: 10.1007/978-1-4614-3594-5_2
– ident: 9918_CR38
  doi: 10.1007/978-3-319-27122-4_8
– ident: 9918_CR1
  doi: 10.1016/B978-012722442-8/50016-1
– volume: 8
  start-page: 83
  issue: 1
  year: 2014
  ident: 9918_CR35
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-013-3158-3
– volume: 20
  start-page: 359
  issue: 1
  year: 1998
  ident: 9918_CR41
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827595287997
– ident: 9918_CR37
  doi: 10.1109/AHS.2011.5963944
– ident: 9918_CR13
  doi: 10.1109/HPCSim.2015.7237086
– volume: 2
  start-page: 267
  issue: 3
  year: 2014
  ident: 9918_CR23
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2014.2330519
– volume: 6
  start-page: 281
  issue: 3–4
  year: 1999
  ident: 9918_CR9
  publication-title: J Comput Biol
  doi: 10.1089/106652799318274
– ident: 9918_CR25
  doi: 10.1145/2020408.2020516
– ident: 9918_CR55
  doi: 10.1109/HOTCHIPS.2008.7476525
– ident: 9918_CR57
  doi: 10.1145/2503210.2503255
– volume: 61
  start-page: 3599
  issue: 6
  year: 2014
  ident: 9918_CR66
  publication-title: IEEE Trans Nuclear Sci
  doi: 10.1109/TNS.2014.2364183
– volume: 18
  start-page: 549
  issue: 2
  year: 2015
  ident: 9918_CR18
  publication-title: Cluster Comput
  doi: 10.1007/s10586-014-0413-9
– volume: 73
  start-page: 352
  issue: 3
  year: 2013
  ident: 9918_CR77
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2012.06.009
– ident: 9918_CR19
  doi: 10.1145/1851476.1851593
– volume: 69
  start-page: 845
  issue: 2
  year: 2014
  ident: 9918_CR29
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1185-y
– volume: 70
  start-page: 1249
  issue: 3
  year: 2014
  ident: 9918_CR15
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1225-7
– ident: 9918_CR30
  doi: 10.1109/IPDPSW.2016.57
– volume: 8
  start-page: 289
  issue: 3–4
  year: 2000
  ident: 9918_CR61
  publication-title: VLDB J Int J Very Large Data Bases
  doi: 10.1007/s007780050009
– volume: 9
  start-page: 679
  issue: 3
  year: 2012
  ident: 9918_CR12
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2011.68
– ident: 9918_CR31
  doi: 10.1016/B978-0-12-381479-1.00010-1
– volume: 30
  start-page: 1575
  issue: 7
  year: 2002
  ident: 9918_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.7.1575
– ident: 9918_CR53
– volume: 80
  start-page: 951
  year: 2016
  ident: 9918_CR52
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.05.389
– volume: 2
  start-page: 8
  issue: 1
  year: 2014
  ident: 9918_CR63
  publication-title: J Big Data
  doi: 10.1186/s40537-014-0008-6
– ident: 9918_CR28
  doi: 10.1145/2851613.2851643
– volume: 20
  start-page: 1130
  issue: 6
  year: 2012
  ident: 9918_CR34
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2201485
– volume: 69
  start-page: 452
  issue: 1
  year: 2014
  ident: 9918_CR68
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1174-1
– ident: 9918_CR76
  doi: 10.1109/FPL.2013.6645501
– volume-title: Field-programmable gate arrays
  year: 1992
  ident: 9918_CR11
  doi: 10.1007/978-1-4615-3572-0
– volume: 51
  start-page: 147
  issue: Supplement C
  year: 2017
  ident: 9918_CR7
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.11.045
– volume: 27
  start-page: 267
  issue: 3
  year: 2006
  ident: 9918_CR54
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-006-9953-7
– volume: 7
  start-page: 26
  issue: 4
  year: 1999
  ident: 9918_CR65
  publication-title: IEEE Concurr
  doi: 10.1109/4434.806976
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 9918_CR33
  publication-title: Appl Stat
  doi: 10.2307/2346830
– ident: 9918_CR74
  doi: 10.1109/CBD.2016.016
– ident: 9918_CR36
  doi: 10.1145/2806416.2806545
– ident: 9918_CR75
  doi: 10.1109/ICCT.2012.6511380
– ident: 9918_CR45
– ident: 9918_CR43
  doi: 10.1145/1081870.1081955
– ident: 9918_CR32
  doi: 10.1007/978-3-540-77220-0_21
– ident: 9918_CR64
  doi: 10.1109/ICACCI.2016.7732323
– ident: 9918_CR78
  doi: 10.1109/SMC.2013.480
– ident: 9918_CR83
  doi: 10.1007/978-3-642-10665-1_71
– volume: 48
  start-page: 2685
  issue: 8
  year: 2015
  ident: 9918_CR69
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.02.020
– volume: 33
  start-page: 103
  issue: 8
  year: 1990
  ident: 9918_CR71
  publication-title: Commun ACM
  doi: 10.1145/79173.79181
– ident: 9918_CR81
  doi: 10.1109/BigData.2016.7840708
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 9918_CR58
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: 9918_CR51
  doi: 10.1007/978-3-319-48472-3_20
– ident: 9918_CR82
  doi: 10.1109/IPDPS.2010.5470429
SSID ssj0005243
Score 2.4964182
Snippet Data clustering is one of the most studied data mining tasks. It aims, through various methods, to discover previously unknown groups within the data sets. In...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2411
SubjectTerms Algorithms
Artificial Intelligence
Big Data
Classification
Clustering
Computer Science
Context
Data mining
Digital integrated circuits
Field programmable gate arrays
Information retrieval
Microprocessors
Peer relationships
Peer to peer computing
Peers
Social networks
Surveys
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWDhjSgU5AGJASyal-NMqBQQC4gBpG6W49gFKbSlSZH495xTh_IQXZiTOE4-39139j0AjjLfMCODiPpSa4oM3CYrZylVWralySLd5mnVbCK-u-O9XnLvNtwKF1ZZ68RKUWdDZffIz9BUx6hsURzOR6_Udo2yp6uuhcYiLFlmY0P6btvdLyEe06g5nyUUXQvPJc241LmQ-dQ6T8iRPFwt3wzTT_X865y0Mj_Xa_-d-DqsOuJJOtOVsgELerAJa3VTB-JkfAviDikm4zf9ToYDYguD57nOicontqICTo3IvI_Dl08vBUHCSy6e--RSlnIbHq-vHro31HVXoCqIeEk9GcqYy4iptgnSQKKrmLDEZCpWgTZ-ihdTY_kLZxlLGQ8Y4yZkBhkX4o6fswONwXCgd4FEaaw8pI5BrL1QmTQxCpkE12HGmAwNa4JX_1qhXOlx2wEjF7OiyRYOgXCICg7hN-Hk85nRtPDG3LuPLWLCSiWOrKRLLsD52fpWooMm2EdfkntNaNUwCSeuhZhh1ITTGujZ5b_fuzd_tH1Y8W0MTBXp04JGOZ7oA1hWb-VzMT6sFusHrq_s3w
  priority: 102
  providerName: ProQuest
Title A survey on parallel clustering algorithms for Big Data
URI https://link.springer.com/article/10.1007/s10462-020-09918-2
https://www.proquest.com/docview/2507362763
Volume 54
WOSCitedRecordID wos000575762200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-MwFH5imcNc2GZGlKXyAYkDY6nZbOdYNiEhSsUOF8tx7FIptKhJkfj3PKcJ2wASc7EU2fHynu33PfktABupb5lVQUR9ZQxFBO6cldOEaqNayqaRaYmkTDbBOx1xdRV3K6ewvLZ2r58ky5v6lbNbyHzq1B1ENR7ydxpmUdwJl7Dh5PTilWHHxFbOZzFFhcKrXGU-7uONOHp_Kf_zOloKnf35_5vuAsxVIJO0J7tiEabMYAnm6wQOpDrPv4C3ST4ePZhHMhwQFwQ8y0xGdDZ20RNwMKKy3nDUL27vcoLglmz3e2RXFeo3nO_vne0c0CqTAtVBJArqqVBxoSKmWzZIAoVqYcxim2quA2P9BCsT67CKYClLmAgYEzZkFtEV8hivoD8wMxgOzDKQKOHaQ5gYcOOF2iax1YgahAlTxlRoWQO8mqBSV2HGXbaLTL4ESHaUkUgZWVJG-g3Yev7nfhJk48vWm45P0p1A7FmrypEA5-diWck2ilsf9UbhNWCtZqWsjmYuEfNxlNq4qAb8rVn3Uv35uCvfa74KP31n_1Ja-azBTDEam3X4oR-Kfj5qwjS_vG7C7PZep3uCX4ecYnnU2nGld4xlN7pplhv7Cals6UU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9ibNK4wGCbKAPmw9AOm7XGSWzngFD5Eqis2oFJ3DzHsQEptNCkRf2n9jfynCaUMY0bh52T-Ot9_V78PgA-Zcxxp8OYMm0tRQTuk5WzlBqr29plsW3LtGo2IXo9eXaW_JiD300ujA-rbHRipaizgfH_yL-hqRaobFEcdq5vqO8a5W9XmxYaU7bo2sktumzF9vE-0neLscOD070jWncVoCaMZUkDHWkhdcxN24VpqNFFSnjiMiNMaB1L8WHqvN2WPOMplyHn0kXcIdLA_eL8OO4LeBmFUni56gr6IKRkGqXHeELRlQnqJJ06VS_ijHpnDTFZgNz5hyF8bA7-upetzN3h0v92UG9gsQbWpDOVhGWYs_0VWGqaVpBah70F0SHFaDi2EzLoE1_4PM9tTkw-8hUj8CiIzs9xO-XFVUEQ0JPdy3Oyr0v9Dn4-y_Lfw3x_0LerQOJUmAChcShsEBmXJs4gUpI2yjjXkeMtCBpSKlOXVvcdPnI1Kwrtya-Q_Koiv2It-HL_zfW0sMiTb3_2HKK81sGRja6TJ3B9vn6X6iDEYOgry6AF6w1bqFodFWrGEy342jDW7PG_5117erSP8Pro9PuJOjnudT_AAvPxPlVU0zrMl8OR3YBXZlxeFsPNSlAI_HpuhrsDLPxKBQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQBUXXi3q8mh9oOLQWmycxHEOFdp2WYGoVnsoEurFdRybIoVd2GRB_DV-XcdZh22pyo1Dz04cPz7PfBPPA2A3Z5ZbFcaUKWMoMnAXrJxnVBvVVjaPTVtkdbGJpN8XZ2fpYA7um1gY51bZyMRaUOcj7f6R76OqTlDY4nHYt94tYtDtHVxdU1dByt20NuU0phA5MXe3aL6Vn467uNfvGesdfvtyRH2FAarDWFQ0UJFKhIq5btswCxWaSylPba4THRrLMmzMrNPhguc84yLkXNiIW2QdOHccC_b7AhYStDGdO-Eg_v6be8nUY4_xlKJZE_iAHR-2F3FGneGG_CxApP6hFB-rhr_uaGvV11v5nxdtFZY94Sad6QlZgzkzXIeVppgF8bLtFSQdUk7GN-aOjIbEJUQvClMQXUxcJglcFqKKc5xO9fOyJEj0yeeLc9JVlXoNp88y_A2YH46G5g2QOEt0gJQ5TEwQaZulViODEibKOVeR5S0Imm2V2qdcd5U_CjlLFu2gIBEKsoaCZC348PDO1TThyJNP7zm0SCeNsGetfFAFjs_l9ZIdpB4MbWgRtGC7gYj0YqqUM3y04GMDslnzv7-7-XRv7-Al4kx-Pe6fbMESc25AtbPTNsxX44nZgUV9U12U47f1mSHw47nx9guuVVMp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+parallel+clustering+algorithms+for+Big+Data&rft.jtitle=The+Artificial+intelligence+review&rft.au=Dafir%2C+Zineb&rft.au=Lamari%2C+Yasmine&rft.au=Slaoui%2C+Said+Chah&rft.date=2021-04-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=54&rft.issue=4&rft.spage=2411&rft.epage=2443&rft_id=info:doi/10.1007%2Fs10462-020-09918-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_020_09918_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon