Soft Actor-Critic for Navigation of Mobile Robots
This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robo...
Uloženo v:
| Vydáno v: | Journal of intelligent & robotic systems Ročník 102; číslo 2; s. 31 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2021
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0921-0296, 1573-0409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at
https://github.com/dranaju/project
). |
|---|---|
| AbstractList | This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at
https://github.com/dranaju/project
). This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at https://github.com/dranaju/project). This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at Keywords Soft actor-critic * Deep deterministic policy gradients * Deep reinforcement learning * Navigation for mobile robots |
| ArticleNumber | 31 |
| Audience | Academic |
| Author | de Jesus, Junior Costa Grando, Ricardo Bedin Kich, Victor Augusto Kolling, Alisson Henrique Gamarra, Daniel Fernando Tello Cuadros, Marco Antonio de Souza Leite |
| Author_xml | – sequence: 1 givenname: Junior Costa surname: de Jesus fullname: de Jesus, Junior Costa email: dranaju@gmail.com organization: Federal University of Rio Grande – sequence: 2 givenname: Victor Augusto surname: Kich fullname: Kich, Victor Augusto organization: Federal University of Santa Maria – sequence: 3 givenname: Alisson Henrique surname: Kolling fullname: Kolling, Alisson Henrique organization: Federal University of Santa Maria – sequence: 4 givenname: Ricardo Bedin surname: Grando fullname: Grando, Ricardo Bedin organization: Federal University of Rio Grande – sequence: 5 givenname: Marco Antonio de Souza Leite surname: Cuadros fullname: Cuadros, Marco Antonio de Souza Leite organization: Federal Institute of Espirito Santo – sequence: 6 givenname: Daniel Fernando Tello surname: Gamarra fullname: Gamarra, Daniel Fernando Tello organization: Department of Processing of Electrical Energy (DPEE), Federal University of Santa Maria |
| BookMark | eNp9kEtLAzEQx4NUsK1-AU8LnrdOkn1kj6X4gqrg4xyyeZSU7aYmqeC3N9sVBA-Swxwyv_nP_GZo0rteI3SJYYEB6uuAgRVVDgTngGlV5-UJmuKypjkU0EzQFJrhizTVGZqFsAWAhpXNFOFXZ2K2lNH5fOVttDIzzmdP4tNuRLSuz5zJHl1rO529uNbFcI5OjeiCvvipc_R-e_O2us_Xz3cPq-U6l7RkMcd1UZum1kYpZSRrW6BU4IqBlLhoVJFqRQrVtkI3BhQQrVXJCiYU1QJoSefoapy79-7joEPkW3fwfYrkpCQ1rQglNHUtxq6N6DS3vXHRC5me0jsrkySTNufLmhRQUgoDQEZAeheC14bvvd0J_8Ux8MElH13y5JIfXfJhF_YHkjYe9aQ02_2P0hENKaffaP97xj_UN7nIiTA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3429230 crossref_primary_10_1002_cav_2113 crossref_primary_10_3390_mi15010112 crossref_primary_10_1109_TMECH_2022_3182427 crossref_primary_10_1016_j_eswa_2025_126923 crossref_primary_10_1007_s13042_024_02281_6 crossref_primary_10_1016_j_rser_2024_114648 crossref_primary_10_1007_s10489_024_05720_7 crossref_primary_10_3390_biomimetics8020264 crossref_primary_10_1007_s40430_023_04570_7 crossref_primary_10_1016_j_segan_2023_101177 crossref_primary_10_1007_s10489_025_06747_0 crossref_primary_10_1002_aisy_202400112 crossref_primary_10_1016_j_engappai_2023_106197 crossref_primary_10_1016_j_jprocont_2023_103063 crossref_primary_10_1109_ACCESS_2023_3305339 crossref_primary_10_1109_TASE_2024_3410162 crossref_primary_10_1109_OJCS_2025_3600916 crossref_primary_10_3390_s23249802 crossref_primary_10_1109_TNNLS_2022_3167688 crossref_primary_10_1007_s11370_024_00514_9 crossref_primary_10_3390_s23063239 crossref_primary_10_1016_j_displa_2023_102440 crossref_primary_10_3389_fnbot_2022_1025817 crossref_primary_10_1002_ett_4929 crossref_primary_10_1016_j_buildenv_2024_112347 crossref_primary_10_1007_s41315_024_00411_5 crossref_primary_10_1016_j_engappai_2025_110373 crossref_primary_10_1177_09544062251352644 crossref_primary_10_1109_TITS_2022_3162850 crossref_primary_10_1155_2024_5346187 crossref_primary_10_1177_09544062231174127 |
| Cites_doi | 10.1137/0330046 10.1186/s40638-016-0055-x 10.1609/aaai.v30i1.10295 10.1109/IROS.2017.8202134 10.1561/2200000071 10.1109/ICRA.2017.7989385 10.1109/LARS/SBR/WRE51543.2020.9307003 10.1177/0278364913495721 10.1109/ICAR46387.2019.8981638 10.1109/IROS.2017.8202312 10.1007/978-3-030-16660-1_21 10.1109/HPCA.2019.00048 10.18653/v1/P19-1285 10.1038/nature14236 10.18201/ijisae.08103 10.1109/ICRA.2017.7989381 10.1103/PhysRev.36.823 10.1109/ISAMSR.2015.7379780 10.4114/intartif.vol22iss63pp121-134 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 COPYRIGHT 2021 Springer Copyright Springer Nature B.V. Jun 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: COPYRIGHT 2021 Springer – notice: Copyright Springer Nature B.V. Jun 2021 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10846-021-01367-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| ExternalDocumentID | A724053303 10_1007_s10846_021_01367_5 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-1747f97efdddfc8bb033a1680cc149d40cc624dbbae9f0d02eed5848ad3ea0353 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650621700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-0296 |
| IngestDate | Sat Oct 18 22:50:23 EDT 2025 Sat Nov 29 09:49:39 EST 2025 Tue Nov 18 22:46:25 EST 2025 Sat Nov 29 01:33:01 EST 2025 Fri Feb 21 02:49:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep reinforcement learning Soft actor-critic Deep deterministic policy gradients Navigation for mobile robots |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-1747f97efdddfc8bb033a1680cc149d40cc624dbbae9f0d02eed5848ad3ea0353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2527362323 |
| PQPubID | 326251 |
| ParticipantIDs | proquest_journals_2527362323 gale_infotracacademiconefile_A724053303 crossref_primary_10_1007_s10846_021_01367_5 crossref_citationtrail_10_1007_s10846_021_01367_5 springer_journals_10_1007_s10846_021_01367_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20210600 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1509.02971 (2016) KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt. J. Robot. Res.201332111238127410.1177/0278364913495721 Rao, D., McMahan, B.: Natural Language Processing with Pytorch: Build Intelligent Language Applications Using Deep Learning. O’Reilly Media, Inc (2019) Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3357–3364. IEEE (2017) Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., et al.: Machine learning at facebook: understanding inference at the edge. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp 331–344. IEEE (2019) PajazitiAAvdullahuPSlam–map building and navigation via rosInt. J. Intell. Syst. Appl. Eng.201424717510.18201/ijisae.08103 Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning, pp 2829–2838 (2016) Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor, [Online]. Available: arXiv:1801.01290 (2018) Fairchild, C., Harman, T.L.: ROS Robotics by Example. Packt Publishing Ltd (2016) de Assis Brasil, P.M., Pereira, F.U., de Souza Leite Cuadros, M.A., Cukla, A.R., Tello Gamarra, D.F.: A study on global path planners algorithms for the simulated turtlebot 3 robot in ros. In: 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), pp 1–6 (2020) Mahmood, A.R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J.: Benchmarking reinforcement learning algorithms on real-world robots, CoRR, vol. abs/1809.07731. [Online]. Available: arXiv:1809.07731 (2018) Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3389–3396. IEEE (2017) MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGHuman-level control through deep reinforcement learningNature2015518754052953310.1038/nature14236 Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning, [Online]. Available: arXiv:1312.5602 (2013) Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016) Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1511.05952 (2016) Chen, Y.F., Everett, M., Liu, M., How, J.P.: Socially aware motion planning with deep reinforcement learning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1343–1350. IEEE (2017) Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.: Transformer-xl: attentive language models beyond a fixed-length context, [Online]. Available: arXiv:1901.02860 (2019) Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T., Abbeel, P., Andrychowicz, M.: Parameter space noise for exploration, [Online]. Available: arXiv:1706.01905 (2017) Tai, L., Liu, M.: Towards cognitive exploration through deep reinforcement learning for mobile robots, CoRR, vol. abs/1610.01733. [Online]. Available: arXiv:1610.01733 (2016) PfitscherMWelferDdo NascimentoEJCuadrosMAdSLGamarraDFTArticle users activity gesture recognition on kinect sensor using convolutional neural networks and fastdtw for controlling movements of a mobile robotIntel. Artif.2019226312113410.4114/intartif.vol22iss63pp121-134 Joseph, L.: Mastering ROS for robotics programming. Packt Publishing Ltd (2015) Jesus, J.C., Bottega, J.A., Cuadros, M.A., Gamarra, D.F.: Deep deterministic policy gradient for navigation of mobile robots in simulated environments. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp 362–367. IEEE (2019) François-LavetVHendersonPIslamRBellemareMGPineauJAn introduction to deep reinforcement learningFound. Trends Mach. Learn.2018113-421935410.1561/2200000071[Online]. Available: http://dx.doi.org/10.1561/2200000071 Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1506.02438 (2016) UhlenbeckGEOrnsteinLSOn the theory of the brownian motionPhys. Rev.193036582310.1103/PhysRev.36.823 PolyakBTJuditskyABAcceleration of stochastic approximation by averagingSIAM J. Control Optim.1992304838855116781410.1137/0330046 Subramanian, V.: Deep learning with pytorch: a practical approach to building neural network models using PyTorch Packt. Publishing Ltd (2018) Laskin, M., Srinivas, A., Abbeel, P.: Curl: contrastive unsupervised representations for reinforcement learning. In: International Conference on Machine Learning, pp 5639–5650. PMLR (2020) da Silva, R.M., de Souza Leite Cuadros, M.A., Gamarra, D.F.T.: Comparison of a backstepping and a fuzzy controller for tracking a trajectory with a mobile robot. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) Intelligent Systems Design and Applications, pp 212–221. Cham, Springer International Publishing (2020) PyoYChoHJungRLimTRos Robot Programming2015ROBOTIS CoSeoul Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., Levine, S.: Soft actor-critic algorithms and applications, [Online]. Available: arXiv:1812.05905 (2018) Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 31–36. IEEE (2017) Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observable mdps. In: 2015 AAAI Fall Symposium Series (2015) SuttonRSBartoAGReinforcement Learning: an Introduction2018CambridgeMIT Press1407.68009 Zhelo, O., Zhang, J., Tai, L., Liu, M., Burgard, W.: Curiosity-driven exploration for mapless navigation with deep reinforcement learning, [Online]. Available: arXiv:1804.00456 (2018) Omara, H.I.M.A., Sahari, K.S.M.: Indoor mapping using kinect and ros. In: 2015 International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR), pp 110–116. IEEE (2015) Achiam, J.: Spinning up in deep reinforcement learning, GitHub repository. [Online]. Available: https://github.com/openai/spinningup (2018) 1367_CR18 1367_CR19 1367_CR16 1367_CR17 V Mnih (1367_CR22) 2015; 518 1367_CR10 1367_CR32 1367_CR11 1367_CR33 1367_CR30 1367_CR31 1367_CR14 1367_CR36 1367_CR37 1367_CR1 1367_CR12 1367_CR2 1367_CR35 1367_CR3 1367_CR4 1367_CR5 1367_CR6 1367_CR7 M Pfitscher (1367_CR27) 2019; 22 1367_CR8 1367_CR9 J Kober (1367_CR20) 2013; 32 GE Uhlenbeck (1367_CR23) 1930; 36 1367_CR29 RS Sutton (1367_CR38) 2018 1367_CR28 1367_CR21 Y Pyo (1367_CR34) 2015 V François-Lavet (1367_CR15) 2018; 11 1367_CR25 BT Polyak (1367_CR26) 1992; 30 1367_CR24 A Pajaziti (1367_CR13) 2014; 2 |
| References_xml | – reference: MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGHuman-level control through deep reinforcement learningNature2015518754052953310.1038/nature14236 – reference: Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., et al.: Machine learning at facebook: understanding inference at the edge. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp 331–344. IEEE (2019) – reference: Rao, D., McMahan, B.: Natural Language Processing with Pytorch: Build Intelligent Language Applications Using Deep Learning. O’Reilly Media, Inc (2019) – reference: François-LavetVHendersonPIslamRBellemareMGPineauJAn introduction to deep reinforcement learningFound. Trends Mach. Learn.2018113-421935410.1561/2200000071[Online]. Available: http://dx.doi.org/10.1561/2200000071 – reference: Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 31–36. IEEE (2017) – reference: Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor, [Online]. Available: arXiv:1801.01290 (2018) – reference: Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T., Abbeel, P., Andrychowicz, M.: Parameter space noise for exploration, [Online]. Available: arXiv:1706.01905 (2017) – reference: Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1511.05952 (2016) – reference: Joseph, L.: Mastering ROS for robotics programming. Packt Publishing Ltd (2015) – reference: Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3357–3364. IEEE (2017) – reference: Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016) – reference: Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observable mdps. In: 2015 AAAI Fall Symposium Series (2015) – reference: PolyakBTJuditskyABAcceleration of stochastic approximation by averagingSIAM J. Control Optim.1992304838855116781410.1137/0330046 – reference: PajazitiAAvdullahuPSlam–map building and navigation via rosInt. J. Intell. Syst. Appl. Eng.201424717510.18201/ijisae.08103 – reference: Fairchild, C., Harman, T.L.: ROS Robotics by Example. Packt Publishing Ltd (2016) – reference: Mahmood, A.R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J.: Benchmarking reinforcement learning algorithms on real-world robots, CoRR, vol. abs/1809.07731. [Online]. Available: arXiv:1809.07731 (2018) – reference: Laskin, M., Srinivas, A., Abbeel, P.: Curl: contrastive unsupervised representations for reinforcement learning. In: International Conference on Machine Learning, pp 5639–5650. PMLR (2020) – reference: PfitscherMWelferDdo NascimentoEJCuadrosMAdSLGamarraDFTArticle users activity gesture recognition on kinect sensor using convolutional neural networks and fastdtw for controlling movements of a mobile robotIntel. Artif.2019226312113410.4114/intartif.vol22iss63pp121-134 – reference: da Silva, R.M., de Souza Leite Cuadros, M.A., Gamarra, D.F.T.: Comparison of a backstepping and a fuzzy controller for tracking a trajectory with a mobile robot. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) Intelligent Systems Design and Applications, pp 212–221. Cham, Springer International Publishing (2020) – reference: Achiam, J.: Spinning up in deep reinforcement learning, GitHub repository. [Online]. Available: https://github.com/openai/spinningup (2018) – reference: PyoYChoHJungRLimTRos Robot Programming2015ROBOTIS CoSeoul – reference: SuttonRSBartoAGReinforcement Learning: an Introduction2018CambridgeMIT Press1407.68009 – reference: KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt. J. Robot. Res.201332111238127410.1177/0278364913495721 – reference: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning, [Online]. Available: arXiv:1312.5602 (2013) – reference: Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1509.02971 (2016) – reference: Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning, pp 2829–2838 (2016) – reference: Zhelo, O., Zhang, J., Tai, L., Liu, M., Burgard, W.: Curiosity-driven exploration for mapless navigation with deep reinforcement learning, [Online]. Available: arXiv:1804.00456 (2018) – reference: Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.: Transformer-xl: attentive language models beyond a fixed-length context, [Online]. Available: arXiv:1901.02860 (2019) – reference: de Assis Brasil, P.M., Pereira, F.U., de Souza Leite Cuadros, M.A., Cukla, A.R., Tello Gamarra, D.F.: A study on global path planners algorithms for the simulated turtlebot 3 robot in ros. In: 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), pp 1–6 (2020) – reference: Tai, L., Liu, M.: Towards cognitive exploration through deep reinforcement learning for mobile robots, CoRR, vol. abs/1610.01733. [Online]. Available: arXiv:1610.01733 (2016) – reference: UhlenbeckGEOrnsteinLSOn the theory of the brownian motionPhys. Rev.193036582310.1103/PhysRev.36.823 – reference: Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3389–3396. IEEE (2017) – reference: Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., Levine, S.: Soft actor-critic algorithms and applications, [Online]. Available: arXiv:1812.05905 (2018) – reference: Jesus, J.C., Bottega, J.A., Cuadros, M.A., Gamarra, D.F.: Deep deterministic policy gradient for navigation of mobile robots in simulated environments. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp 362–367. IEEE (2019) – reference: Omara, H.I.M.A., Sahari, K.S.M.: Indoor mapping using kinect and ros. In: 2015 International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR), pp 110–116. IEEE (2015) – reference: Chen, Y.F., Everett, M., Liu, M., How, J.P.: Socially aware motion planning with deep reinforcement learning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1343–1350. IEEE (2017) – reference: Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1506.02438 (2016) – reference: Subramanian, V.: Deep learning with pytorch: a practical approach to building neural network models using PyTorch Packt. Publishing Ltd (2018) – volume: 30 start-page: 838 issue: 4 year: 1992 ident: 1367_CR26 publication-title: SIAM J. Control Optim. doi: 10.1137/0330046 – ident: 1367_CR9 doi: 10.1186/s40638-016-0055-x – ident: 1367_CR33 – ident: 1367_CR29 – ident: 1367_CR17 doi: 10.1609/aaai.v30i1.10295 – ident: 1367_CR35 – ident: 1367_CR7 – ident: 1367_CR10 doi: 10.1109/IROS.2017.8202134 – ident: 1367_CR1 – ident: 1367_CR3 – ident: 1367_CR31 – volume: 11 start-page: 219 issue: 3-4 year: 2018 ident: 1367_CR15 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000071 – ident: 1367_CR37 – ident: 1367_CR18 – ident: 1367_CR5 doi: 10.1109/ICRA.2017.7989385 – ident: 1367_CR36 doi: 10.1109/LARS/SBR/WRE51543.2020.9307003 – ident: 1367_CR16 – volume: 32 start-page: 1238 issue: 11 year: 2013 ident: 1367_CR20 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – ident: 1367_CR24 – ident: 1367_CR12 doi: 10.1109/ICAR46387.2019.8981638 – ident: 1367_CR11 doi: 10.1109/IROS.2017.8202312 – ident: 1367_CR6 – volume-title: Reinforcement Learning: an Introduction year: 2018 ident: 1367_CR38 – ident: 1367_CR4 – volume-title: Ros Robot Programming year: 2015 ident: 1367_CR34 – ident: 1367_CR2 – ident: 1367_CR28 doi: 10.1007/978-3-030-16660-1_21 – ident: 1367_CR30 doi: 10.1109/HPCA.2019.00048 – ident: 1367_CR32 doi: 10.18653/v1/P19-1285 – ident: 1367_CR19 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 1367_CR22 publication-title: Nature doi: 10.1038/nature14236 – volume: 2 start-page: 71 issue: 4 year: 2014 ident: 1367_CR13 publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.08103 – ident: 1367_CR21 – ident: 1367_CR8 doi: 10.1109/ICRA.2017.7989381 – ident: 1367_CR25 – volume: 36 start-page: 823 issue: 5 year: 1930 ident: 1367_CR23 publication-title: Phys. Rev. doi: 10.1103/PhysRev.36.823 – ident: 1367_CR14 doi: 10.1109/ISAMSR.2015.7379780 – volume: 22 start-page: 121 issue: 63 year: 2019 ident: 1367_CR27 publication-title: Intel. Artif. doi: 10.4114/intartif.vol22iss63pp121-134 |
| SSID | ssj0009859 |
| Score | 2.4979215 |
| Snippet | This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 31 |
| SubjectTerms | Algorithms Angular velocity Artificial Intelligence Comparative analysis Control Electrical Engineering Employee motivation Engineering Mechanical Engineering Mechatronics Navigation Regular Paper Robotics Robots Topical collection on ICAR 2019 Special Issue |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBQgFRKMgDEgNYJHEezoQqRMVChShI3SzHdiQk1JS29Pdzdh3KQ7AwZYjtRP58D5_P3wGcxioMs9AUFF3lgMYSRZEzjXseqcLYqMTSobpiE1m_z4fD_N4H3KY-rbLWiU5R60rZGPllZJnC0FZH7Gr8Sm3VKHu66ktorMKaZUkIXereYEm6y5MF116EW-YoT_2lGX91Di0vtQkKjrWMJl8M03f1_OOc1JmfXvO_P74NW97xJN3FStmBFTNqQbMu6kC8jLdg8xND4S6EA1TTpGsj-3RRFYGgl0v6cu6oOaoRqUpyVxWoW8hDVVSz6R489W4er2-pr7JAFUv4jOKWJCvzzJRa61LxoggYk2HKA4Vo5TrGZxrFuiikyctABxFaVfRauNTMyIAlbB8ao2pkDoDEScHSPJNZmaXYgGMPjh6aKXGGI5PwNoT1FAvlKchtJYwXsSRPtrAIhEU4WETShvOPPuMFAcefrc8scsJKJ46spL9kgP9nea5EN0MPxibUsjZ0ariEF9upWGLVhosa8OXr3797-PdoR7ARuaVmozcdaMwmb-YY1tV89jydnLhF-w6Qlu3l priority: 102 providerName: ProQuest |
| Title | Soft Actor-Critic for Navigation of Mobile Robots |
| URI | https://link.springer.com/article/10.1007/s10846-021-01367-5 https://www.proquest.com/docview/2527362323 |
| Volume | 102 |
| WOSCitedRecordID | wos000650621700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9080EfnE7F-THyIPiggbZpmvRxykQQx9hUxJeQpikIsso29_d76VrnN-hL-5BLmt4luUty9zuAo9D4vvBtQtFU9miocSpKluKeRxs_tIY7ONQi2YTo9eT9fdwvg8Imlbd7dSVZrNTvgt1QV1LnUlDgjFG-DHVUd9IlbBgM7xZQu5LPEfYcZRBHZajM9218UEefF-Uvt6OF0rlo_K-7G7BeGpmkMx8Vm7BkR01oVAkcSDmfm7D2Do1wC_whLsmk407x6TwDAkGLlvT0rIDhyEckz8h1nuA6QgZ5kk8n23B70b05v6RlRgVqGJdTitsPkcXCZmmaZkYmiceY9iPpGZRMnIb4joIwTRJt48xLvQA1KFooUqfMao9xtgO1UT6yu0BCnrAoFlpkIkICiTUkWmM2w58NLJct8CvGKlPCjbusF09qAZTsOKSQQ6rgkOItOHmr8zwH2_iV-tjJS7mZiC0bXQYUYP8cppXqCLRWnPMsa8FBJVJVTtGJChz0HBp_ARafViJcFP_83b2_ke_DalCMAndycwC16fjFHsKKmU0fJ-M21M-6vf6gDctXgrad5-kQn33-0C4G9StiiOhS |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0hQGo5sJS2YmFpfWjVA7Wa2EnsHBBa0SLQwqoqVOLmOrYjIaENsAuIP8VvZOwkbAuCG4eecojtfPjNvPHXG4BPiYljEbuCYqgc0USjKUpuccyjTZw4k3o51JBsQgyH8vg4_zkDt-1ZGL-tsvWJwVHbyvg58m_MK4UhVzO-dXZOfdYov7raptCoYTFwN9c4ZBtv7n3H_v3M2M6Po-1d2mQVoIanckIxBBdlLlxprS2NLIqIcx1nMjL4drlN8JqxxBaFdnkZ2YghiyBLS22501HIEoEufy7hUni7Ggg6FfmVaa3tx3CIzvKsOaTTHNVDpqd-Q0RQSaPpP0T4kA4ercsGutvp_G8_agkWm8Ca9GtLeAMzbrQMnTZpBWl82DIs_KXA-BbiQ6Qh0vcrF7TO-kAwiidDfRWkR6oRqUpyUBXoO8mvqqgm43fw-0U-4z3MjqqRWwGSpAXPcqFFKTIsILGGxAjUldijzKWyC3Hbpco0Eus-08epmopDexgohIEKMFBpFzbu65zVAiPPlv7ikaK898GWjW4OUeD7eR0v1RcYofkNw7wLvRYeqnFLYzXFRhe-tgCb3n76uavPt_YRXu0eHeyr_b3hYA1eswBzP1PVg9nJxaVbh3lzNTkZX3wIBkPgz0sD7w68kk2U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hQBUceJWqCxR8oOqhtTZxHnYOVbUqrIqgq1VpJdSL69iOVAltgN1S8df4dYwdh4UiuHHoKYfYzsOf52HPfAOwm-o45rEtKZrKEU0VLkWRGPR5lI5TqzNHh-qLTfDBQJycFMMZuG5zYVxYZSsTvaA2tXZ75F3mmMJQV7OkW4WwiOFe_9PZOXUVpNxJa1tOo4HIob36i-7b-OPBHs71W8b6-98_f6GhwgDVSSYmFM1xXhXcVsaYSouyjJJExbmINL5pYVK85iw1ZalsUUUmYqhRUGMLZRKrIl8xAsX_HEcf04UTDrOfU8JfkTU8fwzddVbkIWEnpO2h1qcuOMIzptHsnlL8VzU8OKP1qq-__D__tBVYCgY36TUrZBVm7GgNlttiFiTItjVYvMPM-BLiY1RPpOdONGhTDYKgdU8G6tJTktQjUlfka12iTCXf6rKejNfhx7N8xiuYHdUj-xpImpVJXnDFK55jA4E9BFqmtsLZZTYTHYjb6ZU6UK-7CiCnckoa7SAhERLSQ0JmHXh_2-esIR55svU7hxrppBKOrFVIrsD3c_xessfRcnOBxEkHtlqoyCCuxnKKkw58aME2vf34czeeHm0HXiDe5NHB4HATFphHvNvA2oLZycUf-wbm9eXk9_hi268dAr-eG3c3a7hWuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Actor-Critic+for+Navigation+of+Mobile+Robots&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=de+Jesus%2C+Junior+Costa&rft.au=Kich%2C+Victor+Augusto&rft.au=Kolling%2C+Alisson+Henrique&rft.au=Grando%2C+Ricardo+Bedin&rft.date=2021-06-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=102&rft.issue=2&rft_id=info:doi/10.1007%2Fs10846-021-01367-5&rft.externalDocID=10_1007_s10846_021_01367_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |