Soft Actor-Critic for Navigation of Mobile Robots

This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems Jg. 102; H. 2; S. 31
Hauptverfasser: de Jesus, Junior Costa, Kich, Victor Augusto, Kolling, Alisson Henrique, Grando, Ricardo Bedin, Cuadros, Marco Antonio de Souza Leite, Gamarra, Daniel Fernando Tello
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.06.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:0921-0296, 1573-0409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at https://github.com/dranaju/project ).
AbstractList This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at https://github.com/dranaju/project ).
This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at https://github.com/dranaju/project).
This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft Actor Critic (SAC) that is compared with the Deep Deterministic Policy Gradients (DDPG) algorithm in the same situation. In order to make a robot to arrive at a target in an environment, both networks have 10 laser range findings, the previous linear and angular velocity, and relative position and angle of the mobile robot to the target are used as the network inputs. As outputs, the networks have the linear and angular velocity of the mobile robot. The reward function created was designed in a way to only give a positive reward to the agent when it gets to the target and a negative reward when colliding with any object. The proposed architecture was applied successfully in two simulated environments, and a comparison between the two referred techniques was made using the results obtained as a basis and it was demonstrated that the SAC algorithm has a superior performance for the navigation of mobile robots than the DDPG algorithm (Code available at Keywords Soft actor-critic * Deep deterministic policy gradients * Deep reinforcement learning * Navigation for mobile robots
ArticleNumber 31
Audience Academic
Author de Jesus, Junior Costa
Grando, Ricardo Bedin
Kich, Victor Augusto
Kolling, Alisson Henrique
Gamarra, Daniel Fernando Tello
Cuadros, Marco Antonio de Souza Leite
Author_xml – sequence: 1
  givenname: Junior Costa
  surname: de Jesus
  fullname: de Jesus, Junior Costa
  email: dranaju@gmail.com
  organization: Federal University of Rio Grande
– sequence: 2
  givenname: Victor Augusto
  surname: Kich
  fullname: Kich, Victor Augusto
  organization: Federal University of Santa Maria
– sequence: 3
  givenname: Alisson Henrique
  surname: Kolling
  fullname: Kolling, Alisson Henrique
  organization: Federal University of Santa Maria
– sequence: 4
  givenname: Ricardo Bedin
  surname: Grando
  fullname: Grando, Ricardo Bedin
  organization: Federal University of Rio Grande
– sequence: 5
  givenname: Marco Antonio de Souza Leite
  surname: Cuadros
  fullname: Cuadros, Marco Antonio de Souza Leite
  organization: Federal Institute of Espirito Santo
– sequence: 6
  givenname: Daniel Fernando Tello
  surname: Gamarra
  fullname: Gamarra, Daniel Fernando Tello
  organization: Department of Processing of Electrical Energy (DPEE), Federal University of Santa Maria
BookMark eNp9kEtLAzEQx4NUsK1-AU8LnrdOkn1kj6X4gqrg4xyyeZSU7aYmqeC3N9sVBA-Swxwyv_nP_GZo0rteI3SJYYEB6uuAgRVVDgTngGlV5-UJmuKypjkU0EzQFJrhizTVGZqFsAWAhpXNFOFXZ2K2lNH5fOVttDIzzmdP4tNuRLSuz5zJHl1rO529uNbFcI5OjeiCvvipc_R-e_O2us_Xz3cPq-U6l7RkMcd1UZum1kYpZSRrW6BU4IqBlLhoVJFqRQrVtkI3BhQQrVXJCiYU1QJoSefoapy79-7joEPkW3fwfYrkpCQ1rQglNHUtxq6N6DS3vXHRC5me0jsrkySTNufLmhRQUgoDQEZAeheC14bvvd0J_8Ux8MElH13y5JIfXfJhF_YHkjYe9aQ02_2P0hENKaffaP97xj_UN7nIiTA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3429230
crossref_primary_10_1002_cav_2113
crossref_primary_10_3390_mi15010112
crossref_primary_10_1109_TMECH_2022_3182427
crossref_primary_10_1016_j_eswa_2025_126923
crossref_primary_10_1007_s13042_024_02281_6
crossref_primary_10_1016_j_rser_2024_114648
crossref_primary_10_1007_s10489_024_05720_7
crossref_primary_10_3390_biomimetics8020264
crossref_primary_10_1007_s40430_023_04570_7
crossref_primary_10_1016_j_segan_2023_101177
crossref_primary_10_1007_s10489_025_06747_0
crossref_primary_10_1002_aisy_202400112
crossref_primary_10_1016_j_engappai_2023_106197
crossref_primary_10_1016_j_jprocont_2023_103063
crossref_primary_10_1109_ACCESS_2023_3305339
crossref_primary_10_1109_TASE_2024_3410162
crossref_primary_10_1109_OJCS_2025_3600916
crossref_primary_10_3390_s23249802
crossref_primary_10_1109_TNNLS_2022_3167688
crossref_primary_10_1007_s11370_024_00514_9
crossref_primary_10_3390_s23063239
crossref_primary_10_1016_j_displa_2023_102440
crossref_primary_10_3389_fnbot_2022_1025817
crossref_primary_10_1002_ett_4929
crossref_primary_10_1016_j_buildenv_2024_112347
crossref_primary_10_1007_s41315_024_00411_5
crossref_primary_10_1016_j_engappai_2025_110373
crossref_primary_10_1177_09544062251352644
crossref_primary_10_1109_TITS_2022_3162850
crossref_primary_10_1155_2024_5346187
crossref_primary_10_1177_09544062231174127
Cites_doi 10.1137/0330046
10.1186/s40638-016-0055-x
10.1609/aaai.v30i1.10295
10.1109/IROS.2017.8202134
10.1561/2200000071
10.1109/ICRA.2017.7989385
10.1109/LARS/SBR/WRE51543.2020.9307003
10.1177/0278364913495721
10.1109/ICAR46387.2019.8981638
10.1109/IROS.2017.8202312
10.1007/978-3-030-16660-1_21
10.1109/HPCA.2019.00048
10.18653/v1/P19-1285
10.1038/nature14236
10.18201/ijisae.08103
10.1109/ICRA.2017.7989381
10.1103/PhysRev.36.823
10.1109/ISAMSR.2015.7379780
10.4114/intartif.vol22iss63pp121-134
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
COPYRIGHT 2021 Springer
Copyright Springer Nature B.V. Jun 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: COPYRIGHT 2021 Springer
– notice: Copyright Springer Nature B.V. Jun 2021
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-021-01367-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID A724053303
10_1007_s10846_021_01367_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-1747f97efdddfc8bb033a1680cc149d40cc624dbbae9f0d02eed5848ad3ea0353
IEDL.DBID RSV
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650621700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
IngestDate Sat Oct 18 22:50:23 EDT 2025
Sat Nov 29 09:49:39 EST 2025
Tue Nov 18 22:46:25 EST 2025
Sat Nov 29 01:33:01 EST 2025
Fri Feb 21 02:49:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep reinforcement learning
Soft actor-critic
Deep deterministic policy gradients
Navigation for mobile robots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1747f97efdddfc8bb033a1680cc149d40cc624dbbae9f0d02eed5848ad3ea0353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2527362323
PQPubID 326251
ParticipantIDs proquest_journals_2527362323
gale_infotracacademiconefile_A724053303
crossref_primary_10_1007_s10846_021_01367_5
crossref_citationtrail_10_1007_s10846_021_01367_5
springer_journals_10_1007_s10846_021_01367_5
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2021
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1509.02971 (2016)
KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt. J. Robot. Res.201332111238127410.1177/0278364913495721
Rao, D., McMahan, B.: Natural Language Processing with Pytorch: Build Intelligent Language Applications Using Deep Learning. O’Reilly Media, Inc (2019)
Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3357–3364. IEEE (2017)
Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., et al.: Machine learning at facebook: understanding inference at the edge. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp 331–344. IEEE (2019)
PajazitiAAvdullahuPSlam–map building and navigation via rosInt. J. Intell. Syst. Appl. Eng.201424717510.18201/ijisae.08103
Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning, pp 2829–2838 (2016)
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor, [Online]. Available: arXiv:1801.01290 (2018)
Fairchild, C., Harman, T.L.: ROS Robotics by Example. Packt Publishing Ltd (2016)
de Assis Brasil, P.M., Pereira, F.U., de Souza Leite Cuadros, M.A., Cukla, A.R., Tello Gamarra, D.F.: A study on global path planners algorithms for the simulated turtlebot 3 robot in ros. In: 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), pp 1–6 (2020)
Mahmood, A.R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J.: Benchmarking reinforcement learning algorithms on real-world robots, CoRR, vol. abs/1809.07731. [Online]. Available: arXiv:1809.07731 (2018)
Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3389–3396. IEEE (2017)
MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGHuman-level control through deep reinforcement learningNature2015518754052953310.1038/nature14236
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning, [Online]. Available: arXiv:1312.5602 (2013)
Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1511.05952 (2016)
Chen, Y.F., Everett, M., Liu, M., How, J.P.: Socially aware motion planning with deep reinforcement learning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1343–1350. IEEE (2017)
Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.: Transformer-xl: attentive language models beyond a fixed-length context, [Online]. Available: arXiv:1901.02860 (2019)
Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T., Abbeel, P., Andrychowicz, M.: Parameter space noise for exploration, [Online]. Available: arXiv:1706.01905 (2017)
Tai, L., Liu, M.: Towards cognitive exploration through deep reinforcement learning for mobile robots, CoRR, vol. abs/1610.01733. [Online]. Available: arXiv:1610.01733 (2016)
PfitscherMWelferDdo NascimentoEJCuadrosMAdSLGamarraDFTArticle users activity gesture recognition on kinect sensor using convolutional neural networks and fastdtw for controlling movements of a mobile robotIntel. Artif.2019226312113410.4114/intartif.vol22iss63pp121-134
Joseph, L.: Mastering ROS for robotics programming. Packt Publishing Ltd (2015)
Jesus, J.C., Bottega, J.A., Cuadros, M.A., Gamarra, D.F.: Deep deterministic policy gradient for navigation of mobile robots in simulated environments. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp 362–367. IEEE (2019)
François-LavetVHendersonPIslamRBellemareMGPineauJAn introduction to deep reinforcement learningFound. Trends Mach. Learn.2018113-421935410.1561/2200000071[Online]. Available: http://dx.doi.org/10.1561/2200000071
Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1506.02438 (2016)
UhlenbeckGEOrnsteinLSOn the theory of the brownian motionPhys. Rev.193036582310.1103/PhysRev.36.823
PolyakBTJuditskyABAcceleration of stochastic approximation by averagingSIAM J. Control Optim.1992304838855116781410.1137/0330046
Subramanian, V.: Deep learning with pytorch: a practical approach to building neural network models using PyTorch Packt. Publishing Ltd (2018)
Laskin, M., Srinivas, A., Abbeel, P.: Curl: contrastive unsupervised representations for reinforcement learning. In: International Conference on Machine Learning, pp 5639–5650. PMLR (2020)
da Silva, R.M., de Souza Leite Cuadros, M.A., Gamarra, D.F.T.: Comparison of a backstepping and a fuzzy controller for tracking a trajectory with a mobile robot. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) Intelligent Systems Design and Applications, pp 212–221. Cham, Springer International Publishing (2020)
PyoYChoHJungRLimTRos Robot Programming2015ROBOTIS CoSeoul
Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., Levine, S.: Soft actor-critic algorithms and applications, [Online]. Available: arXiv:1812.05905 (2018)
Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 31–36. IEEE (2017)
Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observable mdps. In: 2015 AAAI Fall Symposium Series (2015)
SuttonRSBartoAGReinforcement Learning: an Introduction2018CambridgeMIT Press1407.68009
Zhelo, O., Zhang, J., Tai, L., Liu, M., Burgard, W.: Curiosity-driven exploration for mapless navigation with deep reinforcement learning, [Online]. Available: arXiv:1804.00456 (2018)
Omara, H.I.M.A., Sahari, K.S.M.: Indoor mapping using kinect and ros. In: 2015 International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR), pp 110–116. IEEE (2015)
Achiam, J.: Spinning up in deep reinforcement learning, GitHub repository. [Online]. Available: https://github.com/openai/spinningup (2018)
1367_CR18
1367_CR19
1367_CR16
1367_CR17
V Mnih (1367_CR22) 2015; 518
1367_CR10
1367_CR32
1367_CR11
1367_CR33
1367_CR30
1367_CR31
1367_CR14
1367_CR36
1367_CR37
1367_CR1
1367_CR12
1367_CR2
1367_CR35
1367_CR3
1367_CR4
1367_CR5
1367_CR6
1367_CR7
M Pfitscher (1367_CR27) 2019; 22
1367_CR8
1367_CR9
J Kober (1367_CR20) 2013; 32
GE Uhlenbeck (1367_CR23) 1930; 36
1367_CR29
RS Sutton (1367_CR38) 2018
1367_CR28
1367_CR21
Y Pyo (1367_CR34) 2015
V François-Lavet (1367_CR15) 2018; 11
1367_CR25
BT Polyak (1367_CR26) 1992; 30
1367_CR24
A Pajaziti (1367_CR13) 2014; 2
References_xml – reference: MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGHuman-level control through deep reinforcement learningNature2015518754052953310.1038/nature14236
– reference: Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., et al.: Machine learning at facebook: understanding inference at the edge. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp 331–344. IEEE (2019)
– reference: Rao, D., McMahan, B.: Natural Language Processing with Pytorch: Build Intelligent Language Applications Using Deep Learning. O’Reilly Media, Inc (2019)
– reference: François-LavetVHendersonPIslamRBellemareMGPineauJAn introduction to deep reinforcement learningFound. Trends Mach. Learn.2018113-421935410.1561/2200000071[Online]. Available: http://dx.doi.org/10.1561/2200000071
– reference: Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 31–36. IEEE (2017)
– reference: Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor, [Online]. Available: arXiv:1801.01290 (2018)
– reference: Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T., Abbeel, P., Andrychowicz, M.: Parameter space noise for exploration, [Online]. Available: arXiv:1706.01905 (2017)
– reference: Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1511.05952 (2016)
– reference: Joseph, L.: Mastering ROS for robotics programming. Packt Publishing Ltd (2015)
– reference: Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3357–3364. IEEE (2017)
– reference: Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
– reference: Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observable mdps. In: 2015 AAAI Fall Symposium Series (2015)
– reference: PolyakBTJuditskyABAcceleration of stochastic approximation by averagingSIAM J. Control Optim.1992304838855116781410.1137/0330046
– reference: PajazitiAAvdullahuPSlam–map building and navigation via rosInt. J. Intell. Syst. Appl. Eng.201424717510.18201/ijisae.08103
– reference: Fairchild, C., Harman, T.L.: ROS Robotics by Example. Packt Publishing Ltd (2016)
– reference: Mahmood, A.R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J.: Benchmarking reinforcement learning algorithms on real-world robots, CoRR, vol. abs/1809.07731. [Online]. Available: arXiv:1809.07731 (2018)
– reference: Laskin, M., Srinivas, A., Abbeel, P.: Curl: contrastive unsupervised representations for reinforcement learning. In: International Conference on Machine Learning, pp 5639–5650. PMLR (2020)
– reference: PfitscherMWelferDdo NascimentoEJCuadrosMAdSLGamarraDFTArticle users activity gesture recognition on kinect sensor using convolutional neural networks and fastdtw for controlling movements of a mobile robotIntel. Artif.2019226312113410.4114/intartif.vol22iss63pp121-134
– reference: da Silva, R.M., de Souza Leite Cuadros, M.A., Gamarra, D.F.T.: Comparison of a backstepping and a fuzzy controller for tracking a trajectory with a mobile robot. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) Intelligent Systems Design and Applications, pp 212–221. Cham, Springer International Publishing (2020)
– reference: Achiam, J.: Spinning up in deep reinforcement learning, GitHub repository. [Online]. Available: https://github.com/openai/spinningup (2018)
– reference: PyoYChoHJungRLimTRos Robot Programming2015ROBOTIS CoSeoul
– reference: SuttonRSBartoAGReinforcement Learning: an Introduction2018CambridgeMIT Press1407.68009
– reference: KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt. J. Robot. Res.201332111238127410.1177/0278364913495721
– reference: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning, [Online]. Available: arXiv:1312.5602 (2013)
– reference: Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1509.02971 (2016)
– reference: Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning, pp 2829–2838 (2016)
– reference: Zhelo, O., Zhang, J., Tai, L., Liu, M., Burgard, W.: Curiosity-driven exploration for mapless navigation with deep reinforcement learning, [Online]. Available: arXiv:1804.00456 (2018)
– reference: Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.: Transformer-xl: attentive language models beyond a fixed-length context, [Online]. Available: arXiv:1901.02860 (2019)
– reference: de Assis Brasil, P.M., Pereira, F.U., de Souza Leite Cuadros, M.A., Cukla, A.R., Tello Gamarra, D.F.: A study on global path planners algorithms for the simulated turtlebot 3 robot in ros. In: 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), pp 1–6 (2020)
– reference: Tai, L., Liu, M.: Towards cognitive exploration through deep reinforcement learning for mobile robots, CoRR, vol. abs/1610.01733. [Online]. Available: arXiv:1610.01733 (2016)
– reference: UhlenbeckGEOrnsteinLSOn the theory of the brownian motionPhys. Rev.193036582310.1103/PhysRev.36.823
– reference: Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 3389–3396. IEEE (2017)
– reference: Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., Levine, S.: Soft actor-critic algorithms and applications, [Online]. Available: arXiv:1812.05905 (2018)
– reference: Jesus, J.C., Bottega, J.A., Cuadros, M.A., Gamarra, D.F.: Deep deterministic policy gradient for navigation of mobile robots in simulated environments. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp 362–367. IEEE (2019)
– reference: Omara, H.I.M.A., Sahari, K.S.M.: Indoor mapping using kinect and ros. In: 2015 International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR), pp 110–116. IEEE (2015)
– reference: Chen, Y.F., Everett, M., Liu, M., How, J.P.: Socially aware motion planning with deep reinforcement learning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1343–1350. IEEE (2017)
– reference: Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [Online]. Available: arXiv:1506.02438 (2016)
– reference: Subramanian, V.: Deep learning with pytorch: a practical approach to building neural network models using PyTorch Packt. Publishing Ltd (2018)
– volume: 30
  start-page: 838
  issue: 4
  year: 1992
  ident: 1367_CR26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330046
– ident: 1367_CR9
  doi: 10.1186/s40638-016-0055-x
– ident: 1367_CR33
– ident: 1367_CR29
– ident: 1367_CR17
  doi: 10.1609/aaai.v30i1.10295
– ident: 1367_CR35
– ident: 1367_CR7
– ident: 1367_CR10
  doi: 10.1109/IROS.2017.8202134
– ident: 1367_CR1
– ident: 1367_CR3
– ident: 1367_CR31
– volume: 11
  start-page: 219
  issue: 3-4
  year: 2018
  ident: 1367_CR15
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000071
– ident: 1367_CR37
– ident: 1367_CR18
– ident: 1367_CR5
  doi: 10.1109/ICRA.2017.7989385
– ident: 1367_CR36
  doi: 10.1109/LARS/SBR/WRE51543.2020.9307003
– ident: 1367_CR16
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  ident: 1367_CR20
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913495721
– ident: 1367_CR24
– ident: 1367_CR12
  doi: 10.1109/ICAR46387.2019.8981638
– ident: 1367_CR11
  doi: 10.1109/IROS.2017.8202312
– ident: 1367_CR6
– volume-title: Reinforcement Learning: an Introduction
  year: 2018
  ident: 1367_CR38
– ident: 1367_CR4
– volume-title: Ros Robot Programming
  year: 2015
  ident: 1367_CR34
– ident: 1367_CR2
– ident: 1367_CR28
  doi: 10.1007/978-3-030-16660-1_21
– ident: 1367_CR30
  doi: 10.1109/HPCA.2019.00048
– ident: 1367_CR32
  doi: 10.18653/v1/P19-1285
– ident: 1367_CR19
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 1367_CR22
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 2
  start-page: 71
  issue: 4
  year: 2014
  ident: 1367_CR13
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.08103
– ident: 1367_CR21
– ident: 1367_CR8
  doi: 10.1109/ICRA.2017.7989381
– ident: 1367_CR25
– volume: 36
  start-page: 823
  issue: 5
  year: 1930
  ident: 1367_CR23
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.823
– ident: 1367_CR14
  doi: 10.1109/ISAMSR.2015.7379780
– volume: 22
  start-page: 121
  issue: 63
  year: 2019
  ident: 1367_CR27
  publication-title: Intel. Artif.
  doi: 10.4114/intartif.vol22iss63pp121-134
SSID ssj0009859
Score 2.4979215
Snippet This paper provides a study of two deep reinforcement learning techniques for application in navigation of mobile robots, one of the techniques is the Soft...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Algorithms
Angular velocity
Artificial Intelligence
Comparative analysis
Control
Electrical Engineering
Employee motivation
Engineering
Mechanical Engineering
Mechatronics
Navigation
Regular Paper
Robotics
Robots
Topical collection on ICAR 2019 Special Issue
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTguOK4kYPgQYNtkrbpSQZx8OIgLuAtZGlBkKk6o7_fl0zquKAXTz00SUO_5G15-R7AAdd14mTKaWVyjQ6K9ByQmlMrMmELa-rU1KHYRDEYyPv78ioG3EYxrbKViUFQu8b6GPkJ80xhqKsZP316pr5qlD9djSU0ZmHesySkIXXvZkq6K7MJ1x5Dl5mVebw0E6_OoealPkEhsJbR7Iti-i6ef5yTBvXT7_x34iuwHA1P0puslFWYqYZr0GmLOpC4x9dg6RND4TqkNyimSc9H9umkKgJBK5cM9Fug5miGpKnJZWNQtpDrxjTj0Qbc9c9vzy5orLJALc_kmKJLUtRlUdXOudpKYxLOdZrLxFr0npzAZ86EM0ZXJeKaMNSqaLVI7XilE57xTZgbNsNqC0iu0bgoRG6dNsJaIa0oGDZmRWmFMFkX0vYXKxspyH0ljEc1JU_2sCiERQVYFPY5-ujzNCHg-LP1oUdO-d2JI1sdLxng_DzPleoVaMH4hFrehd0WLhW37UhNserCcQv49PXv393-e7QdWGRhqfnozS7MjV9eqz1YsG_jh9HLfli07_oM7yU
  priority: 102
  providerName: ProQuest
Title Soft Actor-Critic for Navigation of Mobile Robots
URI https://link.springer.com/article/10.1007/s10846-021-01367-5
https://www.proquest.com/docview/2527362323
Volume 102
WOSCitedRecordID wos000650621700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-c-qAPfkzFjznyIPiggbZJm_RxyoYgjrGpDF9CkrYgyCrb3N_vpWud36Av7UMvabhL7i7J3e8ATpjOvET6jKYm0rhBkQ4DUjNqecitsCbzTVYUmxDdrhwO416ZFDapot2rK8lCU79LdkNbSV1IQYEzRsMarKC5k65gQ39wv4DaleEcYc9RBnFUpsp838cHc_RZKX-5HS2MTmfzf8Pdgo3SySSt-azYhqV0VIfNqoADKddzHdbfoRHugD9AlUxa7hSfzisgEPRoSVfPChiOfETyjNzkBvUI6ecmn0524a7Tvr28omVFBWpZKKcUtx8ii0WaJUmSWWmMx5j2I-lZizulhOM7CnhijE5jlKEXoAVFD0XqhKXaYyHbg-VRPkr3gUQaHQnBI5tow63l0nIRIHEgYsu5CQ_ArxirbAk37qpePKkFULLjkEIOqYJDCtucvbV5noNt_Ep96uSl3ErEnq0uEwpwfA7TSrUEeisueJYdQKMSqSqX6EQFDnoOnb8AP59XIlx8_vm_h38jP4K1oJgF7uSmAcvT8Ut6DKt2Nn2cjJuwctHu9vpNqF0L2nSRpwN89sKHZjGpXwHskumS
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CFKllAZS2YigFL1p1Qa0mthM7C4RGPAQaGFWFSuxcPxKpUjUBZqDip_jGXjtJpwXBjkVXWSR24vj4Pvw4B-A9N1XiVcppaXODCYoKHJCGUycy4aSzVWqrKDYhh0N1dlZ8mYHb7ixM2FbZ2cRoqH3twhz5ZxaYwtBXM759fkGDalRYXe0kNBpYDMqbX5iyjbcOd7F_PzC2v3e6c0BbVQHqeKYmFENwWRWyrLz3lVPWJpybNFeJc5gteIHXnAlvrSkLbEfC0Iugl1bG89IkUSUCTf4zwZUM42og6ZTkV2UNtx_DFJ0VeXtIpz2qh56ehg0RkSWNZv84wrvu4N66bHR3-4v_249agoU2sCb9ZiS8hJlytAyLnWgFaW3YMsz_xcD4CtITdEOkH1YuaKP6QDCKJ0NzHalH6hGpK3JcW7Sd5Gtt68n4NXx7kma8gdlRPSpXgOQGgycpcueNFc4J5YRk-DCThRPCZj1Iuy7VrqVYD0ofP_WUHDrAQCMMdISBxjKbf8qcNwQjjz79MSBFB-uDNTvTHqLA7ws8XrovMUILG4Z5D9Y6eOjWLI31FBs9-NQBbHr74feuPl7bBjw_OD0-0keHw8FbeMEizMNM1RrMTi6vyncw564nP8aX63HAEPj-1MD7DZAGTtQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH8hYAweQBDDKmgPGA_aMNN2ZjoHQjbgRgJuNqIJ8VL7MZOQmB1kF4j_Gn8dr50OqxK5cfA0h5l2ptNf30f73u8BbHFdJ06mnFYm1-igSM8BqTm1IhO2sKZOTR2KTRTDoTw5KUdzcN3lwviwyk4mBkHtGuv3yLeZZwpDXc34dh3DIkb7g92zn9RXkPInrV05jRYih9WvK3TfJjsH-zjXbxgbfPiy95HGCgPU8kxOKZrjRV0WVe2cq600JuFcp7lMrEXPwQm85kw4Y3RV4pgShhoFNbbUjlc6CRUjUPwvFOhj-nDCUfZtRvgrs5bnj6G7zso8JuzEtD3U-tQHRwTGNJr9oRT_Vg13zmiD6hss_88_7SksRYOb9NsVsgJz1XgVlrtiFiTKtlV48hsz4zNIj1E9kb4_0aBtNQiC1j0Z6stASdKMSVOTT41BmUo-N6aZTtbg64MM4znMj5txtQ4k12hUIQis00ZYK6QVBcOHWVFaIUzWg7SbXmUj9bqvAPJDzUijPSQUQkIFSChs8-62zVlLPHLv0289apSXStiz1TG5Ar_P83upfoGWmw8k5j3Y6KCioriaqBlOevC-A9vs9r_f--L-3l7DY8SbOjoYHr6ERRYQ7zewNmB-en5RbcIjezk9nZy_CmuHwPeHxt0NVdRX-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Actor-Critic+for+Navigation+of+Mobile+Robots&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=de+Jesus%2C+Junior+Costa&rft.au=Kich%2C+Victor+Augusto&rft.au=Kolling%2C+Alisson+Henrique&rft.au=Grando%2C+Ricardo+Bedin&rft.date=2021-06-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=102&rft.issue=2&rft_id=info:doi/10.1007%2Fs10846-021-01367-5&rft.externalDocID=10_1007_s10846_021_01367_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon