Fractional 0–1 programs: links between mixed-integer linear and conic quadratic formulations
This paper focuses on methods that improve the performance of solution approaches for multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we explore the links between equivalent mixed-integer linear programming and conic quadratic programming reformulations of FPs...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 75; číslo 2; s. 273 - 339 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2019
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper focuses on methods that improve the performance of solution approaches for multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we explore the links between equivalent mixed-integer linear programming and conic quadratic programming reformulations of FPs. Thereby, we show that integrating the ideas behind these two types of reformulations of FPs allows us to push further the limits of the current state-of-the-art results and tackle larger-size problems. We perform extensive computational experiments to compare the proposed approaches against the current reformulations from the literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-019-00817-7 |