Fractional 0–1 programs: links between mixed-integer linear and conic quadratic formulations

This paper focuses on methods that improve the performance of solution approaches for multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we explore the links between equivalent mixed-integer linear programming and conic quadratic programming reformulations of FPs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 75; číslo 2; s. 273 - 339
Hlavní autoři: Mehmanchi, Erfan, Gómez, Andrés, Prokopyev, Oleg A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2019
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper focuses on methods that improve the performance of solution approaches for multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we explore the links between equivalent mixed-integer linear programming and conic quadratic programming reformulations of FPs. Thereby, we show that integrating the ideas behind these two types of reformulations of FPs allows us to push further the limits of the current state-of-the-art results and tackle larger-size problems. We perform extensive computational experiments to compare the proposed approaches against the current reformulations from the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-019-00817-7