Fractional 0–1 programs: links between mixed-integer linear and conic quadratic formulations

This paper focuses on methods that improve the performance of solution approaches for multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we explore the links between equivalent mixed-integer linear programming and conic quadratic programming reformulations of FPs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 75; číslo 2; s. 273 - 339
Hlavní autori: Mehmanchi, Erfan, Gómez, Andrés, Prokopyev, Oleg A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2019
Springer
Springer Nature B.V
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on methods that improve the performance of solution approaches for multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we explore the links between equivalent mixed-integer linear programming and conic quadratic programming reformulations of FPs. Thereby, we show that integrating the ideas behind these two types of reformulations of FPs allows us to push further the limits of the current state-of-the-art results and tackle larger-size problems. We perform extensive computational experiments to compare the proposed approaches against the current reformulations from the literature.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-019-00817-7