Explicit/implicit partitioning and a new explicit form of the generalized alpha method

Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in numerical methods in engineering Jg. 19; H. 11; S. 909 - 920
1. Verfasser: Daniel, W. J. T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.11.2003
Wiley
Schlagworte:
ISSN:1069-8299, 1099-0887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non‐linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT‐αalgorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT‐αmethod. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid‐point of a cycle. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non‐linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT‐αalgorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT‐αmethod. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid‐point of a cycle. Copyright © 2003 John Wiley & Sons, Ltd.
abstract Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non‐linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT‐αalgorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT‐αmethod. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid‐point of a cycle. Copyright © 2003 John Wiley & Sons, Ltd.
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT- alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT- alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. (Author)
Author Daniel, W. J. T.
Author_xml – sequence: 1
  givenname: W. J. T.
  surname: Daniel
  fullname: Daniel, W. J. T.
  email: bill@mech.uq.edu.au
  organization: Department of Mechanical Engineering, The University of Queensland, St Lucia Campus, 4072, Brisbane, Queensland, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15280706$$DView record in Pascal Francis
BookMark eNp10Etv1DAQB3ALFYm2IL6CL8ABpbXjxI8jWvpAKuVSHurFmnUmXYPjpHaqtnx6vMqqBxCnGY1-Gs38D8heHCMS8pqzI85YfezicCQb9ozsc2ZMxbRWe9temkrXxrwgBzn_ZIwZptk--XbyMAXv_Hzsh6WhE6TZz36MPt5QiB0FGvGe4g7SfkwDHXs6b5DeYMQEwf_GwsK0ATrgvBm7l-R5DyHjq109JF9PT65W59XFl7NPqw8XlROtZpVQplZOcdOpNSpwTSdZGXBouw6RN2DqVoBx2nUdyLV0iOu1UAVh07ROiEPydtk7pfH2DvNsB58dhgARx7tsa820Ebwt8M0OQnYQ-gTR-Wyn5AdIj5a3RSomi6sW59KYc8Lelpdhm8acwAfLmd2mbEvKtqRc_Lu__NPKf-T7Rd77gI__Y3Z1-XnRuzt8nvHhSUP6ZaUSqrXfL89sLa8_XusfV1aKP1vKnME
CitedBy_id crossref_primary_10_1108_02644400510619530
crossref_primary_10_1016_j_cma_2010_12_004
crossref_primary_10_1007_s11044_011_9298_z
crossref_primary_10_1016_j_jcp_2022_111696
crossref_primary_10_1002_cnm_3140
crossref_primary_10_1016_j_ymssp_2021_108159
crossref_primary_10_1016_j_ijimpeng_2008_07_003
crossref_primary_10_1002_nme_5572
crossref_primary_10_1002_nme_4818
Cites_doi 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
10.1115/1.3424305
10.1007/s00466-001-0273-z
10.1016/S0045-7825(96)01036-5
10.1016/S0045-7825(00)00256-5
10.1115/1.2900803
10.1016/S0045-7825(98)00176-5
10.1115/1.3424304
10.1002/eqe.4290050306
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
2004 INIST-CNRS
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
– notice: 2004 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SM
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/cnm.640
DatabaseName Istex
CrossRef
Pascal-Francis
Earthquake Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1099-0887
EndPage 920
ExternalDocumentID 15280706
10_1002_cnm_640
CNM640
ark_67375_WNG_26ZDZ8XT_6
Genre article
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
ALUQN
AAYXX
CITATION
O8X
IQODW
7SM
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3580-37927c719d7be7ac4d6027c1a5ddee14a9253a9c8cdda6b6ceebb37602e445c33
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186701900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1069-8299
IngestDate Fri Jul 11 04:43:08 EDT 2025
Mon Jul 21 09:16:19 EDT 2025
Tue Nov 18 22:25:20 EST 2025
Sat Nov 29 06:27:57 EST 2025
Sun Sep 21 06:19:17 EDT 2025
Tue Nov 11 03:31:40 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 11
Keywords generalized alpha method
explicit/implicit partition
direct integration
finite elements
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3580-37927c719d7be7ac4d6027c1a5ddee14a9253a9c8cdda6b6ceebb37602e445c33
Notes istex:B71C4BA58B738737299E674455640718A078EDA5
ArticleID:CNM640
ark:/67375/WNG-26ZDZ8XT-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28089315
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_28089315
pascalfrancis_primary_15280706
crossref_citationtrail_10_1002_cnm_640
crossref_primary_10_1002_cnm_640
wiley_primary_10_1002_cnm_640_CNM640
istex_primary_ark_67375_WNG_26ZDZ8XT_6
PublicationCentury 2000
PublicationDate November 2003
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: November 2003
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: implementation and numerical examples. ASME Journal of Applied Mechanics 1978; 45:375-378.
Erlicher S, Bonaventura L, Bursi OS. The analysis of the generalized-αmethod for non-linear dynamic problems. Computational Mechanics 2002; 28:83-104.
Kuhl D, Crisfield MA. Energy-conserving and decaying algorithms in non-linear structural dynamics. International Journal for Numerical Methods in Engineering 1999; 45:569-599.
Hulbert GM, Chung JP. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering 1996; 137:175-188.
Chung J, Hulbert GM. A time integration method for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics 1993; 60:371-375.
Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part 1: low-order methods for two model problems and non-linear elastodynamics. Computer Methods in Applied Mechanics and Engineering 2001; 190:2603-2649.
Bauchau OA, Botasso CL. On the design of energy preserving and decaying schemes for flexible, non-linear multi-body systems. Computer Methods in Applied Mechanics and Engineering 1999; 169:61-79.
Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: stability theory. ASME Journal of Applied Mechanics 1978; 45:371-374.
Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 1977; 5:283-292.
1999; 45
2002; 28
1996
1999; 169
2001
1996; 137
1978; 45
2001; 190
1993; 60
1977; 5
Hulbert GM (e_1_2_1_7_2) 2001
e_1_2_1_6_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part 1: low-order methods for two model problems and non-linear elastodynamics. Computer Methods in Applied Mechanics and Engineering 2001; 190:2603-2649.
– reference: Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 1977; 5:283-292.
– reference: Hulbert GM, Chung JP. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering 1996; 137:175-188.
– reference: Erlicher S, Bonaventura L, Bursi OS. The analysis of the generalized-αmethod for non-linear dynamic problems. Computational Mechanics 2002; 28:83-104.
– reference: Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: implementation and numerical examples. ASME Journal of Applied Mechanics 1978; 45:375-378.
– reference: Kuhl D, Crisfield MA. Energy-conserving and decaying algorithms in non-linear structural dynamics. International Journal for Numerical Methods in Engineering 1999; 45:569-599.
– reference: Chung J, Hulbert GM. A time integration method for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics 1993; 60:371-375.
– reference: Bauchau OA, Botasso CL. On the design of energy preserving and decaying schemes for flexible, non-linear multi-body systems. Computer Methods in Applied Mechanics and Engineering 1999; 169:61-79.
– reference: Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: stability theory. ASME Journal of Applied Mechanics 1978; 45:371-374.
– year: 1996
– volume: 28
  start-page: 83
  year: 2002
  end-page: 104
  article-title: The analysis of the generalized‐αmethod for non‐linear dynamic problems
  publication-title: Computational Mechanics
– volume: 45
  start-page: 375
  year: 1978
  end-page: 378
  article-title: Implicit‐explicit finite elements in transient analysis: implementation and numerical examples
  publication-title: ASME Journal of Applied Mechanics
– volume: 169
  start-page: 61
  year: 1999
  end-page: 79
  article-title: On the design of energy preserving and decaying schemes for flexible, non‐linear multi‐body systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 1515
  year: 2001
  end-page: 1520
– volume: 137
  start-page: 175
  year: 1996
  end-page: 188
  article-title: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 45
  start-page: 371
  year: 1978
  end-page: 374
  article-title: Implicit‐explicit finite elements in transient analysis: stability theory
  publication-title: ASME Journal of Applied Mechanics
– volume: 60
  start-page: 371
  year: 1993
  end-page: 375
  article-title: A time integration method for structural dynamics with improved numerical dissipation: the generalized‐α method
  publication-title: Journal of Applied Mechanics
– volume: 5
  start-page: 283
  year: 1977
  end-page: 292
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 45
  start-page: 569
  year: 1999
  end-page: 599
  article-title: Energy‐conserving and decaying algorithms in non‐linear structural dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2001
– volume: 190
  start-page: 2603
  year: 2001
  end-page: 2649
  article-title: On the formulation of high‐frequency dissipative time‐stepping algorithms for non‐linear dynamics. Part 1: low‐order methods for two model problems and non‐linear elastodynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: e_1_2_1_3_2
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
– ident: e_1_2_1_14_2
– volume-title: Computational Aspects of Nonlinear Systems with Large Rigid Body Motion
  year: 2001
  ident: e_1_2_1_7_2
– ident: e_1_2_1_13_2
  doi: 10.1115/1.3424305
– ident: e_1_2_1_8_2
  doi: 10.1007/s00466-001-0273-z
– ident: e_1_2_1_10_2
  doi: 10.1016/S0045-7825(96)01036-5
– ident: e_1_2_1_5_2
  doi: 10.1016/S0045-7825(00)00256-5
– ident: e_1_2_1_2_2
  doi: 10.1115/1.2900803
– ident: e_1_2_1_4_2
  doi: 10.1016/S0045-7825(98)00176-5
– ident: e_1_2_1_6_2
– ident: e_1_2_1_9_2
– ident: e_1_2_1_11_2
  doi: 10.1115/1.3424304
– ident: e_1_2_1_12_2
  doi: 10.1002/eqe.4290050306
SSID ssj0009080
Score 1.3573349
Snippet Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize...
abstract Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 909
SubjectTerms Computational techniques
direct integration
Exact sciences and technology
explicit/implicit partition
finite elements
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
generalized alpha method
Mathematical methods in physics
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
Title Explicit/implicit partitioning and a new explicit form of the generalized alpha method
URI https://api.istex.fr/ark:/67375/WNG-26ZDZ8XT-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.640
https://www.proquest.com/docview/28089315
Volume 19
WOSCitedRecordID wos000186701900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0887
  dateEnd: 20091231
  omitProxy: false
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQy6E9lAKturQFHxC3dDfxKz5W0G0PsEIVlBUXy6-gqCWLNguq-us7js0-VFWq1EseytixxjPjsT3-BqEjIQ0TgugMri6jzFWZJsZmpOSicN5T62iXbEKMx-VkIi9WUn1FfIjFglvQjM5eBwXXph0sQUNtc_eBU5it98KRKph39U6_jq7Oloi7wzJCEXCZlWB044nZUHiQiq4NRb3A1Z8hNFK3wJ0qprVY8ztXvddu-Blt_0fDX6IXyefEH6OQ7KAN3-yi7eR_4qTd7S56vgJOCG_nC0TXdg99C8F6ta3ng_ouPuD7IHVpPRfrxmGNwUfHPhHi4A7jaYWhFnwb0a3rX_DD7ngvjqmrX6Gr0afLky9ZysmQ2bBhCvZIFsKKXDphvNCWOg7Mt7lmYCd9TrUsGNHSltY5zQ2HMdiYEHhTeEqZJeQ12mymjX-DsCd5KCsYrzjVQ2KKIaksL42rJBXS9tHxU_comwDLQ96MHypCLRcKOKmAk32EF4T3EaPjT5Ljrn8X3_XsewhpE0xdjz-rgt-c3pSTS8X76GBNAJYVsoAbNASCwyeJUKCJYXtFN3760Cr4Ds5fzvroqOv-v7VFnYzP4bb_b2Rv0bMYPxhWfd6hzfnswb9HW_ZxXrezgyT0vwHmBwb-
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hFgl42GAwUT42P0x7C21ix04e0UYZoo0Q6qDai-XYDopg6dR0E-Kv5xx77SqEhMRLPpSzY53v7PP5_DuAI5GXqRBURXg1EUtNFSla6ohmXCTGWqYN65JNiKLI5vP8U4iqdGdhPD7E2uHmNKMbr52CO4f0cIMaqpvLN5zhcr3POBVZD_qnn8fnkw3k7ijzWAQ8jzIcdf2RWVd4GIpuzUV9x9afLjZStcieyue12DI875qv3fwz3v2flj-GnWB1krdeTJ7APdvswW6wQEnQ73YPHt2BJ8S36RrTtX0KX1y4Xq3r1bC-9A_kysld8OgS1RiiCFrpxAZC4gxisqgI1kK-eXzr-hf-sDvgS3zy6mdwPn43OzmLQlaGSLstUxyR8kRoEedGlFYozQzHpa2OVYojpY2ZypOUqlxn2hjFS46zcFm60JvEMpZqSveh1ywa-xyIpbErK1JecaZGtExGtNI8K02VM5HrARzf9o_UAbLcZc74IT3YciKRkxI5OQCyJrzyKB1_khx3Hbz-rpbfXVCbSOXX4r1M-MXpRTafST6Agy0J2FSYOuSgERIc3oqERF10GyyqsYvrVuJ3NP_idABHXf__rS3ypJji7cW_kR3Cg7PZdCInH4qPL-GhjyZ0PqBX0Fstr-1ruK9vVnW7PAga8BuWHgru
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hFiF4YDCYKB-bH6a9hTaJP-JHtFJAbNGENqj2Yjm2gyJYWrUdQvz1nGOvXYWQkHjJh3J2rPPd-WyffwdwKGTFhMh1glebUGbrROeVSfKCi8w6R42lXbIJUZbFdCrPYlSlPwsT8CHWC25eMzp77RXczW093KCGmvbqNac4Xe9TJhntQX_8aXJxsoHcHRUBi4DLpECrG47M-sLDWHRrLOp7tv70sZF6ieypQ16LLcfztvvajT-Tnf9p-SN4GL1O8iaIyWO449pd2IkeKIn6vdyFB7fgCfHtdI3punwCn324XmOa1bC5Cg9k7uUurugS3VqiCXrpxEVC4h1iMqsJ1kK-Bnzr5hf-sDvgS0Ly6qdwMXl7fvw-iVkZEuO3TNEiyUwYkUorKie0oZbj1NakmqGldCnVMmO5lqYw1mpecRyFq8qH3mSOUmbyfA967ax1z4C4PPVlBeM1p3qUV9korw0vKltLKqQZwNFN_ygTIct95ozvKoAtZwo5qZCTAyBrwnlA6fiT5Kjr4PV3vfjmg9oEU1_Kdyrjl-PLYnqu-AD2tyRgUyHzyEEjJDi4EQmFuug3WHTrZtdLhd_R_UvZAA67_v9bW9RxeYq35_9GdgD3zsYTdfKh_PgC7odgQr8E9BJ6q8W1ewV3zY9Vs1zsRwX4DROSCmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit%2Fimplicit+partitioning+and+a+new+explicit+form+of+the+generalized+alpha+method&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Daniel%2C+W.J.T.&rft.date=2003-11-01&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=19&rft.issue=11&rft.spage=909&rft.epage=920&rft_id=info:doi/10.1002%2Fcnm.640&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon