Coded Computation Over Heterogeneous Clusters
In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, and so on. There have been...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 65; no. 7; pp. 4227 - 4242 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, and so on. There have been recent results that demonstrate the impact of coding for efficient utilization of computation and storage redundancy to alleviate the effect of stragglers and communication bottlenecks in homogeneous clusters. In this paper, we focus on general heterogeneous distributed computing clusters consist of a variety of computing machines with different capabilities. We propose a coding framework for speeding up distributed computing in heterogeneous clusters by trading redundancy for reducing the latency of computation. In particular, we propose heterogeneous coded matrix multiplication (HCMM) algorithm for performing distributed matrix multiplication over heterogeneous clusters that are provably asymptotically optimal for a broad class of processing time distributions. Moreover, we show that HCMM is unboundedly faster than any uncoded scheme that partitions the total workload among the workers. To demonstrate how the proposed HCMM scheme can be applied in practice, we provide results from numerical studies and Amazon EC2 experiments comparing HCMM with three benchmark load allocation schemes-uniform uncoded, load-balanced uncoded, and uniform coded. In particular, in our numerical studies, HCMM achieves speedups of up to 73%, 56%, and 42%, respectively, over the three benchmark schemes mentioned earlier. Furthermore, we carry out experiments over Amazon EC2 clusters and demonstrate how HCMM can be combined with rateless codes with nearly linear decoding complexity. In particular, we show that HCMM combined with the Luby transform codes can significantly reduce the overall execution time. HCMM is found to be up to 61%, 46%, and 36% faster than the aforementioned three benchmark schemes, respectively. Additionally, we provide a generalization to the problem of optimal load allocation in heterogeneous settings, where we take into account the monetary costs associated with distributed computing clusters. We argue that HCMM is asymptotically optimal for budget-constrained scenarios as well. In particular, we characterize the minimum possible expected cost associated with a computation task over a given cluster of machines. Furthermore, we develop a heuristic algorithm for (HCMM) load allocation for the distributed implementation of budget-limited computation tasks. |
|---|---|
| AbstractList | In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, and so on. There have been recent results that demonstrate the impact of coding for efficient utilization of computation and storage redundancy to alleviate the effect of stragglers and communication bottlenecks in homogeneous clusters. In this paper, we focus on general heterogeneous distributed computing clusters consist of a variety of computing machines with different capabilities. We propose a coding framework for speeding up distributed computing in heterogeneous clusters by trading redundancy for reducing the latency of computation. In particular, we propose heterogeneous coded matrix multiplication (HCMM) algorithm for performing distributed matrix multiplication over heterogeneous clusters that are provably asymptotically optimal for a broad class of processing time distributions. Moreover, we show that HCMM is unboundedly faster than any uncoded scheme that partitions the total workload among the workers. To demonstrate how the proposed HCMM scheme can be applied in practice, we provide results from numerical studies and Amazon EC2 experiments comparing HCMM with three benchmark load allocation schemes-uniform uncoded, load-balanced uncoded, and uniform coded. In particular, in our numerical studies, HCMM achieves speedups of up to 73%, 56%, and 42%, respectively, over the three benchmark schemes mentioned earlier. Furthermore, we carry out experiments over Amazon EC2 clusters and demonstrate how HCMM can be combined with rateless codes with nearly linear decoding complexity. In particular, we show that HCMM combined with the Luby transform codes can significantly reduce the overall execution time. HCMM is found to be up to 61%, 46%, and 36% faster than the aforementioned three benchmark schemes, respectively. Additionally, we provide a generalization to the problem of optimal load allocation in heterogeneous settings, where we take into account the monetary costs associated with distributed computing clusters. We argue that HCMM is asymptotically optimal for budget-constrained scenarios as well. In particular, we characterize the minimum possible expected cost associated with a computation task over a given cluster of machines. Furthermore, we develop a heuristic algorithm for (HCMM) load allocation for the distributed implementation of budget-limited computation tasks. |
| Author | Pedarsani, Ramtin Reisizadeh, Amirhossein Avestimehr, Amir Salman Prakash, Saurav |
| Author_xml | – sequence: 1 givenname: Amirhossein orcidid: 0000-0002-1730-8402 surname: Reisizadeh fullname: Reisizadeh, Amirhossein email: reisizadeh@ucsb.edu organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA – sequence: 2 givenname: Saurav orcidid: 0000-0002-1911-4062 surname: Prakash fullname: Prakash, Saurav email: sauravpr@usc.edu organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: Ramtin orcidid: 0000-0002-1126-0292 surname: Pedarsani fullname: Pedarsani, Ramtin email: ramtin@ece.ucsb.edu organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA – sequence: 4 givenname: Amir Salman surname: Avestimehr fullname: Avestimehr, Amir Salman email: avestimehr@ee.usc.edu organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA |
| BookMark | eNp9kM1Lw0AQxRepYFu9C14CnlP3M7t7lKC2UOilnpdtdiIpaTbuJoL_vVtSPHjwNDx4v3kzb4Fmne8AoXuCV4Rg_bTf7FcUE72iGnMsxBWaEyFkrgvBZ2iOMVG55lzdoEWMxyS5IHSO8tI7cFnpT_042KHxXbb7gpCtYYDgP6ADP8asbMeYdLxF17VtI9xd5hK9v77sy3W-3b1tyudtXjEhh7yua3uQQLBVoFnlJJeOAD-QilaaYahTpCOuoJA0cYd0N0hMueOgqbOCLdHjtLcP_nOEOJijH0OXIg2lnFGplCqSC0-uKvgYA9SmD83Jhm9DsDmXYlIp5lyKuZSSkOIPUjXT20OwTfsf-DCBDQD85qiiYEww9gPveHCt |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_JSAC_2022_3142364 crossref_primary_10_3390_app13084993 crossref_primary_10_1109_JSAC_2021_3118350 crossref_primary_10_1109_JIOT_2022_3143229 crossref_primary_10_1109_TCC_2024_3370834 crossref_primary_10_1109_TWC_2020_3025446 crossref_primary_10_1109_JIOT_2021_3138855 crossref_primary_10_1109_TSP_2022_3185905 crossref_primary_10_1109_JIOT_2020_2974045 crossref_primary_10_1109_TCOMM_2025_3529253 crossref_primary_10_1109_TWC_2024_3366547 crossref_primary_10_1109_JIOT_2025_3580627 crossref_primary_10_1109_TIT_2020_3036763 crossref_primary_10_1007_s10115_024_02257_6 crossref_primary_10_1109_TCOMM_2024_3450797 crossref_primary_10_1109_TIT_2019_2927558 crossref_primary_10_1109_TCOMM_2024_3446641 crossref_primary_10_1109_JIOT_2020_3045277 crossref_primary_10_1109_TCOMM_2022_3164056 crossref_primary_10_1109_TWC_2021_3091465 crossref_primary_10_1109_COMST_2024_3421523 crossref_primary_10_1109_IOTM_001_2300247 crossref_primary_10_1109_TIT_2023_3321918 crossref_primary_10_1109_TIT_2021_3127920 crossref_primary_10_1109_TCC_2021_3050012 crossref_primary_10_1109_JSAC_2020_3036961 crossref_primary_10_1109_TWC_2020_3040792 crossref_primary_10_1109_TNET_2024_3372698 crossref_primary_10_1109_TVT_2024_3493105 crossref_primary_10_1016_j_comnet_2025_111381 crossref_primary_10_1109_JSYST_2021_3139993 crossref_primary_10_1109_TCOMM_2024_3381711 crossref_primary_10_1109_TSC_2022_3201550 crossref_primary_10_1016_j_phycom_2024_102499 crossref_primary_10_1109_JSAC_2022_3142295 crossref_primary_10_1109_LCOMM_2025_3571911 crossref_primary_10_1109_TIT_2021_3064827 crossref_primary_10_3390_math11132891 crossref_primary_10_1109_TCOMM_2023_3347772 crossref_primary_10_1109_JSAC_2022_3180811 crossref_primary_10_1109_TCOMM_2023_3244243 crossref_primary_10_1109_TVT_2022_3231179 crossref_primary_10_1109_TCNS_2024_3511400 crossref_primary_10_1109_JSAC_2021_3118432 crossref_primary_10_1109_TPDS_2023_3276888 crossref_primary_10_1109_TIT_2022_3204488 crossref_primary_10_1109_TWC_2023_3311104 crossref_primary_10_1109_COMST_2021_3091684 crossref_primary_10_1109_TNSE_2021_3095040 crossref_primary_10_1016_j_knosys_2021_106775 crossref_primary_10_1109_TCOMM_2023_3345421 crossref_primary_10_1109_JSAC_2022_3180781 crossref_primary_10_1109_LWC_2020_2983359 crossref_primary_10_1109_TNET_2019_2919553 crossref_primary_10_1016_j_comnet_2021_107846 crossref_primary_10_1109_ACCESS_2019_2953172 crossref_primary_10_1109_TIFS_2022_3173417 crossref_primary_10_1109_TCOMM_2023_3236385 crossref_primary_10_1109_TSP_2025_3537409 crossref_primary_10_1109_TCOMM_2023_3334810 crossref_primary_10_1109_TIFS_2023_3326970 crossref_primary_10_1109_LCOMM_2023_3320283 crossref_primary_10_1109_TIT_2022_3206868 crossref_primary_10_1109_ACCESS_2020_3031590 crossref_primary_10_1109_LCOMM_2021_3140100 crossref_primary_10_1109_TIT_2023_3296154 crossref_primary_10_3390_e26100881 crossref_primary_10_1109_TNET_2022_3181234 crossref_primary_10_1109_TSP_2022_3182221 crossref_primary_10_1109_JPROC_2020_2986362 crossref_primary_10_1109_ACCESS_2021_3135581 crossref_primary_10_1109_LWC_2021_3125983 crossref_primary_10_1109_ACCESS_2021_3111118 crossref_primary_10_1109_JIOT_2022_3218729 crossref_primary_10_1109_JBHI_2022_3185673 crossref_primary_10_1109_TIT_2025_3565558 crossref_primary_10_1109_TVT_2022_3204839 crossref_primary_10_1109_LWC_2022_3189497 crossref_primary_10_1109_TCOMM_2020_3030667 crossref_primary_10_1109_TNSE_2022_3228322 crossref_primary_10_1109_TIT_2019_2963864 crossref_primary_10_1109_JSAC_2021_3078494 crossref_primary_10_1109_TNET_2021_3058685 crossref_primary_10_1109_TWC_2024_3453403 crossref_primary_10_1109_MCOM_003_2200015 crossref_primary_10_1109_TIFS_2024_3377929 |
| Cites_doi | 10.1109/ISIT.2017.8006961 10.1109/ISIT.2017.8006991 10.1016/j.future.2015.01.004 10.1109/ALLERTON.2016.7852337 10.1016/j.parco.2013.03.002 10.1109/ISIT.2018.8437563 10.1109/MCOM.2017.1600894 10.1109/ITW.2017.8278011 10.1109/ALLERTON.2017.8262883 10.1145/1327452.1327492 10.1109/ALLERTON.2017.8262881 10.1109/IPDPSW.2017.33 10.1109/ALLERTON.2017.8262882 10.1109/TIT.2017.2692244 10.1109/TSC.2011.44 10.1145/2829988.2787505 10.1109/ISIT.2017.8006960 10.1109/ISIT.2017.8006963 10.1016/j.jpdc.2005.03.010 10.1109/GLOCOM.2016.7841903 10.1109/SC.2008.5217932 10.1145/2408776.2408794 10.1145/3152042.3152047 10.1109/TIT.2017.2736066 10.1109/GLOCOM.2017.8254164 10.1109/TIT.2017.2756959 10.1109/ALLERTON.2015.7447112 10.1109/ISIT.2017.8006962 10.1109/INFOCOM.2014.6848010 10.1145/2342509.2342513 10.1109/IPDPS.2009.5160911 10.1109/ISIT.2018.8437525 10.1145/2847220.2847223 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2019.2904055 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 4242 |
| ExternalDocumentID | 10_1109_TIT_2019_2904055 8663353 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: HR001117C0053 funderid: 10.13039/100000185 – fundername: ARO grantid: W911NF1810400 – fundername: UC Office of President grantid: LFR-18-548175 – fundername: ONR grantid: N00014-16-1-2189; CCF-1763673; CCF-1755808 – fundername: National Science Foundation grantid: CCF-1703575 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-fffab7e10a8e93cd747d1e4b1c2c930efdedd1d62e2c91db201e7024d4e92da53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472186800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sun Nov 30 03:48:56 EST 2025 Sat Nov 29 03:31:41 EST 2025 Tue Nov 18 22:17:19 EST 2025 Wed Aug 27 05:56:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-fffab7e10a8e93cd747d1e4b1c2c930efdedd1d62e2c91db201e7024d4e92da53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1126-0292 0000-0002-1730-8402 0000-0002-1911-4062 |
| PQID | 2243278886 |
| PQPubID | 36024 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2243278886 crossref_primary_10_1109_TIT_2019_2904055 ieee_primary_8663353 crossref_citationtrail_10_1109_TIT_2019_2904055 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 dutta (ref15) 2016 ref34 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 wang (ref20) 2018 ref19 ref18 mackay (ref38) 2003 ref24 karakus (ref28) 2017 ref23 ref26 ref25 severinson (ref29) 2017 ref42 ref41 mallick (ref39) 2018 ref22 ref44 ref21 ref43 (ref45) 2017 zaharia (ref4) 2008; 8 ref27 ref8 ref7 ref9 rudelson (ref32) 2010; 2 zaharia (ref3) 2010; 10 ref6 ref5 ref40 yu (ref17) 2017 tandon (ref16) 2017 |
| References_xml | – start-page: 3368 year: 2017 ident: ref16 article-title: Gradient coding: Avoiding stragglers in distributed learning publication-title: Mach Learn Res – ident: ref1 doi: 10.1109/ISIT.2017.8006961 – ident: ref11 doi: 10.1109/ISIT.2017.8006991 – ident: ref44 doi: 10.1016/j.future.2015.01.004 – volume: 2 start-page: 1576 year: 2010 ident: ref32 article-title: Non-asymptotic theory of random matrices: Extreme singular values publication-title: Proc Int Congr Math – ident: ref24 doi: 10.1109/ALLERTON.2016.7852337 – ident: ref40 doi: 10.1016/j.parco.2013.03.002 – year: 2018 ident: ref20 publication-title: Fundamental limits of coded linear transform – ident: ref21 doi: 10.1109/ISIT.2018.8437563 – ident: ref37 doi: 10.1109/MCOM.2017.1600894 – ident: ref14 doi: 10.1109/ITW.2017.8278011 – year: 2017 ident: ref29 publication-title: Block-diagonal and LT codes for distributed computing with straggling servers – year: 2018 ident: ref39 publication-title: Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication – ident: ref25 doi: 10.1109/ALLERTON.2017.8262883 – ident: ref2 doi: 10.1145/1327452.1327492 – start-page: 4403 year: 2017 ident: ref17 article-title: Polynomial codes: An optimal design for high-dimensional coded matrix multiplication publication-title: Proc Adv Neural Inf Process Syst – ident: ref22 doi: 10.1109/ALLERTON.2017.8262881 – ident: ref8 doi: 10.1109/IPDPSW.2017.33 – ident: ref18 doi: 10.1109/ALLERTON.2017.8262882 – ident: ref27 doi: 10.1109/TIT.2017.2692244 – volume: 10 start-page: 10 year: 2010 ident: ref3 article-title: Spark: Cluster computing with working sets publication-title: HotCloud – ident: ref43 doi: 10.1109/TSC.2011.44 – ident: ref5 doi: 10.1145/2829988.2787505 – ident: ref34 doi: 10.1109/ISIT.2017.8006960 – ident: ref19 doi: 10.1109/ISIT.2017.8006963 – ident: ref35 doi: 10.1016/j.jpdc.2005.03.010 – ident: ref13 doi: 10.1109/GLOCOM.2016.7841903 – start-page: 5440 year: 2017 ident: ref28 article-title: Straggler mitigation in distributed optimization through data encoding publication-title: Proc Adv Neural Inf Process Syst – ident: ref41 doi: 10.1109/SC.2008.5217932 – year: 2003 ident: ref38 publication-title: Information Theory Inference and Learning Algorithms – start-page: 2092 year: 2016 ident: ref15 article-title: Short-dot: Computing large linear transforms distributedly using coded short dot products publication-title: Proc Adv Neural Inf Process Syst – ident: ref36 doi: 10.1145/2408776.2408794 – volume: 8 start-page: 7 year: 2008 ident: ref4 article-title: Improving mapreduce performance in heterogeneous environments publication-title: Proc OSDI – ident: ref30 doi: 10.1145/3152042.3152047 – ident: ref10 doi: 10.1109/TIT.2017.2736066 – ident: ref12 doi: 10.1109/GLOCOM.2017.8254164 – ident: ref7 doi: 10.1109/TIT.2017.2756959 – year: 2017 ident: ref45 publication-title: Amazon EC2 pricing – ident: ref6 doi: 10.1109/ALLERTON.2015.7447112 – ident: ref23 doi: 10.1109/ISIT.2017.8006962 – ident: ref33 doi: 10.1109/INFOCOM.2014.6848010 – ident: ref9 doi: 10.1145/2342509.2342513 – ident: ref42 doi: 10.1109/IPDPS.2009.5160911 – ident: ref26 doi: 10.1109/ISIT.2018.8437525 – ident: ref31 doi: 10.1145/2847220.2847223 |
| SSID | ssj0014512 |
| Score | 2.6622186 |
| Snippet | In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of... In large-scale distributed computing clusters, such as Amazon EC2, there are several types of “system noise” that can result in major degradation of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4227 |
| SubjectTerms | Algorithms Asymptotic properties Benchmark testing Benchmarks Clustering algorithms Clusters Coded computation Coding Communications systems Computer networks Computing costs Decoding Distributed computing Distributed processing Encoding heterogeneous clusters Heuristic methods Matrices (mathematics) Multiplication Numerical analysis Performance degradation Redundancy Resource management Stress concentration System failures Task analysis Workload |
| Title | Coded Computation Over Heterogeneous Clusters |
| URI | https://ieeexplore.ieee.org/document/8663353 https://www.proquest.com/docview/2243278886 |
| Volume | 65 |
| WOSCitedRecordID | wos000472186800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPVlvFapUcvAhum-wm2exRiqVeqocKvYXN7gSE0kjT-PvdzYuCInhLYDYJ38xkdnZeAPc0EQGVPCQp-or4IeNEcM2In9hhO2GUUFeWwyb4chmt1-KtA49tLQwilslnOLGXZSxfZ6qwR2XTyJhHFrAudDkPq1qtNmLgB17VGdwzCmx8jiYk6Yrp6mVlc7jEhAojsrao78AElTNVfvyIS-sy7__vu87gtN5FOk8V28-hg9sB9JsJDU6tsAM4OWg3OAQyyzRqpyIrOeK8Gkl2FjYlJjOShFmRO7NNYZsn5BfwPn9ezRakHpdAFAv4nqRpKhOOnisjFExp4yhoDw3oiirBXEzNK7SnQ4rm3tOGCx5yY6K1j4JqGbBL6G2zLV6BIxIMfanCRBp19bRKUpqKSPvSD9KASTqCaYNgrOpe4nakxSYufQpXxAbz2GIe15iP4KFd8Vn10fiDdmgxbulqeEcwbpgU14qWx2YHwqh148Pr31fdwLF9dpVhO4beflfgLRypr_1HvrsrZegboCTD1w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHp1NxOrUPvgh2a5P0I48yHBvO6UOFvZU0uYIwVtlW_36TtisDRfCthQspv7vL5XpfAHck4R4RgW-nyKTNfBrYPFDUZokZtuOHCXFEMWwimE7D2Yy_NeChroVBxCL5DHvmsYjlq0zm5ldZP9TmkXp0B3Y9xohTVmvVMQPmuWVvcFersPY6NkFJh_ejcWSyuHiPcC20pqxvywgVU1V-HMWFfRm2_vdlx3BU3SOtx5LxJ9DARRtamxkNVqWybTjcajh4CvYgU6iskqzgifWqZdkamaSYTMsSZvnKGsxz0z5hdQbvw6doMLKrgQm2pF6wttM0FUmAriNC5FQq7SooFzXskkhOHUz1FspVPkH97irNBxcDbaQVQ06U8Og5NBfZAi_A4gn6TEg_EVphXSWTlKQ8VEwwL_WoIB3obxCMZdVN3Ay1mMeFV-HwWGMeG8zjCvMO3NcrPstOGn_QnhqMa7oK3g50N0yKK1VbxfoOQolx5P3L31fdwv4oepnEk_H0-QoOzD5lvm0XmutljtewJ7_WH6vlTSFP3_paxx4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coded+Computation+Over+Heterogeneous+Clusters&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Reisizadeh%2C+Amirhossein&rft.au=Prakash%2C+Saurav&rft.au=Pedarsani%2C+Ramtin&rft.au=Avestimehr%2C+Amir+Salman&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=65&rft.issue=7&rft.spage=4227&rft_id=info:doi/10.1109%2FTIT.2019.2904055&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |