Coded Computation Over Heterogeneous Clusters

In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, and so on. There have been...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 65; no. 7; pp. 4227 - 4242
Main Authors: Reisizadeh, Amirhossein, Prakash, Saurav, Pedarsani, Ramtin, Avestimehr, Amir Salman
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, and so on. There have been recent results that demonstrate the impact of coding for efficient utilization of computation and storage redundancy to alleviate the effect of stragglers and communication bottlenecks in homogeneous clusters. In this paper, we focus on general heterogeneous distributed computing clusters consist of a variety of computing machines with different capabilities. We propose a coding framework for speeding up distributed computing in heterogeneous clusters by trading redundancy for reducing the latency of computation. In particular, we propose heterogeneous coded matrix multiplication (HCMM) algorithm for performing distributed matrix multiplication over heterogeneous clusters that are provably asymptotically optimal for a broad class of processing time distributions. Moreover, we show that HCMM is unboundedly faster than any uncoded scheme that partitions the total workload among the workers. To demonstrate how the proposed HCMM scheme can be applied in practice, we provide results from numerical studies and Amazon EC2 experiments comparing HCMM with three benchmark load allocation schemes-uniform uncoded, load-balanced uncoded, and uniform coded. In particular, in our numerical studies, HCMM achieves speedups of up to 73%, 56%, and 42%, respectively, over the three benchmark schemes mentioned earlier. Furthermore, we carry out experiments over Amazon EC2 clusters and demonstrate how HCMM can be combined with rateless codes with nearly linear decoding complexity. In particular, we show that HCMM combined with the Luby transform codes can significantly reduce the overall execution time. HCMM is found to be up to 61%, 46%, and 36% faster than the aforementioned three benchmark schemes, respectively. Additionally, we provide a generalization to the problem of optimal load allocation in heterogeneous settings, where we take into account the monetary costs associated with distributed computing clusters. We argue that HCMM is asymptotically optimal for budget-constrained scenarios as well. In particular, we characterize the minimum possible expected cost associated with a computation task over a given cluster of machines. Furthermore, we develop a heuristic algorithm for (HCMM) load allocation for the distributed implementation of budget-limited computation tasks.
AbstractList In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, and so on. There have been recent results that demonstrate the impact of coding for efficient utilization of computation and storage redundancy to alleviate the effect of stragglers and communication bottlenecks in homogeneous clusters. In this paper, we focus on general heterogeneous distributed computing clusters consist of a variety of computing machines with different capabilities. We propose a coding framework for speeding up distributed computing in heterogeneous clusters by trading redundancy for reducing the latency of computation. In particular, we propose heterogeneous coded matrix multiplication (HCMM) algorithm for performing distributed matrix multiplication over heterogeneous clusters that are provably asymptotically optimal for a broad class of processing time distributions. Moreover, we show that HCMM is unboundedly faster than any uncoded scheme that partitions the total workload among the workers. To demonstrate how the proposed HCMM scheme can be applied in practice, we provide results from numerical studies and Amazon EC2 experiments comparing HCMM with three benchmark load allocation schemes-uniform uncoded, load-balanced uncoded, and uniform coded. In particular, in our numerical studies, HCMM achieves speedups of up to 73%, 56%, and 42%, respectively, over the three benchmark schemes mentioned earlier. Furthermore, we carry out experiments over Amazon EC2 clusters and demonstrate how HCMM can be combined with rateless codes with nearly linear decoding complexity. In particular, we show that HCMM combined with the Luby transform codes can significantly reduce the overall execution time. HCMM is found to be up to 61%, 46%, and 36% faster than the aforementioned three benchmark schemes, respectively. Additionally, we provide a generalization to the problem of optimal load allocation in heterogeneous settings, where we take into account the monetary costs associated with distributed computing clusters. We argue that HCMM is asymptotically optimal for budget-constrained scenarios as well. In particular, we characterize the minimum possible expected cost associated with a computation task over a given cluster of machines. Furthermore, we develop a heuristic algorithm for (HCMM) load allocation for the distributed implementation of budget-limited computation tasks.
Author Pedarsani, Ramtin
Reisizadeh, Amirhossein
Avestimehr, Amir Salman
Prakash, Saurav
Author_xml – sequence: 1
  givenname: Amirhossein
  orcidid: 0000-0002-1730-8402
  surname: Reisizadeh
  fullname: Reisizadeh, Amirhossein
  email: reisizadeh@ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA
– sequence: 2
  givenname: Saurav
  orcidid: 0000-0002-1911-4062
  surname: Prakash
  fullname: Prakash, Saurav
  email: sauravpr@usc.edu
  organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Ramtin
  orcidid: 0000-0002-1126-0292
  surname: Pedarsani
  fullname: Pedarsani, Ramtin
  email: ramtin@ece.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA
– sequence: 4
  givenname: Amir Salman
  surname: Avestimehr
  fullname: Avestimehr, Amir Salman
  email: avestimehr@ee.usc.edu
  organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
BookMark eNp9kM1Lw0AQxRepYFu9C14CnlP3M7t7lKC2UOilnpdtdiIpaTbuJoL_vVtSPHjwNDx4v3kzb4Fmne8AoXuCV4Rg_bTf7FcUE72iGnMsxBWaEyFkrgvBZ2iOMVG55lzdoEWMxyS5IHSO8tI7cFnpT_042KHxXbb7gpCtYYDgP6ADP8asbMeYdLxF17VtI9xd5hK9v77sy3W-3b1tyudtXjEhh7yua3uQQLBVoFnlJJeOAD-QilaaYahTpCOuoJA0cYd0N0hMueOgqbOCLdHjtLcP_nOEOJijH0OXIg2lnFGplCqSC0-uKvgYA9SmD83Jhm9DsDmXYlIp5lyKuZSSkOIPUjXT20OwTfsf-DCBDQD85qiiYEww9gPveHCt
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_JSAC_2022_3142364
crossref_primary_10_3390_app13084993
crossref_primary_10_1109_JSAC_2021_3118350
crossref_primary_10_1109_JIOT_2022_3143229
crossref_primary_10_1109_TCC_2024_3370834
crossref_primary_10_1109_TWC_2020_3025446
crossref_primary_10_1109_JIOT_2021_3138855
crossref_primary_10_1109_TSP_2022_3185905
crossref_primary_10_1109_JIOT_2020_2974045
crossref_primary_10_1109_TCOMM_2025_3529253
crossref_primary_10_1109_TWC_2024_3366547
crossref_primary_10_1109_JIOT_2025_3580627
crossref_primary_10_1109_TIT_2020_3036763
crossref_primary_10_1007_s10115_024_02257_6
crossref_primary_10_1109_TCOMM_2024_3450797
crossref_primary_10_1109_TIT_2019_2927558
crossref_primary_10_1109_TCOMM_2024_3446641
crossref_primary_10_1109_JIOT_2020_3045277
crossref_primary_10_1109_TCOMM_2022_3164056
crossref_primary_10_1109_TWC_2021_3091465
crossref_primary_10_1109_COMST_2024_3421523
crossref_primary_10_1109_IOTM_001_2300247
crossref_primary_10_1109_TIT_2023_3321918
crossref_primary_10_1109_TIT_2021_3127920
crossref_primary_10_1109_TCC_2021_3050012
crossref_primary_10_1109_JSAC_2020_3036961
crossref_primary_10_1109_TWC_2020_3040792
crossref_primary_10_1109_TNET_2024_3372698
crossref_primary_10_1109_TVT_2024_3493105
crossref_primary_10_1016_j_comnet_2025_111381
crossref_primary_10_1109_JSYST_2021_3139993
crossref_primary_10_1109_TCOMM_2024_3381711
crossref_primary_10_1109_TSC_2022_3201550
crossref_primary_10_1016_j_phycom_2024_102499
crossref_primary_10_1109_JSAC_2022_3142295
crossref_primary_10_1109_LCOMM_2025_3571911
crossref_primary_10_1109_TIT_2021_3064827
crossref_primary_10_3390_math11132891
crossref_primary_10_1109_TCOMM_2023_3347772
crossref_primary_10_1109_JSAC_2022_3180811
crossref_primary_10_1109_TCOMM_2023_3244243
crossref_primary_10_1109_TVT_2022_3231179
crossref_primary_10_1109_TCNS_2024_3511400
crossref_primary_10_1109_JSAC_2021_3118432
crossref_primary_10_1109_TPDS_2023_3276888
crossref_primary_10_1109_TIT_2022_3204488
crossref_primary_10_1109_TWC_2023_3311104
crossref_primary_10_1109_COMST_2021_3091684
crossref_primary_10_1109_TNSE_2021_3095040
crossref_primary_10_1016_j_knosys_2021_106775
crossref_primary_10_1109_TCOMM_2023_3345421
crossref_primary_10_1109_JSAC_2022_3180781
crossref_primary_10_1109_LWC_2020_2983359
crossref_primary_10_1109_TNET_2019_2919553
crossref_primary_10_1016_j_comnet_2021_107846
crossref_primary_10_1109_ACCESS_2019_2953172
crossref_primary_10_1109_TIFS_2022_3173417
crossref_primary_10_1109_TCOMM_2023_3236385
crossref_primary_10_1109_TSP_2025_3537409
crossref_primary_10_1109_TCOMM_2023_3334810
crossref_primary_10_1109_TIFS_2023_3326970
crossref_primary_10_1109_LCOMM_2023_3320283
crossref_primary_10_1109_TIT_2022_3206868
crossref_primary_10_1109_ACCESS_2020_3031590
crossref_primary_10_1109_LCOMM_2021_3140100
crossref_primary_10_1109_TIT_2023_3296154
crossref_primary_10_3390_e26100881
crossref_primary_10_1109_TNET_2022_3181234
crossref_primary_10_1109_TSP_2022_3182221
crossref_primary_10_1109_JPROC_2020_2986362
crossref_primary_10_1109_ACCESS_2021_3135581
crossref_primary_10_1109_LWC_2021_3125983
crossref_primary_10_1109_ACCESS_2021_3111118
crossref_primary_10_1109_JIOT_2022_3218729
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_1109_TIT_2025_3565558
crossref_primary_10_1109_TVT_2022_3204839
crossref_primary_10_1109_LWC_2022_3189497
crossref_primary_10_1109_TCOMM_2020_3030667
crossref_primary_10_1109_TNSE_2022_3228322
crossref_primary_10_1109_TIT_2019_2963864
crossref_primary_10_1109_JSAC_2021_3078494
crossref_primary_10_1109_TNET_2021_3058685
crossref_primary_10_1109_TWC_2024_3453403
crossref_primary_10_1109_MCOM_003_2200015
crossref_primary_10_1109_TIFS_2024_3377929
Cites_doi 10.1109/ISIT.2017.8006961
10.1109/ISIT.2017.8006991
10.1016/j.future.2015.01.004
10.1109/ALLERTON.2016.7852337
10.1016/j.parco.2013.03.002
10.1109/ISIT.2018.8437563
10.1109/MCOM.2017.1600894
10.1109/ITW.2017.8278011
10.1109/ALLERTON.2017.8262883
10.1145/1327452.1327492
10.1109/ALLERTON.2017.8262881
10.1109/IPDPSW.2017.33
10.1109/ALLERTON.2017.8262882
10.1109/TIT.2017.2692244
10.1109/TSC.2011.44
10.1145/2829988.2787505
10.1109/ISIT.2017.8006960
10.1109/ISIT.2017.8006963
10.1016/j.jpdc.2005.03.010
10.1109/GLOCOM.2016.7841903
10.1109/SC.2008.5217932
10.1145/2408776.2408794
10.1145/3152042.3152047
10.1109/TIT.2017.2736066
10.1109/GLOCOM.2017.8254164
10.1109/TIT.2017.2756959
10.1109/ALLERTON.2015.7447112
10.1109/ISIT.2017.8006962
10.1109/INFOCOM.2014.6848010
10.1145/2342509.2342513
10.1109/IPDPS.2009.5160911
10.1109/ISIT.2018.8437525
10.1145/2847220.2847223
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2019.2904055
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4242
ExternalDocumentID 10_1109_TIT_2019_2904055
8663353
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  grantid: HR001117C0053
  funderid: 10.13039/100000185
– fundername: ARO
  grantid: W911NF1810400
– fundername: UC Office of President
  grantid: LFR-18-548175
– fundername: ONR
  grantid: N00014-16-1-2189; CCF-1763673; CCF-1755808
– fundername: National Science Foundation
  grantid: CCF-1703575
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-fffab7e10a8e93cd747d1e4b1c2c930efdedd1d62e2c91db201e7024d4e92da53
IEDL.DBID RIE
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472186800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 30 03:48:56 EST 2025
Sat Nov 29 03:31:41 EST 2025
Tue Nov 18 22:17:19 EST 2025
Wed Aug 27 05:56:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-fffab7e10a8e93cd747d1e4b1c2c930efdedd1d62e2c91db201e7024d4e92da53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1126-0292
0000-0002-1730-8402
0000-0002-1911-4062
PQID 2243278886
PQPubID 36024
PageCount 16
ParticipantIDs proquest_journals_2243278886
crossref_primary_10_1109_TIT_2019_2904055
ieee_primary_8663353
crossref_citationtrail_10_1109_TIT_2019_2904055
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
dutta (ref15) 2016
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
wang (ref20) 2018
ref19
ref18
mackay (ref38) 2003
ref24
karakus (ref28) 2017
ref23
ref26
ref25
severinson (ref29) 2017
ref42
ref41
mallick (ref39) 2018
ref22
ref44
ref21
ref43
(ref45) 2017
zaharia (ref4) 2008; 8
ref27
ref8
ref7
ref9
rudelson (ref32) 2010; 2
zaharia (ref3) 2010; 10
ref6
ref5
ref40
yu (ref17) 2017
tandon (ref16) 2017
References_xml – start-page: 3368
  year: 2017
  ident: ref16
  article-title: Gradient coding: Avoiding stragglers in distributed learning
  publication-title: Mach Learn Res
– ident: ref1
  doi: 10.1109/ISIT.2017.8006961
– ident: ref11
  doi: 10.1109/ISIT.2017.8006991
– ident: ref44
  doi: 10.1016/j.future.2015.01.004
– volume: 2
  start-page: 1576
  year: 2010
  ident: ref32
  article-title: Non-asymptotic theory of random matrices: Extreme singular values
  publication-title: Proc Int Congr Math
– ident: ref24
  doi: 10.1109/ALLERTON.2016.7852337
– ident: ref40
  doi: 10.1016/j.parco.2013.03.002
– year: 2018
  ident: ref20
  publication-title: Fundamental limits of coded linear transform
– ident: ref21
  doi: 10.1109/ISIT.2018.8437563
– ident: ref37
  doi: 10.1109/MCOM.2017.1600894
– ident: ref14
  doi: 10.1109/ITW.2017.8278011
– year: 2017
  ident: ref29
  publication-title: Block-diagonal and LT codes for distributed computing with straggling servers
– year: 2018
  ident: ref39
  publication-title: Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication
– ident: ref25
  doi: 10.1109/ALLERTON.2017.8262883
– ident: ref2
  doi: 10.1145/1327452.1327492
– start-page: 4403
  year: 2017
  ident: ref17
  article-title: Polynomial codes: An optimal design for high-dimensional coded matrix multiplication
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref22
  doi: 10.1109/ALLERTON.2017.8262881
– ident: ref8
  doi: 10.1109/IPDPSW.2017.33
– ident: ref18
  doi: 10.1109/ALLERTON.2017.8262882
– ident: ref27
  doi: 10.1109/TIT.2017.2692244
– volume: 10
  start-page: 10
  year: 2010
  ident: ref3
  article-title: Spark: Cluster computing with working sets
  publication-title: HotCloud
– ident: ref43
  doi: 10.1109/TSC.2011.44
– ident: ref5
  doi: 10.1145/2829988.2787505
– ident: ref34
  doi: 10.1109/ISIT.2017.8006960
– ident: ref19
  doi: 10.1109/ISIT.2017.8006963
– ident: ref35
  doi: 10.1016/j.jpdc.2005.03.010
– ident: ref13
  doi: 10.1109/GLOCOM.2016.7841903
– start-page: 5440
  year: 2017
  ident: ref28
  article-title: Straggler mitigation in distributed optimization through data encoding
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref41
  doi: 10.1109/SC.2008.5217932
– year: 2003
  ident: ref38
  publication-title: Information Theory Inference and Learning Algorithms
– start-page: 2092
  year: 2016
  ident: ref15
  article-title: Short-dot: Computing large linear transforms distributedly using coded short dot products
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref36
  doi: 10.1145/2408776.2408794
– volume: 8
  start-page: 7
  year: 2008
  ident: ref4
  article-title: Improving mapreduce performance in heterogeneous environments
  publication-title: Proc OSDI
– ident: ref30
  doi: 10.1145/3152042.3152047
– ident: ref10
  doi: 10.1109/TIT.2017.2736066
– ident: ref12
  doi: 10.1109/GLOCOM.2017.8254164
– ident: ref7
  doi: 10.1109/TIT.2017.2756959
– year: 2017
  ident: ref45
  publication-title: Amazon EC2 pricing
– ident: ref6
  doi: 10.1109/ALLERTON.2015.7447112
– ident: ref23
  doi: 10.1109/ISIT.2017.8006962
– ident: ref33
  doi: 10.1109/INFOCOM.2014.6848010
– ident: ref9
  doi: 10.1145/2342509.2342513
– ident: ref42
  doi: 10.1109/IPDPS.2009.5160911
– ident: ref26
  doi: 10.1109/ISIT.2018.8437525
– ident: ref31
  doi: 10.1145/2847220.2847223
SSID ssj0014512
Score 2.6622186
Snippet In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of...
In large-scale distributed computing clusters, such as Amazon EC2, there are several types of “system noise” that can result in major degradation of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4227
SubjectTerms Algorithms
Asymptotic properties
Benchmark testing
Benchmarks
Clustering algorithms
Clusters
Coded computation
Coding
Communications systems
Computer networks
Computing costs
Decoding
Distributed computing
Distributed processing
Encoding
heterogeneous clusters
Heuristic methods
Matrices (mathematics)
Multiplication
Numerical analysis
Performance degradation
Redundancy
Resource management
Stress concentration
System failures
Task analysis
Workload
Title Coded Computation Over Heterogeneous Clusters
URI https://ieeexplore.ieee.org/document/8663353
https://www.proquest.com/docview/2243278886
Volume 65
WOSCitedRecordID wos000472186800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPVlvFapUcvAhum-wm2exRiqVeqocKvYXN7gSE0kjT-PvdzYuCInhLYDYJ38xkdnZeAPc0EQGVPCQp-or4IeNEcM2In9hhO2GUUFeWwyb4chmt1-KtA49tLQwilslnOLGXZSxfZ6qwR2XTyJhHFrAudDkPq1qtNmLgB17VGdwzCmx8jiYk6Yrp6mVlc7jEhAojsrao78AElTNVfvyIS-sy7__vu87gtN5FOk8V28-hg9sB9JsJDU6tsAM4OWg3OAQyyzRqpyIrOeK8Gkl2FjYlJjOShFmRO7NNYZsn5BfwPn9ezRakHpdAFAv4nqRpKhOOnisjFExp4yhoDw3oiirBXEzNK7SnQ4rm3tOGCx5yY6K1j4JqGbBL6G2zLV6BIxIMfanCRBp19bRKUpqKSPvSD9KASTqCaYNgrOpe4nakxSYufQpXxAbz2GIe15iP4KFd8Vn10fiDdmgxbulqeEcwbpgU14qWx2YHwqh148Pr31fdwLF9dpVhO4beflfgLRypr_1HvrsrZegboCTD1w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHp1NxOrUPvgh2a5P0I48yHBvO6UOFvZU0uYIwVtlW_36TtisDRfCthQspv7vL5XpfAHck4R4RgW-nyKTNfBrYPFDUZokZtuOHCXFEMWwimE7D2Yy_NeChroVBxCL5DHvmsYjlq0zm5ldZP9TmkXp0B3Y9xohTVmvVMQPmuWVvcFersPY6NkFJh_ejcWSyuHiPcC20pqxvywgVU1V-HMWFfRm2_vdlx3BU3SOtx5LxJ9DARRtamxkNVqWybTjcajh4CvYgU6iskqzgifWqZdkamaSYTMsSZvnKGsxz0z5hdQbvw6doMLKrgQm2pF6wttM0FUmAriNC5FQq7SooFzXskkhOHUz1FspVPkH97irNBxcDbaQVQ06U8Og5NBfZAi_A4gn6TEg_EVphXSWTlKQ8VEwwL_WoIB3obxCMZdVN3Ay1mMeFV-HwWGMeG8zjCvMO3NcrPstOGn_QnhqMa7oK3g50N0yKK1VbxfoOQolx5P3L31fdwv4oepnEk_H0-QoOzD5lvm0XmutljtewJ7_WH6vlTSFP3_paxx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coded+Computation+Over+Heterogeneous+Clusters&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Reisizadeh%2C+Amirhossein&rft.au=Prakash%2C+Saurav&rft.au=Pedarsani%2C+Ramtin&rft.au=Avestimehr%2C+Amir+Salman&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=65&rft.issue=7&rft.spage=4227&rft_id=info:doi/10.1109%2FTIT.2019.2904055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon