Flow: A Modular Learning Framework for Mixed Autonomy Traffic

The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, the progression of these impacts, as AVs are adopted, is not well understood. Numerous technical challenges arise from the goal of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on robotics Ročník 38; číslo 2; s. 1270 - 1286
Hlavní autoři: Wu, Cathy, Kreidieh, Abdul Rahman, Parvate, Kanaad, Vinitsky, Eugene, Bayen, Alexandre M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1552-3098, 1941-0468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, the progression of these impacts, as AVs are adopted, is not well understood. Numerous technical challenges arise from the goal of analyzing the partial adoption of autonomy: partial control and observation, multivehicle interactions, and the sheer variety of scenarios represented by real-world networks. To shed light into near-term AV impacts, this article studies the suitability of deep reinforcement learning (RL) for overcoming these challenges in a low AV-adoption regime. A modular learning framework is presented, which leverages deep RL to address complex traffic dynamics. Modules are composed to capture common traffic phenomena (stop-and-go traffic jams, lane changing, intersections). Learned control laws are found to improve upon human driving performance, in terms of system-level velocity, by up to 57% with only 4-7% adoption of AVs. Furthermore, in single-lane traffic, a small neural network control law with only local observation is found to eliminate stop-and-go traffic-surpassing all known model-based controllers to achieve near-optimal performance-and generalize to out-of-distribution traffic densities.
AbstractList The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, the progression of these impacts, as AVs are adopted, is not well understood. Numerous technical challenges arise from the goal of analyzing the partial adoption of autonomy: partial control and observation, multivehicle interactions, and the sheer variety of scenarios represented by real-world networks. To shed light into near-term AV impacts, this article studies the suitability of deep reinforcement learning (RL) for overcoming these challenges in a low AV-adoption regime. A modular learning framework is presented, which leverages deep RL to address complex traffic dynamics. Modules are composed to capture common traffic phenomena (stop-and-go traffic jams, lane changing, intersections). Learned control laws are found to improve upon human driving performance, in terms of system-level velocity, by up to 57% with only 4–7% adoption of AVs. Furthermore, in single-lane traffic, a small neural network control law with only local observation is found to eliminate stop-and-go traffic—surpassing all known model-based controllers to achieve near-optimal performance—and generalize to out-of-distribution traffic densities.
Author Parvate, Kanaad
Bayen, Alexandre M.
Wu, Cathy
Kreidieh, Abdul Rahman
Vinitsky, Eugene
Author_xml – sequence: 1
  givenname: Cathy
  orcidid: 0000-0001-8594-303X
  surname: Wu
  fullname: Wu, Cathy
  email: cathywu@mit.edu
  organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Abdul Rahman
  surname: Kreidieh
  fullname: Kreidieh, Abdul Rahman
  email: aboudy@berkeley.edu
  organization: Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
– sequence: 3
  givenname: Kanaad
  surname: Parvate
  fullname: Parvate, Kanaad
  email: kanaad@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
– sequence: 4
  givenname: Eugene
  surname: Vinitsky
  fullname: Vinitsky, Eugene
  email: evinitsky@berkeley.edu
  organization: Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
– sequence: 5
  givenname: Alexandre M.
  orcidid: 0000-0002-6697-222X
  surname: Bayen
  fullname: Bayen, Alexandre M.
  email: bayen@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
BookMark eNp9kE1LAzEQhoNUsK3eBS8Bz1vztfkQPJRiVWgpSD2HuJ1I6nZTs7vU_nu3tHjw4Gnm8D7vDM8A9apYAULXlIwoJeZu-boYMcLoiBOtOBVnqE-NoBkRUve6Pc9ZxonRF2hQ12tCmDCE99HDtIy7ezzG87hqS5fwDFyqQvWBp8ltYBfTJ_Yx4Xn4hhUet02s4maPl8l5H4pLdO5dWcPVaQ7R2_RxOXnOZounl8l4lhU8V03mvXaGKwVc555pTmUhXPesB8U103KlvVDqXUlHDS2MKDg4oJAzr4RklPIhuj32blP8aqFu7Dq2qepOWiaFEizPpelS8pgqUqzrBN4WoXFNiFWTXCgtJfagynaq7EGVPanqQPIH3KawcWn_H3JzRAIA_MaN0IYTzn8AyN5zrQ
CODEN ITREAE
CitedBy_id crossref_primary_10_1109_JIOT_2023_3299934
crossref_primary_10_1109_TASE_2022_3168621
crossref_primary_10_3390_s23104710
crossref_primary_10_1109_TCNS_2023_3338234
crossref_primary_10_1109_TTE_2024_3383091
crossref_primary_10_1109_JIOT_2025_3552554
crossref_primary_10_1109_TMC_2024_3435436
crossref_primary_10_1109_MCS_2024_3503372
crossref_primary_10_1016_j_physa_2024_129991
crossref_primary_10_1109_TIV_2023_3297310
crossref_primary_10_1109_TFUZZ_2024_3450892
crossref_primary_10_3390_s23198229
crossref_primary_10_1109_LRA_2024_3440834
crossref_primary_10_1162_neco_a_01764
crossref_primary_10_1109_ACCESS_2024_3370469
crossref_primary_10_1016_j_icte_2024_09_001
crossref_primary_10_1016_j_trc_2024_104757
crossref_primary_10_1016_j_ijtst_2025_06_002
crossref_primary_10_1049_itr2_12402
crossref_primary_10_1109_TITS_2023_3344473
crossref_primary_10_1109_TITS_2024_3386200
crossref_primary_10_1049_itr2_12492
crossref_primary_10_1109_ACCESS_2024_3430933
crossref_primary_10_1007_s12083_022_01434_0
crossref_primary_10_1109_TMC_2024_3389987
crossref_primary_10_1177_00368504241263406
crossref_primary_10_1109_TITS_2025_3550418
crossref_primary_10_7467_KSAE_2024_32_8_657
crossref_primary_10_1109_TRO_2023_3262120
crossref_primary_10_1016_j_physa_2022_127512
crossref_primary_10_1016_j_trc_2023_104449
crossref_primary_10_1177_02783649231215371
crossref_primary_10_1109_JIOT_2023_3335292
crossref_primary_10_7467_KSAE_2024_32_7_569
crossref_primary_10_1109_TITS_2024_3503092
crossref_primary_10_1080_19427867_2024_2305018
crossref_primary_10_1109_MITS_2022_3174410
crossref_primary_10_1177_03611981251349433
crossref_primary_10_1109_TRO_2024_3463407
crossref_primary_10_1109_MCS_2024_3503402
crossref_primary_10_1177_02783649241284069
crossref_primary_10_1109_JIOT_2024_3481257
crossref_primary_10_1109_JIOT_2023_3303039
crossref_primary_10_1109_TCST_2023_3288636
crossref_primary_10_1109_TITS_2023_3250704
crossref_primary_10_1109_TVT_2023_3312574
crossref_primary_10_1109_TITS_2024_3514117
crossref_primary_10_1177_03611981221144283
crossref_primary_10_1049_itr2_12542
crossref_primary_10_1155_2024_6509852
crossref_primary_10_1109_LCSYS_2024_3499743
crossref_primary_10_1109_TIV_2023_3287131
crossref_primary_10_1109_COMST_2024_3370169
crossref_primary_10_3390_systems11030134
crossref_primary_10_1109_OJITS_2025_3606539
crossref_primary_10_1016_j_trc_2023_104230
crossref_primary_10_1016_j_trc_2023_104274
crossref_primary_10_1109_TRO_2024_3443504
Cites_doi 10.1016/j.trc.2014.04.014
10.1109/TITS.2003.821340
10.1109/70.768189
10.1299/jsmec.43.671
10.1016/j.trd.2009.01.004
10.1016/j.trc.2010.10.004
10.1109/IROS.2012.6386109
10.1109/ITSC.2017.8317694
10.1109/TITS.2003.811644
10.1109/ROBOT.1996.509186
10.1145/504729.504754
10.1109/IVS.2017.7995897
10.1613/jair.2502
10.23919/ACC.2004.1384058
10.1109/TNN.1998.712192
10.1143/JPSJ.71.2339
10.1109/70.75906
10.1002/rob.20147
10.1111/j.2517-6161.1961.tb00391.x
10.1109/87.370698
10.1016/j.trc.2018.02.005
10.1016/0191-2615(84)90019-5
10.1109/ITSC.2018.8569485
10.1109/TRA.2002.807557
10.1512/iumj.1957.6.56038
10.1007/978-3-642-03991-1
10.1109/CDC.1995.478953
10.1109/70.938381
10.1109/TITS.2016.2600504
10.1243/095440705X9407
10.1103/PhysRevE.62.1805
10.1109/JPROC.2003.819610
10.1007/978-3-319-05990-7_20
10.1109/TITS.2003.821292
10.1109/ICRA.2018.8460567
10.1145/3302509.3313784
10.1109/TITS.2017.2725912
10.1109/ITSC.2017.8317733
10.1177/0278364912444766
10.1038/s41586-020-2939-8
10.1007/978-3-319-71682-4_10
10.1137/S0036139997326946
10.1088/1367-2630/10/3/033001
10.1109/TVT.2014.2356204
10.1109/JIOT.2020.2966506
10.1109/TRO.2015.2411371
10.1016/j.trc.2017.02.024
10.1016/s0965-8564(97)88297-3
10.1109/TAC.2019.2921659
10.1145/1015330.1015430
10.1613/jair.3912
10.1115/DETC2011-48829
10.1098/rspa.1955.0089
10.1115/1.2896526
10.1007/BF03167222
10.1109/TVT.2002.800617
10.15607/RSS.2016.XII.029
10.1109/TITS.2016.2587582
10.1287/opre.4.1.42
10.1145/3219819.3220096
10.1103/PhysRevE.51.1035
10.1109/TITS.2014.2345663
10.1016/j.physa.2009.02.033
10.1109/JAS.2016.7508798
10.1137/S0036139997332099
10.1007/978-3-642-32460-4
10.1109/ITSC.2013.6728204
10.1109/TITS.2013.2292500
10.1098/rsta.2010.0205
10.1109/25.260745
10.1111/sapm.12144
10.1016/S0191-2615(00)00042-4
10.1016/j.conengprac.2013.10.008
10.1109/70.88128
10.1007/s12205-016-0382-z
10.1109/ITSC.2018.8569615
10.1109/TITS.2005.844226
10.1145/3357384.3357902
10.1016/j.tra.2015.12.001
10.1016/0191-2615(81)90037-0
10.1142/S0217595907001383
10.1017/9781009002127.013
10.1109/TRO.2009.2011526
10.1016/j.trpro.2017.05.011
10.1007/978-3-540-47641-2_62
10.1016/j.eswa.2011.09.024
10.1109/TITS.2006.884615
10.1177/0278364915581863
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2021.3087314
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1286
ExternalDocumentID 10_1109_TRO_2021_3087314
9489303
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation Graduate Research Fellowship Program
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-ff8a9377e385f28316c4a202fe738286d8f477b76a191c94c3eae1e52f7462113
IEDL.DBID RIE
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732279300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Mon Jun 30 04:05:24 EDT 2025
Sat Nov 29 01:47:28 EST 2025
Tue Nov 18 22:43:55 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-ff8a9377e385f28316c4a202fe738286d8f477b76a191c94c3eae1e52f7462113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8594-303X
0000-0002-6697-222X
PQID 2647425569
PQPubID 27625
PageCount 17
ParticipantIDs crossref_primary_10_1109_TRO_2021_3087314
proquest_journals_2647425569
crossref_citationtrail_10_1109_TRO_2021_3087314
ieee_primary_9489303
PublicationCentury 2000
PublicationDate 2022-April
2022-4-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref59
ref58
ref53
Corporation (ref41)
ref52
ref55
ref54
Mnih (ref80) 2013
Schulman (ref81) 2016
Payne (ref18) 1979
ref51
ref50
ref46
ref48
ref47
ref42
ref44
ref43
Liang (ref103) 2017
ref49
ref8
ref7
ref3
DOT (ref2) 2016
ref6
Buehler (ref4) 2009; 56
ref5
ref100
ref40
Vinitsky (ref110) 2018
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref38
Brockman (ref101) 2016
Au (ref56) 2014
ref24
ref23
ref26
ref20
Duan (ref105) 2016
ref22
ref21
ref28
Atkeson (ref11) 1997; 97
ref27
ref29
Shalev-Shwartz (ref10) 2016
Schulman (ref82) 2015
Lefevre (ref39) 2014
ref12
ref15
ref14
Heidemann (ref25) 1996
Heess (ref83) 2015
ref99
ref17
ref16
(ref68) 2007
Bojarski (ref9) 2016
ref19
ref92
Wu (ref93) 2017
ref95
ref94
ref91
ref90
ref89
Levine (ref13) 2016; 17
ref86
ref85
Treiber (ref106) 2004
ref88
ref87
(ref45) 2010
ref84
ref79
ref108
ref78
ref109
ref75
ref104
ref74
ref77
ref76
ref1
Haykin (ref97) 1994
ref71
ref111
ref70
ref112
ref73
Krajzewicz (ref102) 2012; 5
ref72
Sutton (ref96) 2000
Chung (ref98) 2015
ref67
ref69
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
Wu (ref107) 2017; 78
ref60
ref62
ref61
References_xml – ident: ref76
  doi: 10.1016/j.trc.2014.04.014
– ident: ref71
  doi: 10.1109/TITS.2003.821340
– ident: ref28
  doi: 10.1109/70.768189
– year: 2010
  ident: ref45
  article-title: Intelligent transport systems, intelligent transport systems - adaptive cruise control systems - performance requirements and test procedures
– ident: ref66
  doi: 10.1299/jsmec.43.671
– ident: ref69
  doi: 10.1016/j.trd.2009.01.004
– ident: ref91
  doi: 10.1016/j.trc.2010.10.004
– ident: ref100
  doi: 10.1109/IROS.2012.6386109
– ident: ref92
  doi: 10.1109/ITSC.2017.8317694
– volume: 97
  start-page: 12
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 1997
  ident: ref11
  article-title: Robot learning from demonstration
– ident: ref40
  doi: 10.1109/TITS.2003.811644
– start-page: 2067
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2015
  ident: ref98
  article-title: Gated feedback recurrent neural networks
– volume-title: Proc. 12th Int. Symp. Adv. Veh. Control
  year: 2014
  ident: ref39
  article-title: Lane keeping assistance with learning-based driver model and model predictive control
– ident: ref42
  doi: 10.1109/ROBOT.1996.509186
– ident: ref27
  doi: 10.1145/504729.504754
– start-page: 399
  volume-title: Proc. Conf. Robot Learn.
  year: 2018
  ident: ref110
  article-title: Benchmarks for reinforcement learning in mixed-autonomy traffic
– volume-title: Popular Sci. Monthly
  ident: ref41
  article-title: Four wheels on jacks park car
– ident: ref52
  doi: 10.1109/IVS.2017.7995897
– ident: ref6
  doi: 10.1613/jair.2502
– volume-title: Proc. 13th Int. Symp. Transp. Traffic Theory
  year: 1996
  ident: ref25
  article-title: A queueing theory approach to speed-flow-density relationships
– ident: ref50
  doi: 10.23919/ACC.2004.1384058
– ident: ref79
  doi: 10.1109/TNN.1998.712192
– ident: ref114
  doi: 10.1143/JPSJ.71.2339
– ident: ref31
  doi: 10.1109/70.75906
– ident: ref3
  doi: 10.1002/rob.20147
– ident: ref24
  doi: 10.1111/j.2517-6161.1961.tb00391.x
– ident: ref35
  doi: 10.1109/87.370698
– ident: ref58
  doi: 10.1016/j.trc.2018.02.005
– ident: ref112
  doi: 10.1016/0191-2615(84)90019-5
– ident: ref108
  doi: 10.1109/ITSC.2018.8569485
– ident: ref30
  doi: 10.1109/TRA.2002.807557
– ident: ref94
  doi: 10.1512/iumj.1957.6.56038
– volume: 56
  volume-title: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic
  year: 2009
  ident: ref4
  doi: 10.1007/978-3-642-03991-1
– year: 2016
  ident: ref10
  article-title: Safe, multi-agent, reinforcement learning for autonomous driving
– ident: ref78
  doi: 10.1109/CDC.1995.478953
– ident: ref29
  doi: 10.1109/70.938381
– ident: ref63
  doi: 10.1109/TITS.2016.2600504
– ident: ref48
  doi: 10.1243/095440705X9407
– ident: ref23
  doi: 10.1103/PhysRevE.62.1805
– ident: ref70
  doi: 10.1109/JPROC.2003.819610
– year: 2013
  ident: ref80
  article-title: Playing atari with deep reinforcement learning
– ident: ref5
  doi: 10.1007/978-3-319-05990-7_20
– year: 2016
  ident: ref9
  article-title: End to end learning for self-driving cars
– ident: ref47
  doi: 10.1109/TITS.2003.821292
– year: 2004
  ident: ref106
  article-title: Multi-anticipative driving in microscopic traffic models
– year: 2016
  ident: ref2
  publication-title: National transportation statistics
– ident: ref53
  doi: 10.1109/ICRA.2018.8460567
– ident: ref111
  doi: 10.1145/3302509.3313784
– ident: ref88
  doi: 10.1109/TITS.2017.2725912
– year: 2017
  ident: ref93
  article-title: Flow: Architecture and benchmarking for reinforcement learning in traffic control
– start-page: 1329
  volume-title: Int. Conf. Mach. Learning
  year: 2016
  ident: ref105
  article-title: Benchmarking deep reinforcement learning for continuous control
– ident: ref116
  doi: 10.1109/ITSC.2017.8317733
– ident: ref59
  doi: 10.1177/0278364912444766
– start-page: 2944
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2015
  ident: ref83
  article-title: Learning continuous control policies by stochastic value gradients
– ident: ref84
  doi: 10.1038/s41586-020-2939-8
– ident: ref57
  doi: 10.1007/978-3-319-71682-4_10
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2016
  ident: ref81
  article-title: High-dimensional continuous control using generalized advantage estimation
– start-page: 1889
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2015
  ident: ref82
  article-title: Trust region policy optimization
– ident: ref113
  doi: 10.1137/S0036139997326946
– ident: ref14
  doi: 10.1088/1367-2630/10/3/033001
– ident: ref38
  doi: 10.1109/TVT.2014.2356204
– ident: ref65
  doi: 10.1109/JIOT.2020.2966506
– volume: 5
  issue: 3&4
  year: 2012
  ident: ref102
  article-title: Recent development and applications of sumo-simulation of urban mobility
  publication-title: Int. J. Adv. Syst. Meas.
– ident: ref32
  doi: 10.1109/TRO.2015.2411371
– ident: ref85
  doi: 10.1016/j.trc.2017.02.024
– ident: ref74
  doi: 10.1016/s0965-8564(97)88297-3
– issue: 722
  year: 1979
  ident: ref18
  article-title: Freflo: A macroscopic simulation model of freeway traffic
  publication-title: Transp. Res. Rec.
– ident: ref44
  doi: 10.1109/TAC.2019.2921659
– ident: ref12
  doi: 10.1145/1015330.1015430
– ident: ref99
  doi: 10.1613/jair.3912
– year: 2016
  ident: ref101
  article-title: Openai gym
– ident: ref75
  doi: 10.1115/DETC2011-48829
– volume: 17
  start-page: 1
  issue: 39
  year: 2016
  ident: ref13
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1098/rspa.1955.0089
– ident: ref51
  doi: 10.1115/1.2896526
– ident: ref21
  doi: 10.1007/BF03167222
– ident: ref49
  doi: 10.1109/TVT.2002.800617
– ident: ref61
  doi: 10.15607/RSS.2016.XII.029
– ident: ref64
  doi: 10.1109/TITS.2016.2587582
– ident: ref17
  doi: 10.1287/opre.4.1.42
– start-page: 1451
  volume-title: Proc. Int. Conf. Auton. Agents Multi-Agent Syst.
  year: 2014
  ident: ref56
  article-title: Semi-autonomous intersection management
– ident: ref90
  doi: 10.1145/3219819.3220096
– start-page: 1057
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2000
  ident: ref96
  article-title: Policy gradient methods for reinforcement learning with function approximation
– ident: ref22
  doi: 10.1103/PhysRevE.51.1035
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: ref97
– volume: 78
  start-page: 398
  volume-title: Proc. 1st Annu Conf. Robot Learn.
  year: 2017
  ident: ref107
  article-title: Emergent behaviors in mixed-autonomy traffic
– year: 2007
  ident: ref68
  article-title: Internal project on eco-driving in category b driver training & the driving test
– ident: ref86
  doi: 10.1109/TITS.2014.2345663
– ident: ref55
  doi: 10.1016/j.physa.2009.02.033
– ident: ref87
  doi: 10.1109/JAS.2016.7508798
– ident: ref19
  doi: 10.1137/S0036139997332099
– year: 2017
  ident: ref103
  article-title: Ray rllib: A composable and scalable reinforcement learning library
– ident: ref67
  doi: 10.1007/978-3-642-32460-4
– ident: ref7
  doi: 10.1109/ITSC.2013.6728204
– ident: ref73
  doi: 10.1109/TITS.2013.2292500
– ident: ref15
  doi: 10.1098/rsta.2010.0205
– ident: ref8
  doi: 10.1109/TAC.2019.2921659
– ident: ref46
  doi: 10.1109/25.260745
– ident: ref77
  doi: 10.1111/sapm.12144
– ident: ref115
  doi: 10.1016/S0191-2615(00)00042-4
– ident: ref37
  doi: 10.1016/j.conengprac.2013.10.008
– ident: ref34
  doi: 10.1109/70.88128
– ident: ref62
  doi: 10.1007/s12205-016-0382-z
– ident: ref109
  doi: 10.1109/ITSC.2018.8569615
– ident: ref72
  doi: 10.1109/TITS.2005.844226
– ident: ref89
  doi: 10.1145/3357384.3357902
– ident: ref1
  doi: 10.1016/j.tra.2015.12.001
– ident: ref20
  doi: 10.1016/0191-2615(81)90037-0
– ident: ref26
  doi: 10.1142/S0217595907001383
– ident: ref95
  doi: 10.1017/9781009002127.013
– ident: ref33
  doi: 10.1109/TRO.2009.2011526
– ident: ref104
  doi: 10.1016/j.trpro.2017.05.011
– ident: ref54
  doi: 10.1007/978-3-540-47641-2_62
– ident: ref43
  doi: 10.1016/j.eswa.2011.09.024
– ident: ref36
  doi: 10.1109/TITS.2006.884615
– ident: ref60
  doi: 10.1177/0278364915581863
SSID ssj0024903
Score 2.6653328
Snippet The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1270
SubjectTerms Analytical models
Automation technologies for smart cities
Autonomy
Control theory
Deep learning
deep learning in robotics and automation
deep reinforcement learning
Human performance
intelligent transportation systems
Lane changing
Mathematical model
Network control
Neural networks
Numerical models
Robots
System dynamics
Traffic congestion
Traffic jams
Traffic models
Transportation systems
Uncertainty
Vehicle dynamics
Title Flow: A Modular Learning Framework for Mixed Autonomy Traffic
URI https://ieeexplore.ieee.org/document/9489303
https://www.proquest.com/docview/2647425569
Volume 38
WOSCitedRecordID wos000732279300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoOXgSzdU3aNN6GOLxsikzYrWTpiwiyytapf75J1k5FEbz1kJT2e23zvua97wM4Y5xHQgpNkxgZ5SrmVKLOKONKcR2YCVOBN5sQw2EyHsu7GlysemEQ0RefYdsd-r38LNcL96usI51SipP2XBNCLHu1PnX1pHdBdopilAUyqbYkA9kZ3d9aIhh22079jnX5tyXIe6r8-BD71aW__b_r2oGtMoskvWXYd6GG0z3Y_KIt2AAbkfztkvTIIM9cqSkplVQfSb-qxyI2YSWDp3fMSG9R-O4GYtcuJyqxDw_969HVDS29EqhmkSioMYmymYZAlkTGpgzdWHNlb9qgYK5TPEsMF2IiYmUJmpZcM1TYxSg0gseWBLIDqE_zKR4CYZKpMEZpJia251CW8zCjnSm5yrjOoiZ0KvhSXQqJOz-L59QTikCmFvDUAZ6WgDfhfDXjZSmi8cfYhgN4Na7EtgmtKkJp-ZbNU5vMWWYfRbE8-n3WMWyErl3BV9q0oF7MFngC6_q1eJrPTv0D9AGimcDG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6MKagHf01xOjUHL4LZ2iZtGm9DHBO3KTJht5KliQxkla1T_3yTrJuKInjrISnt99rmfc173wdwRigNGWcSx5EimIqIYq5kigkVgkpPD4nwnNkE6_XiwYDfl-Bi2QujlHLFZ6puD91efprJmf1V1uBWKcVKe66ElAb-vFvrU1mPOx9kqymGicfjxaakxxv9hztDBQO_bvXviE-_LULOVeXHp9itL62t_13ZNmwWeSRqzgO_AyU13oWNL-qCFTAxyd4uURN1s9QWm6JCS_UJtRYVWcikrKg7elcpas5y19-AzOplZSX24LF13b9q48ItAUsSshxrHQuTazBF4lCbpMGPJBXmprVixPaKp7GmjA1ZJAxFk5xKooTyVRhoRiNDA8k-lMfZWB0AIpyIIFJcD3VkziEM6yFaWltykVKZhlVoLOBLZCElbh0tnhNHKTyeGMATC3hSAF6F8-WMl7mMxh9jKxbg5bgC2yrUFhFKivdsmph0znD7MIz44e-zTmGt3e92ks5N7_YI1gPbvODqbmpQziczdQyr8jUfTScn7mH6ANhyxA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow%3A+A+Modular+Learning+Framework+for+Mixed+Autonomy+Traffic&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Wu%2C+Cathy&rft.au=Kreidieh%2C+Abdul+Rahman&rft.au=Parvate%2C+Kanaad&rft.au=Vinitsky%2C+Eugene&rft.date=2022-04-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=38&rft.issue=2&rft.spage=1270&rft.epage=1286&rft_id=info:doi/10.1109%2FTRO.2021.3087314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2021_3087314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon