Solving an inverse elliptic coefficient problem by convex non-linear semidefinite programming

Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse prob...

Full description

Saved in:
Bibliographic Details
Published in:Optimization letters Vol. 16; no. 5; pp. 1599 - 1609
Main Author: Harrach, Bastian
Format: Journal Article
Language:English
Published: Berlin, Heidelberg Springer 01.06.2022
Springer Berlin Heidelberg
Subjects:
ISSN:1862-4480, 1862-4472, 1862-4480
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems.
AbstractList Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems.
Author Harrach, Bastian
Author_xml – sequence: 1
  givenname: Bastian
  surname: Harrach
  fullname: Harrach, Bastian
BookMark eNp9kM9KAzEQxoNUsFVfQBDyAqvJZrNJjlL8BwUP6lFCNp2UlN1sSWKxb29qPYiHnmYYvt83M98MTcIYAKErSm4oIeI2UcoVqUhNK0IlqavmBE2pbEvTSDL505-hWUprQlpKlZqij9ex3_qwwiZgH7YQE2Doe7_J3mI7gnPeeggZb-LY9TDgblfGRfiFywlV7wOYiBMMfgnOB59hr1xFMwzF9QKdOtMnuPyt5-j94f5t_lQtXh6f53eLyjIucuUEA26M5LZjlAsJS9k4Ao1xwinTCdZZo8Dxdqna8mKjDCeGWukUFYLXLTtH9cHXxjGlCE5voh9M3GlK9D4gfQhIF1r_BKSbAsl_kPXZZD-GHI3vj6PsgKayJ6wg6vX4GUN58Th1faCgJOiT3peUx6hrKRrO2Dewxoij
CitedBy_id crossref_primary_10_1007_s13369_022_07269_4
crossref_primary_10_3934_cac_2025008
Cites_doi 10.1007/978-1-4939-0790-8_14
10.3934/ipi.2019046
10.1088/0266-5611/25/12/123011
10.1137/18M1205388
10.1088/0266-5611/25/5/055010
10.1080/03605302.2015.1007379
10.1088/1361-6420/aafecd
10.1017/fms.2019.31
10.1090/conm/615/12245
10.1365/s13291-021-00236-2
10.1016/j.aam.2004.12.002
10.1590/S0101-82052006000200002
10.1088/1361-6420/aaf6fc
10.1007/s00211-020-01162-8
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID OT2
C6C
AAYXX
CITATION
DOI 10.1007/s11590-021-01802-4
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 1609
ExternalDocumentID 10_1007_s11590_021_01802_4
287453
GrantInformation_xml – fundername: Johann Wolfgang Goethe-Universität, Frankfurt am Main (1022)
GroupedDBID -Y2
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OT2
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-5D
-5G
-BR
-EM
-~C
AAYZH
ADINQ
AESKC
C6C
GQ6
Z7R
Z7Y
Z83
Z88
AAYXX
CITATION
ID FETCH-LOGICAL-c357t-f73e5aa85cb31578ed84f0e4af7f9ab73bca9ef56d9602149a50a1c8f91775263
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694558100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4480
1862-4472
IngestDate Sat Nov 29 02:44:12 EST 2025
Tue Nov 18 22:12:45 EST 2025
Fri Feb 21 02:47:32 EST 2025
Fri Dec 05 12:06:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 35R30
Inverse Problem
90C22
Loewner order
Convexity
Finitely many measurements
Monotonicity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f73e5aa85cb31578ed84f0e4af7f9ab73bca9ef56d9602149a50a1c8f91775263
ORCID 0000-0002-8666-7791
OpenAccessLink https://link.springer.com/10.1007/s11590-021-01802-4
PageCount 11
ParticipantIDs crossref_primary_10_1007_s11590_021_01802_4
crossref_citationtrail_10_1007_s11590_021_01802_4
springer_journals_10_1007_s11590_021_01802_4
econis_econstor_287453
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2022
Publisher Springer
Springer Berlin Heidelberg
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
References Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35(2), 207–241 (2005)
Harrach, B.: On uniqueness in diffuse optical tomography. Inverse Problems 25(5), 055010 (2009)
Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Problems 25(12), 123011 (2009)
Calderón, A.P.: On an inverse boundary value problem. In: W.H. Meyer, M.A. Raupp (eds.) Seminar on Numerical Analysis and its Application to Continuum Physics, pp. 65–73. Brasil. Math. Soc., Rio de Janeiro (1980)
Kenig, C., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math 615, 193–222 (2014)
Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma 7, e35 (2019)
Harrach, B., Meftahi, H.: Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM J. Appl. Math. 79(2), 525–550 (2019)
Rüland, A., Sincich, E.: Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Probl. Imaging 13(5), 1023–1044 (2019)
Beretta, E., de Hoop, M.V., Francini, E., Vessella, S.: Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation. Comm. Partial Differential Equations 40(7), 1365–1392 (2015)
Harrach, B.: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Problems 35(2), 024005 (2019)
Harrach, B.: Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. Numer. Math. 147, 29–70 (2021)
Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006)
Klibanov, M.V., Li, J., Zhang, W.: Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Problems 35(3), 035005 (2019)
Adler, A., Gaburro, R., Lionheart, W.: Electrical impedance tomography. In: O. Scherzer (ed.) Handbook of Mathematical Methods in Imaging, pp. 701–762. Springer (2015)
Harrach, B.: An introduction to finite element methods for inverse coefficient problems in elliptic PDEs. Jahresber. Dtsch. Math. Ver. 123(3), 183–210 (2021)
1802_CR4
1802_CR3
1802_CR2
1802_CR1
1802_CR12
1802_CR13
1802_CR10
1802_CR11
1802_CR8
1802_CR7
1802_CR6
1802_CR14
1802_CR5
1802_CR15
1802_CR9
References_xml – reference: Rüland, A., Sincich, E.: Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Probl. Imaging 13(5), 1023–1044 (2019)
– reference: Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35(2), 207–241 (2005)
– reference: Beretta, E., de Hoop, M.V., Francini, E., Vessella, S.: Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation. Comm. Partial Differential Equations 40(7), 1365–1392 (2015)
– reference: Harrach, B.: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Problems 35(2), 024005 (2019)
– reference: Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006)
– reference: Kenig, C., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math 615, 193–222 (2014)
– reference: Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Problems 25(12), 123011 (2009)
– reference: Klibanov, M.V., Li, J., Zhang, W.: Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Problems 35(3), 035005 (2019)
– reference: Calderón, A.P.: On an inverse boundary value problem. In: W.H. Meyer, M.A. Raupp (eds.) Seminar on Numerical Analysis and its Application to Continuum Physics, pp. 65–73. Brasil. Math. Soc., Rio de Janeiro (1980)
– reference: Harrach, B., Meftahi, H.: Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM J. Appl. Math. 79(2), 525–550 (2019)
– reference: Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma 7, e35 (2019)
– reference: Adler, A., Gaburro, R., Lionheart, W.: Electrical impedance tomography. In: O. Scherzer (ed.) Handbook of Mathematical Methods in Imaging, pp. 701–762. Springer (2015)
– reference: Harrach, B.: On uniqueness in diffuse optical tomography. Inverse Problems 25(5), 055010 (2009)
– reference: Harrach, B.: An introduction to finite element methods for inverse coefficient problems in elliptic PDEs. Jahresber. Dtsch. Math. Ver. 123(3), 183–210 (2021)
– reference: Harrach, B.: Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. Numer. Math. 147, 29–70 (2021)
– ident: 1802_CR1
  doi: 10.1007/978-1-4939-0790-8_14
– ident: 1802_CR14
  doi: 10.3934/ipi.2019046
– ident: 1802_CR15
  doi: 10.1088/0266-5611/25/12/123011
– ident: 1802_CR5
– ident: 1802_CR11
  doi: 10.1137/18M1205388
– ident: 1802_CR7
  doi: 10.1088/0266-5611/25/5/055010
– ident: 1802_CR4
  doi: 10.1080/03605302.2015.1007379
– ident: 1802_CR13
  doi: 10.1088/1361-6420/aafecd
– ident: 1802_CR2
  doi: 10.1017/fms.2019.31
– ident: 1802_CR12
  doi: 10.1090/conm/615/12245
– ident: 1802_CR9
  doi: 10.1365/s13291-021-00236-2
– ident: 1802_CR3
  doi: 10.1016/j.aam.2004.12.002
– ident: 1802_CR6
  doi: 10.1590/S0101-82052006000200002
– ident: 1802_CR8
  doi: 10.1088/1361-6420/aaf6fc
– ident: 1802_CR10
  doi: 10.1007/s00211-020-01162-8
SSID ssj0061199
Score 2.2945304
Snippet Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient...
SourceID crossref
springer
econis
SourceType Enrichment Source
Index Database
Publisher
StartPage 1599
SubjectTerms Computational Intelligence
Convexity
Finitely many measurements
Inverse Problem
Loewner order
Mathematics
Mathematics and Statistics
Monotonicity
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title Solving an inverse elliptic coefficient problem by convex non-linear semidefinite programming
URI https://www.econstor.eu/handle/10419/287453
https://link.springer.com/article/10.1007/s11590-021-01802-4
Volume 16
WOSCitedRecordID wos000694558100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4480
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86d9CD38P5RQ7eNJC2SZMeRRwedAjTsYuUNB9QmJ2sU_S_N2nTTVEGeiqF9KW8vLyP5L3fA-AMi9jEiilkbUOErL1NEOdSIaGMFSfMVQ08P7xl_T4fjZJ7XxRWNtnuzZVkpakXxW7W8mLkUgoc6FSIyCpYow5txsXog2Gjf-Og7hoZcFcPRFjoS2V-p_HNHLVdDJqXPy5FK1vT2_rfX26DTe9bwstaGHbAii52wcYXxEH7djeHaS33wNNgMnYHClAUMC9cgoaGDqDTqhEJ5URX8BLWKkHfdgZmH7BKU3-HxaRAzkMVU1jq51xpkzvvFfp8r2dLdR889q4frm6Q77eAZETZDBkWaSoEpzKLAruTteLEYE2EYSYRGYsyKRJtaKxs2BPa0EpQLALJjQ35GA3jqANadnZ9AKCOqVA0oRnJKIk14ZhyI7EhzGAThKILgobtqfRg5K4nxjhdwCg7RqZ2nrRiZEq64Hz-zUsNxbF0dKdezdQ9XKZpWkH7R11w0axc6vdruYTO4d-GH4H10BVIVOc0x6A1m77qE9CWb7O8nJ5WgvoJUsDhgA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFtczD75poEfSpI8iiuLuInjgi4Q0BxS0K9tV9N-b9HAVRdCnUkgnZTKZI5n5BmA_kIlNNNPY2YYYO3ubYs6VxlJbJ04B1zXw_G2X9fv87i69bIrCyjbbvb2SrDT1uNjNWd4A-5QCDzoVYTIJ08S32fEx-tVtq3-TsO4aGXJfD0RY1JTK_Ezjizma8TFoXn67FK1szeni__5yCRYa3xId1cKwDBOmWIH5T4iD7q33AdNarsL91eDBHyggWaC88AkaBnmATqdGFFIDU8FLOKuEmrYzKHtDVZr6KyoGBfYeqhyi0jzm2tjce6-oyfd6dFTX4Ob05Pr4DDf9FrCKKRthy2JDpeRUZXHodrLRnNjAEGmZTWXG4kzJ1FiaaBf2OMankgYyVNy6kI_RKInXYcrNbjYAmYRKTVOakYySxBAeUG5VYAmzgQ0j2YGwZbtQDRi574nxIMYwyp6Rws0jKkYK0oGDj2-eaiiOX0ev16sp_MNnmooK2j_uwGG7cqLZr-UvdDb_NnwPZs-ue13RPe9fbMFc5IslqjObbZgaDZ_NDsyol1FeDncroX0H7TnkZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH3wFtczD75psEfSpI-iLoq6iBe-SEhzQGHtynYV_fcmbdcDRRCfSiGdlMwkk0m--QZgO5CJTTTT2PmGGDt_m2LOlcZSW2dOAdc18fztGet0-N1devEpi79Cuw-vJOucBs_SVAz2HrXd-0h8c144wB5e4AmoIkxGYZy4SMaDui6vbodrcRLWFSRD7nODCIuatJmfZXxxTRM-Hs3Lbxekld9pz_7_j-dgptlzov3aSOZhxBQLMP2JidC9nb_Tt5aLcH_V6_qDBiQLlBceuGGQJ-50y4tCqmcq2gnXN2rK0aDsFVXw9RdU9Arsd66yj0rzkGtjc7-rRQ0O7MFJXYKb9tH1wTFu6jBgFVM2wJbFhkrJqcri0M1wozmxgSHSMpvKjMWZkqmxNNEuHIpcyCVpIEPFrQsFGY2SeBnGXO9mBZBJqNQ0pRnJKEkM4QHlVgWWMBvYMJItCIcqEKohKfe1Mrrig17ZD6Rw_YhqIAVpwc77N481RcevrZdrzQr_8AhUUVH-xy3YHWpRNPO4_EXO6t-ab8HkxWFbnJ10TtdgKvI5FNVRzjqMDfpPZgMm1PMgL_ublf2-Acw67Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+an+inverse+elliptic+coefficient+problem+by+convex+non-linear+semidefinite+programming&rft.jtitle=Optimization+letters&rft.au=Harrach%2C+Bastian&rft.date=2022-06-01&rft.pub=Springer&rft.issn=1862-4480&rft.volume=16&rft.issue=5&rft.spage=1599&rft.epage=1609&rft_id=info:doi/10.1007%2Fs11590-021-01802-4&rft.externalDBID=OT2&rft.externalDocID=287453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4480&client=summon