Solving an inverse elliptic coefficient problem by convex non-linear semidefinite programming
Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse prob...
Saved in:
| Published in: | Optimization letters Vol. 16; no. 5; pp. 1599 - 1609 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin, Heidelberg
Springer
01.06.2022
Springer Berlin Heidelberg |
| Subjects: | |
| ISSN: | 1862-4480, 1862-4472, 1862-4480 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems. |
|---|---|
| AbstractList | Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems. |
| Author | Harrach, Bastian |
| Author_xml | – sequence: 1 givenname: Bastian surname: Harrach fullname: Harrach, Bastian |
| BookMark | eNp9kM9KAzEQxoNUsFVfQBDyAqvJZrNJjlL8BwUP6lFCNp2UlN1sSWKxb29qPYiHnmYYvt83M98MTcIYAKErSm4oIeI2UcoVqUhNK0IlqavmBE2pbEvTSDL505-hWUprQlpKlZqij9ex3_qwwiZgH7YQE2Doe7_J3mI7gnPeeggZb-LY9TDgblfGRfiFywlV7wOYiBMMfgnOB59hr1xFMwzF9QKdOtMnuPyt5-j94f5t_lQtXh6f53eLyjIucuUEA26M5LZjlAsJS9k4Ao1xwinTCdZZo8Dxdqna8mKjDCeGWukUFYLXLTtH9cHXxjGlCE5voh9M3GlK9D4gfQhIF1r_BKSbAsl_kPXZZD-GHI3vj6PsgKayJ6wg6vX4GUN58Th1faCgJOiT3peUx6hrKRrO2Dewxoij |
| CitedBy_id | crossref_primary_10_1007_s13369_022_07269_4 crossref_primary_10_3934_cac_2025008 |
| Cites_doi | 10.1007/978-1-4939-0790-8_14 10.3934/ipi.2019046 10.1088/0266-5611/25/12/123011 10.1137/18M1205388 10.1088/0266-5611/25/5/055010 10.1080/03605302.2015.1007379 10.1088/1361-6420/aafecd 10.1017/fms.2019.31 10.1090/conm/615/12245 10.1365/s13291-021-00236-2 10.1016/j.aam.2004.12.002 10.1590/S0101-82052006000200002 10.1088/1361-6420/aaf6fc 10.1007/s00211-020-01162-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 |
| Copyright_xml | – notice: The Author(s) 2021 |
| DBID | OT2 C6C AAYXX CITATION |
| DOI | 10.1007/s11590-021-01802-4 |
| DatabaseName | EconStor Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1862-4480 |
| EndPage | 1609 |
| ExternalDocumentID | 10_1007_s11590_021_01802_4 287453 |
| GrantInformation_xml | – fundername: Johann Wolfgang Goethe-Universität, Frankfurt am Main (1022) |
| GroupedDBID | -Y2 .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM OT2 P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -5D -5G -BR -EM -~C AAYZH ADINQ AESKC C6C GQ6 Z7R Z7Y Z83 Z88 AAYXX CITATION |
| ID | FETCH-LOGICAL-c357t-f73e5aa85cb31578ed84f0e4af7f9ab73bca9ef56d9602149a50a1c8f91775263 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694558100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1862-4480 1862-4472 |
| IngestDate | Sat Nov 29 02:44:12 EST 2025 Tue Nov 18 22:12:45 EST 2025 Fri Feb 21 02:47:32 EST 2025 Fri Dec 05 12:06:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | 35R30 Inverse Problem 90C22 Loewner order Convexity Finitely many measurements Monotonicity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-f73e5aa85cb31578ed84f0e4af7f9ab73bca9ef56d9602149a50a1c8f91775263 |
| ORCID | 0000-0002-8666-7791 |
| OpenAccessLink | https://link.springer.com/10.1007/s11590-021-01802-4 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1007_s11590_021_01802_4 crossref_citationtrail_10_1007_s11590_021_01802_4 springer_journals_10_1007_s11590_021_01802_4 econis_econstor_287453 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin, Heidelberg |
| PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin/Heidelberg |
| PublicationTitle | Optimization letters |
| PublicationTitleAbbrev | Optim Lett |
| PublicationYear | 2022 |
| Publisher | Springer Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer – name: Springer Berlin Heidelberg |
| References | Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35(2), 207–241 (2005) Harrach, B.: On uniqueness in diffuse optical tomography. Inverse Problems 25(5), 055010 (2009) Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Problems 25(12), 123011 (2009) Calderón, A.P.: On an inverse boundary value problem. In: W.H. Meyer, M.A. Raupp (eds.) Seminar on Numerical Analysis and its Application to Continuum Physics, pp. 65–73. Brasil. Math. Soc., Rio de Janeiro (1980) Kenig, C., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math 615, 193–222 (2014) Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma 7, e35 (2019) Harrach, B., Meftahi, H.: Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM J. Appl. Math. 79(2), 525–550 (2019) Rüland, A., Sincich, E.: Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Probl. Imaging 13(5), 1023–1044 (2019) Beretta, E., de Hoop, M.V., Francini, E., Vessella, S.: Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation. Comm. Partial Differential Equations 40(7), 1365–1392 (2015) Harrach, B.: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Problems 35(2), 024005 (2019) Harrach, B.: Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. Numer. Math. 147, 29–70 (2021) Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006) Klibanov, M.V., Li, J., Zhang, W.: Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Problems 35(3), 035005 (2019) Adler, A., Gaburro, R., Lionheart, W.: Electrical impedance tomography. In: O. Scherzer (ed.) Handbook of Mathematical Methods in Imaging, pp. 701–762. Springer (2015) Harrach, B.: An introduction to finite element methods for inverse coefficient problems in elliptic PDEs. Jahresber. Dtsch. Math. Ver. 123(3), 183–210 (2021) 1802_CR4 1802_CR3 1802_CR2 1802_CR1 1802_CR12 1802_CR13 1802_CR10 1802_CR11 1802_CR8 1802_CR7 1802_CR6 1802_CR14 1802_CR5 1802_CR15 1802_CR9 |
| References_xml | – reference: Rüland, A., Sincich, E.: Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Probl. Imaging 13(5), 1023–1044 (2019) – reference: Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35(2), 207–241 (2005) – reference: Beretta, E., de Hoop, M.V., Francini, E., Vessella, S.: Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation. Comm. Partial Differential Equations 40(7), 1365–1392 (2015) – reference: Harrach, B.: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Problems 35(2), 024005 (2019) – reference: Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006) – reference: Kenig, C., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math 615, 193–222 (2014) – reference: Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Problems 25(12), 123011 (2009) – reference: Klibanov, M.V., Li, J., Zhang, W.: Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Problems 35(3), 035005 (2019) – reference: Calderón, A.P.: On an inverse boundary value problem. In: W.H. Meyer, M.A. Raupp (eds.) Seminar on Numerical Analysis and its Application to Continuum Physics, pp. 65–73. Brasil. Math. Soc., Rio de Janeiro (1980) – reference: Harrach, B., Meftahi, H.: Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM J. Appl. Math. 79(2), 525–550 (2019) – reference: Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma 7, e35 (2019) – reference: Adler, A., Gaburro, R., Lionheart, W.: Electrical impedance tomography. In: O. Scherzer (ed.) Handbook of Mathematical Methods in Imaging, pp. 701–762. Springer (2015) – reference: Harrach, B.: On uniqueness in diffuse optical tomography. Inverse Problems 25(5), 055010 (2009) – reference: Harrach, B.: An introduction to finite element methods for inverse coefficient problems in elliptic PDEs. Jahresber. Dtsch. Math. Ver. 123(3), 183–210 (2021) – reference: Harrach, B.: Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. Numer. Math. 147, 29–70 (2021) – ident: 1802_CR1 doi: 10.1007/978-1-4939-0790-8_14 – ident: 1802_CR14 doi: 10.3934/ipi.2019046 – ident: 1802_CR15 doi: 10.1088/0266-5611/25/12/123011 – ident: 1802_CR5 – ident: 1802_CR11 doi: 10.1137/18M1205388 – ident: 1802_CR7 doi: 10.1088/0266-5611/25/5/055010 – ident: 1802_CR4 doi: 10.1080/03605302.2015.1007379 – ident: 1802_CR13 doi: 10.1088/1361-6420/aafecd – ident: 1802_CR2 doi: 10.1017/fms.2019.31 – ident: 1802_CR12 doi: 10.1090/conm/615/12245 – ident: 1802_CR9 doi: 10.1365/s13291-021-00236-2 – ident: 1802_CR3 doi: 10.1016/j.aam.2004.12.002 – ident: 1802_CR6 doi: 10.1590/S0101-82052006000200002 – ident: 1802_CR8 doi: 10.1088/1361-6420/aaf6fc – ident: 1802_CR10 doi: 10.1007/s00211-020-01162-8 |
| SSID | ssj0061199 |
| Score | 2.2945304 |
| Snippet | Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient... |
| SourceID | crossref springer econis |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1599 |
| SubjectTerms | Computational Intelligence Convexity Finitely many measurements Inverse Problem Loewner order Mathematics Mathematics and Statistics Monotonicity Numerical and Computational Physics Operations Research/Decision Theory Optimization Original Paper Simulation |
| Title | Solving an inverse elliptic coefficient problem by convex non-linear semidefinite programming |
| URI | https://www.econstor.eu/handle/10419/287453 https://link.springer.com/article/10.1007/s11590-021-01802-4 |
| Volume | 16 |
| WOSCitedRecordID | wos000694558100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1862-4480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061199 issn: 1862-4480 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86d9CD38P5RQ7eNJC2SZMeRRwedAjTsYuUNB9QmJ2sU_S_N2nTTVEGeiqF9KW8vLyP5L3fA-AMi9jEiilkbUOErL1NEOdSIaGMFSfMVQ08P7xl_T4fjZJ7XxRWNtnuzZVkpakXxW7W8mLkUgoc6FSIyCpYow5txsXog2Gjf-Og7hoZcFcPRFjoS2V-p_HNHLVdDJqXPy5FK1vT2_rfX26DTe9bwstaGHbAii52wcYXxEH7djeHaS33wNNgMnYHClAUMC9cgoaGDqDTqhEJ5URX8BLWKkHfdgZmH7BKU3-HxaRAzkMVU1jq51xpkzvvFfp8r2dLdR889q4frm6Q77eAZETZDBkWaSoEpzKLAruTteLEYE2EYSYRGYsyKRJtaKxs2BPa0EpQLALJjQ35GA3jqANadnZ9AKCOqVA0oRnJKIk14ZhyI7EhzGAThKILgobtqfRg5K4nxjhdwCg7RqZ2nrRiZEq64Hz-zUsNxbF0dKdezdQ9XKZpWkH7R11w0axc6vdruYTO4d-GH4H10BVIVOc0x6A1m77qE9CWb7O8nJ5WgvoJUsDhgA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFtczD75poEfSpI8iiuLuInjgi4Q0BxS0K9tV9N-b9HAVRdCnUkgnZTKZI5n5BmA_kIlNNNPY2YYYO3ubYs6VxlJbJ04B1zXw_G2X9fv87i69bIrCyjbbvb2SrDT1uNjNWd4A-5QCDzoVYTIJ08S32fEx-tVtq3-TsO4aGXJfD0RY1JTK_Ezjizma8TFoXn67FK1szeni__5yCRYa3xId1cKwDBOmWIH5T4iD7q33AdNarsL91eDBHyggWaC88AkaBnmATqdGFFIDU8FLOKuEmrYzKHtDVZr6KyoGBfYeqhyi0jzm2tjce6-oyfd6dFTX4Ob05Pr4DDf9FrCKKRthy2JDpeRUZXHodrLRnNjAEGmZTWXG4kzJ1FiaaBf2OMankgYyVNy6kI_RKInXYcrNbjYAmYRKTVOakYySxBAeUG5VYAmzgQ0j2YGwZbtQDRi574nxIMYwyp6Rws0jKkYK0oGDj2-eaiiOX0ev16sp_MNnmooK2j_uwGG7cqLZr-UvdDb_NnwPZs-ue13RPe9fbMFc5IslqjObbZgaDZ_NDsyol1FeDncroX0H7TnkZA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH3wFtczD75psEfSpI-iLoq6iBe-SEhzQGHtynYV_fcmbdcDRRCfSiGdlMwkk0m--QZgO5CJTTTT2PmGGDt_m2LOlcZSW2dOAdc18fztGet0-N1devEpi79Cuw-vJOucBs_SVAz2HrXd-0h8c144wB5e4AmoIkxGYZy4SMaDui6vbodrcRLWFSRD7nODCIuatJmfZXxxTRM-Hs3Lbxekld9pz_7_j-dgptlzov3aSOZhxBQLMP2JidC9nb_Tt5aLcH_V6_qDBiQLlBceuGGQJ-50y4tCqmcq2gnXN2rK0aDsFVXw9RdU9Arsd66yj0rzkGtjc7-rRQ0O7MFJXYKb9tH1wTFu6jBgFVM2wJbFhkrJqcri0M1wozmxgSHSMpvKjMWZkqmxNNEuHIpcyCVpIEPFrQsFGY2SeBnGXO9mBZBJqNQ0pRnJKEkM4QHlVgWWMBvYMJItCIcqEKohKfe1Mrrig17ZD6Rw_YhqIAVpwc77N481RcevrZdrzQr_8AhUUVH-xy3YHWpRNPO4_EXO6t-ab8HkxWFbnJ10TtdgKvI5FNVRzjqMDfpPZgMm1PMgL_ublf2-Acw67Ug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+an+inverse+elliptic+coefficient+problem+by+convex+non-linear+semidefinite+programming&rft.jtitle=Optimization+letters&rft.au=Harrach%2C+Bastian&rft.date=2022-06-01&rft.pub=Springer&rft.issn=1862-4480&rft.volume=16&rft.issue=5&rft.spage=1599&rft.epage=1609&rft_id=info:doi/10.1007%2Fs11590-021-01802-4&rft.externalDBID=OT2&rft.externalDocID=287453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4480&client=summon |