Research on the spectral reconstruction of a low-dimensional filter array micro-spectrometer based on a truncated singular value decomposition-convex optimization algorithm

Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE photonics journal Ročník 15; číslo 2; s. 1 - 17
Hlavní autori: Zhang, Jiakun, Zhang, Liu, Song, Ying, Zheng, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1943-0655, 1943-0647
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction, and the detailed spectral reconstruction process of two typical target spectra is described. In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of +/− 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, which is suitable for engineering applications, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers.
AbstractList Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction.In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of +/− 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers.
Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction, and the detailed spectral reconstruction process of two typical target spectra is described. In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of +/− 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, which is suitable for engineering applications, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers.
Author Zheng, Yan
Zhang, Jiakun
Song, Ying
Zhang, Liu
Author_xml – sequence: 1
  givenname: Jiakun
  orcidid: 0000-0002-7976-6425
  surname: Zhang
  fullname: Zhang, Jiakun
  organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China
– sequence: 2
  givenname: Liu
  surname: Zhang
  fullname: Zhang, Liu
  organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China
– sequence: 3
  givenname: Ying
  surname: Song
  fullname: Song, Ying
  organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China
– sequence: 4
  givenname: Yan
  surname: Zheng
  fullname: Zheng, Yan
  organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China
BookMark eNpNUctu1DAUjVCRaAs_gFhYYp0hfsSOl6gCWlSpCJW1dWPfzHiUxIPtKZRv4iNxJlXF6r7OQ7rnojqbw4xV9ZY2G0ob_eHrt-u7-w1rGN9w1spW0hfVOdWC140U6uy5b9tX1UVK-6aRmrb6vPr7HRNCtDsSZpJ3SNIBbY4wkog2zCnHo82-3MJAgIzhV-38hHMqq4IZ_JgxEogRHsnkbQz1yg8TLoceErpFGUgRmi3kMiY_b48jRPIA4xGJKz7TISS_2NTF8wF_k3DIfvJ_4GQN4zZEn3fT6-rlAGPCN0_1svrx-dP91XV9e_fl5urjbW15q3I9CKWwdYO2rqeOqTI53UvK9aBlj0z0vONd53phgQvBFahOsmbgHXSuBcYvq5tV1wXYm0P0E8RHE8Cb0yLErYGYvR3RdBykc60aBHJhddN1VEhrWwQnZUcXrfer1iGGn0dM2ezDMZbnJcOUVkxzJmVBsRVVXphSxOHZlTZmSdicEjZLwuYp4UJ6t5I8Iv5HaJTiSvB_FqypYg
CODEN PJHOC3
Cites_doi 10.1364/OE.21.003969
10.1366/000370209788701134
10.1364/OE.26.023233
10.1038/nature14576
10.3390/s20174929
10.3390/s18020644
10.1117/1.3645086
10.1109/JSEN.2012.2197609
10.1109/ACCESS.2020.2967064
10.3390/s20195458
10.3390/photonics8100432
10.1039/C9TC04065J
10.1364/AO.52.002792
10.1109/JSEN.2010.2103054
10.3807/josk.2016.20.4.515
10.1364/OE.402149
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOA
DOI 10.1109/JPHOT.2023.3256561
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1943-0647
EndPage 17
ExternalDocumentID oai_doaj_org_article_83a6dd57f4e34c9088146cc5ead66812
10_1109_JPHOT_2023_3256561
10077374
Genre orig-research
GroupedDBID 0R~
29O
5VS
6IK
97E
AAFWJ
AAJGR
ABAZT
ABVLG
ACIWK
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
HZ~
IPLJI
JAVBF
M43
M~E
O9-
OCL
OK1
RIA
RIE
4.4
AAYXX
AETIX
AGSQL
CITATION
EJD
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c357t-f477e5df9cdb1d2777ed9b6139f96be24b38388db4ca34437a78620f38a8d5a23
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965126500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1943-0655
IngestDate Fri Oct 03 12:50:43 EDT 2025
Fri Jul 25 18:52:36 EDT 2025
Sat Nov 29 04:21:24 EST 2025
Wed Aug 27 02:18:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f477e5df9cdb1d2777ed9b6139f96be24b38388db4ca34437a78620f38a8d5a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7976-6425
0000-0003-0632-8798
OpenAccessLink https://doaj.org/article/83a6dd57f4e34c9088146cc5ead66812
PQID 2797293266
PQPubID 85514
PageCount 17
ParticipantIDs ieee_primary_10077374
crossref_primary_10_1109_JPHOT_2023_3256561
doaj_primary_oai_doaj_org_article_83a6dd57f4e34c9088146cc5ead66812
proquest_journals_2797293266
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE photonics journal
PublicationTitleAbbrev JPHOT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref23
ref15
Ye (ref13) 2021; 5
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
Zheng (ref7) 2016; 36
Wang (ref16) 2022; 42
ref19
ref18
Liu (ref6) 2016; 36
ref8
Jin (ref17) 2016; 36
ref9
ref4
ref5
Zhang (ref12) 2022; 42
Wang (ref3) 2018; 38
References_xml – ident: ref4
  doi: 10.1364/OE.21.003969
– volume: 36
  start-page: 4088
  issue: 12
  year: 2016
  ident: ref7
  article-title: The aberration corrected spectrometer based on adaptive optics
  publication-title: Spectrosc. Spectral Anal.
– ident: ref18
  doi: 10.1366/000370209788701134
– ident: ref20
  doi: 10.1364/OE.26.023233
– ident: ref1
  doi: 10.1038/nature14576
– ident: ref22
  doi: 10.3390/s20174929
– ident: ref2
  doi: 10.3390/s18020644
– ident: ref9
  doi: 10.1117/1.3645086
– ident: ref8
  doi: 10.1109/JSEN.2012.2197609
– volume: 42
  start-page: 1378
  issue: 5
  year: 2022
  ident: ref12
  article-title: Research on tunable spectrum reconstruction
  publication-title: Spectrosc. Spectral Anal.
– volume: 42
  start-page: 1313
  issue: 4
  year: 2022
  ident: ref16
  article-title: Spectral angles of plant leaves as indicators of uranium pollution in soil
  publication-title: Spectrosc. Spectral Anal.
– volume: 36
  start-page: 1543
  issue: 05
  year: 2016
  ident: ref6
  article-title: Study on coaxiallinear dispersion triplet of wide spectral imaging spectrometer
  publication-title: Spectrosc. Spectral Anal.
– volume: 5
  start-page: 562
  issue: 5
  year: 2021
  ident: ref13
  article-title: Research on a spectral reconstruction method with noise tolerance
  publication-title: Curr. Opt. Photon.
– ident: ref23
  doi: 10.1109/ACCESS.2020.2967064
– ident: ref21
  doi: 10.3390/s20195458
– ident: ref11
  doi: 10.3390/photonics8100432
– ident: ref5
  doi: 10.1039/C9TC04065J
– ident: ref19
  doi: 10.1364/AO.52.002792
– ident: ref10
  doi: 10.1109/JSEN.2010.2103054
– volume: 38
  start-page: 869
  issue: 3
  year: 2018
  ident: ref3
  article-title: Reconstruction simulation with quantum dots spectral imaging technology
  publication-title: Spectrosc. Spectral Anal.
– ident: ref14
  doi: 10.3807/josk.2016.20.4.515
– ident: ref15
  doi: 10.1364/OE.402149
– volume: 36
  start-page: 2224
  issue: 7
  year: 2016
  ident: ref17
  article-title: Study on the detection of slight mechanical injuries on apples with hypersperspectral imaging
  publication-title: Spectrosc. Spectral Anal.
SSID ssj0069159
Score 2.338039
Snippet Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arrays
Computational geometry
Convex analysis
Convexity
Detectors
Evaluation
Filtering algorithms
Information filters
Optical filters
Optimization
Optimization algorithms
Random errors
Reconstruction
Reconstruction algorithms
Singular value decomposition
Spectral reconstruction Spectral analysis Convex optimization Cross-validation
Spectrometers
Target detection
Trigonometric functions
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxYEL5aOIhYJ84Ia8TWInto-AqCqESg8F9WY59hhW6m5Qdvn6T_xIZhynAiEO3OIodiw92zNjv3lm7FlU0EDXgajR_AuFBleYGmpR9x0aoD42Ke93fHirz87M5aU9L8nqORcGADL5DJb0mM_y4xC-0FbZMZ3oa6nVHtvTupuSteZlt7NomOesmMoevzk_fXexpMvBl7Ihr6X-w_Jkgf5yo8pfy3C2LScH_9mrO-x2cSL5iwn1u-wGbO6xg-JQ8jJdt_fZz5lXx4cNR0-P57zKEavmOPhaO5YPiXt-NXwTkcT-J6EOnlZ0ks79OPoffE3EPTHVH9bEoeFkACO17Dk2ROKyWKStB2K2clIRBx6BOOuFGCYyxf07H3CZWpf8T-6vPg7javdpfcjen7y-eHUqyvUMIshW70RSWkMbkw2xr2OjsRRtj-6BTbbroVE9Rr_GxF4FL5WS2msMn6okjTex9Y18wPY3wwYeMh5wTTapD8ZCrbTFZ4i6BauhqUxoqgV7PkPnPk8qHC5HL5V1GWhHQLsC9IK9JHSvvyQF7fwCYXNlQjojfRdjq5MCqQKxvdBmhNDizOpIk23BDgnq3343obxgR_NgcWW6b12jLQYp6Al3j_5R7TG7RV2cOD9HbB9xgSfsZvi6W23Hp3kk_wIFA_eK
  priority: 102
  providerName: IEEE
Title Research on the spectral reconstruction of a low-dimensional filter array micro-spectrometer based on a truncated singular value decomposition-convex optimization algorithm
URI https://ieeexplore.ieee.org/document/10077374
https://www.proquest.com/docview/2797293266
https://doaj.org/article/83a6dd57f4e34c9088146cc5ead66812
Volume 15
WOSCitedRecordID wos000965126500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1943-0647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069159
  issn: 1943-0655
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1943-0647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069159
  issn: 1943-0655
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELFChiaanmwA25TRwnto_9WlWoX4el6s1ybAdW6m7Q7raFC7-IH8lM4rRFHLhwiZJVdr3JjOfNJM9vGPsQZBSxqiLPEf65RMDlOo85z-sKAagOoumed1yeqLMzfXVlLh61-iJOWC8P3N-4XV24KoRSNTIW0hMrB-e29yXegYq0syj6ZsoMxVQfgyuDKD0skcnM7qeL4_PJDnUK3ykEpTD5HzDUqfWn9ip_xeQOaMbr7HnKEGGv_2cv2ZM4f8VepGwR0lxcvma_BtIctHPANA6olTw9twAqKR-EYaFtwMFJe8cPScm_V-GA8ZRek-MoC_cDTomVx_vvtzMiyMA-olugX3YwWdyQciwNjjhHtFW4dNc3EQ4jEdIT64sfEH_9O5xjDJqlxZ2wd_2lXUxXX2cb7PP4aHJwzFPvBe6LUq14I5WKZWiMD3UehMKjYGrEftOYqo5C1ljaah1q6V0hZaGcwtooawrtdCidKN6wtXk7j28ZeAy4uqm9NjGXyuB-DKqMRkWRaS-yEfs4mMJ-6yU2bFeaZMZ2hrNkOJsMN2L7ZK37M0keu_sAncYmp7H_cpoR2yBbPxouU6pQcsS2BuPbNJeXViiDFQimudW7_zH2JntG19Ozf7bYGnpDfM-e-tvVdLnY7twYt6c_j7a7xYi_Ad1e-fA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgIMGF8lHEQgEfuCFv8-HE9hEQ1QLL0sOCerMcewIrdTcouy3wn_iRzDhOBUIcuMVR7Fh6tmfGfvPM2LMgoYC6BpGj-RcSDa7QOeQib2o0QE0o2rjf8WmuFgt9empOUrJ6zIUBgEg-gyk9xrP80Plz2io7ohN9VSp5lV2rpCyyIV1rXHhrg6Z5zIvJzNHbk9mH5ZSuB5-WBfkt-R-2J0r0pztV_lqIo3U53v_Pft1mt5IbyV8MuN9hV2Bzl-0nl5KnCbu9x36OzDrebTj6ejxmVvZYNUbCl-qxvGu542fdNxFI7n-Q6uDtis7Suet794Ovibonhvrdmlg0nExgoJYdx4ZIXhaLtPlA3FZOOuLAAxBrPVHDRCS5f-cdLlTrlAHK3dnnrl_tvqwP2Mfj18tXM5EuaBC-rNROtFIpqEJrfGjyUCgsBdOgg2BaUzdQyAbjX61DI70rpSyVUxhAZW2pnQ6VK8r7bG_TbeAB4x5XZd02XhvIpTL4DEFVYBQUmfZFNmHPR-js10GHw8b4JTM2Am0JaJuAnrCXhO7ll6ShHV8gbDZNSatLV4dQqVZCKT3xvdBqeF_h3KpJlW3CDgjq3343oDxhh-NgsWnCb22hDIYp6AvXD_9R7Sm7MVu-n9v5m8W7R-wmdXdgAB2yPcQIHrPr_mK32vZP4qj-Bfz_-tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Spectral+Reconstruction+of+a+Low-Dimensional+Filter+Array+Micro-Spectrometer+Based+on+a+Truncated+Singular+Value+Decomposition-Convex+Optimization+Algorithm&rft.jtitle=IEEE+photonics+journal&rft.au=Jiakun+Zhang&rft.au=Liu+Zhang&rft.au=Ying+Song&rft.au=Yan+Zheng&rft.date=2023-04-01&rft.pub=IEEE&rft.eissn=1943-0647&rft.volume=15&rft.issue=2&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FJPHOT.2023.3256561&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_83a6dd57f4e34c9088146cc5ead66812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0655&client=summon