Research on the spectral reconstruction of a low-dimensional filter array micro-spectrometer based on a truncated singular value decomposition-convex optimization algorithm
Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction e...
Uložené v:
| Vydané v: | IEEE photonics journal Ročník 15; číslo 2; s. 1 - 17 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1943-0655, 1943-0647 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction, and the detailed spectral reconstruction process of two typical target spectra is described. In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of +/− 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, which is suitable for engineering applications, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers. |
|---|---|
| AbstractList | Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction.In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of +/− 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers. Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction, and the detailed spectral reconstruction process of two typical target spectra is described. In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of +/− 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, which is suitable for engineering applications, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers. |
| Author | Zheng, Yan Zhang, Jiakun Song, Ying Zhang, Liu |
| Author_xml | – sequence: 1 givenname: Jiakun orcidid: 0000-0002-7976-6425 surname: Zhang fullname: Zhang, Jiakun organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China – sequence: 2 givenname: Liu surname: Zhang fullname: Zhang, Liu organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China – sequence: 3 givenname: Ying surname: Song fullname: Song, Ying organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China – sequence: 4 givenname: Yan surname: Zheng fullname: Zheng, Yan organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, China |
| BookMark | eNpNUctu1DAUjVCRaAs_gFhYYp0hfsSOl6gCWlSpCJW1dWPfzHiUxIPtKZRv4iNxJlXF6r7OQ7rnojqbw4xV9ZY2G0ob_eHrt-u7-w1rGN9w1spW0hfVOdWC140U6uy5b9tX1UVK-6aRmrb6vPr7HRNCtDsSZpJ3SNIBbY4wkog2zCnHo82-3MJAgIzhV-38hHMqq4IZ_JgxEogRHsnkbQz1yg8TLoceErpFGUgRmi3kMiY_b48jRPIA4xGJKz7TISS_2NTF8wF_k3DIfvJ_4GQN4zZEn3fT6-rlAGPCN0_1svrx-dP91XV9e_fl5urjbW15q3I9CKWwdYO2rqeOqTI53UvK9aBlj0z0vONd53phgQvBFahOsmbgHXSuBcYvq5tV1wXYm0P0E8RHE8Cb0yLErYGYvR3RdBykc60aBHJhddN1VEhrWwQnZUcXrfer1iGGn0dM2ezDMZbnJcOUVkxzJmVBsRVVXphSxOHZlTZmSdicEjZLwuYp4UJ6t5I8Iv5HaJTiSvB_FqypYg |
| CODEN | PJHOC3 |
| Cites_doi | 10.1364/OE.21.003969 10.1366/000370209788701134 10.1364/OE.26.023233 10.1038/nature14576 10.3390/s20174929 10.3390/s18020644 10.1117/1.3645086 10.1109/JSEN.2012.2197609 10.1109/ACCESS.2020.2967064 10.3390/s20195458 10.3390/photonics8100432 10.1039/C9TC04065J 10.1364/AO.52.002792 10.1109/JSEN.2010.2103054 10.3807/josk.2016.20.4.515 10.1364/OE.402149 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M DOA |
| DOI | 10.1109/JPHOT.2023.3256561 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1943-0647 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_83a6dd57f4e34c9088146cc5ead66812 10_1109_JPHOT_2023_3256561 10077374 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29O 5VS 6IK 97E AAFWJ AAJGR ABAZT ABVLG ACIWK ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ HZ~ IPLJI JAVBF M43 M~E O9- OCL OK1 RIA RIE 4.4 AAYXX AETIX AGSQL CITATION EJD 7SP 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c357t-f477e5df9cdb1d2777ed9b6139f96be24b38388db4ca34437a78620f38a8d5a23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965126500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1943-0655 |
| IngestDate | Fri Oct 03 12:50:43 EDT 2025 Fri Jul 25 18:52:36 EDT 2025 Sat Nov 29 04:21:24 EST 2025 Wed Aug 27 02:18:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-f477e5df9cdb1d2777ed9b6139f96be24b38388db4ca34437a78620f38a8d5a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7976-6425 0000-0003-0632-8798 |
| OpenAccessLink | https://doaj.org/article/83a6dd57f4e34c9088146cc5ead66812 |
| PQID | 2797293266 |
| PQPubID | 85514 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_10077374 crossref_primary_10_1109_JPHOT_2023_3256561 doaj_primary_oai_doaj_org_article_83a6dd57f4e34c9088146cc5ead66812 proquest_journals_2797293266 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE photonics journal |
| PublicationTitleAbbrev | JPHOT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref23 ref15 Ye (ref13) 2021; 5 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 Zheng (ref7) 2016; 36 Wang (ref16) 2022; 42 ref19 ref18 Liu (ref6) 2016; 36 ref8 Jin (ref17) 2016; 36 ref9 ref4 ref5 Zhang (ref12) 2022; 42 Wang (ref3) 2018; 38 |
| References_xml | – ident: ref4 doi: 10.1364/OE.21.003969 – volume: 36 start-page: 4088 issue: 12 year: 2016 ident: ref7 article-title: The aberration corrected spectrometer based on adaptive optics publication-title: Spectrosc. Spectral Anal. – ident: ref18 doi: 10.1366/000370209788701134 – ident: ref20 doi: 10.1364/OE.26.023233 – ident: ref1 doi: 10.1038/nature14576 – ident: ref22 doi: 10.3390/s20174929 – ident: ref2 doi: 10.3390/s18020644 – ident: ref9 doi: 10.1117/1.3645086 – ident: ref8 doi: 10.1109/JSEN.2012.2197609 – volume: 42 start-page: 1378 issue: 5 year: 2022 ident: ref12 article-title: Research on tunable spectrum reconstruction publication-title: Spectrosc. Spectral Anal. – volume: 42 start-page: 1313 issue: 4 year: 2022 ident: ref16 article-title: Spectral angles of plant leaves as indicators of uranium pollution in soil publication-title: Spectrosc. Spectral Anal. – volume: 36 start-page: 1543 issue: 05 year: 2016 ident: ref6 article-title: Study on coaxiallinear dispersion triplet of wide spectral imaging spectrometer publication-title: Spectrosc. Spectral Anal. – volume: 5 start-page: 562 issue: 5 year: 2021 ident: ref13 article-title: Research on a spectral reconstruction method with noise tolerance publication-title: Curr. Opt. Photon. – ident: ref23 doi: 10.1109/ACCESS.2020.2967064 – ident: ref21 doi: 10.3390/s20195458 – ident: ref11 doi: 10.3390/photonics8100432 – ident: ref5 doi: 10.1039/C9TC04065J – ident: ref19 doi: 10.1364/AO.52.002792 – ident: ref10 doi: 10.1109/JSEN.2010.2103054 – volume: 38 start-page: 869 issue: 3 year: 2018 ident: ref3 article-title: Reconstruction simulation with quantum dots spectral imaging technology publication-title: Spectrosc. Spectral Anal. – ident: ref14 doi: 10.3807/josk.2016.20.4.515 – ident: ref15 doi: 10.1364/OE.402149 – volume: 36 start-page: 2224 issue: 7 year: 2016 ident: ref17 article-title: Study on the detection of slight mechanical injuries on apples with hypersperspectral imaging publication-title: Spectrosc. Spectral Anal. |
| SSID | ssj0069159 |
| Score | 2.338039 |
| Snippet | Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Arrays Computational geometry Convex analysis Convexity Detectors Evaluation Filtering algorithms Information filters Optical filters Optimization Optimization algorithms Random errors Reconstruction Reconstruction algorithms Singular value decomposition Spectral reconstruction Spectral analysis Convex optimization Cross-validation Spectrometers Target detection Trigonometric functions |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxYEL5aOIhYJ84Ia8TWInto-AqCqESg8F9WY59hhW6m5Qdvn6T_xIZhynAiEO3OIodiw92zNjv3lm7FlU0EDXgajR_AuFBleYGmpR9x0aoD42Ke93fHirz87M5aU9L8nqORcGADL5DJb0mM_y4xC-0FbZMZ3oa6nVHtvTupuSteZlt7NomOesmMoevzk_fXexpMvBl7Ihr6X-w_Jkgf5yo8pfy3C2LScH_9mrO-x2cSL5iwn1u-wGbO6xg-JQ8jJdt_fZz5lXx4cNR0-P57zKEavmOPhaO5YPiXt-NXwTkcT-J6EOnlZ0ks79OPoffE3EPTHVH9bEoeFkACO17Dk2ROKyWKStB2K2clIRBx6BOOuFGCYyxf07H3CZWpf8T-6vPg7javdpfcjen7y-eHUqyvUMIshW70RSWkMbkw2xr2OjsRRtj-6BTbbroVE9Rr_GxF4FL5WS2msMn6okjTex9Y18wPY3wwYeMh5wTTapD8ZCrbTFZ4i6BauhqUxoqgV7PkPnPk8qHC5HL5V1GWhHQLsC9IK9JHSvvyQF7fwCYXNlQjojfRdjq5MCqQKxvdBmhNDizOpIk23BDgnq3343obxgR_NgcWW6b12jLQYp6Al3j_5R7TG7RV2cOD9HbB9xgSfsZvi6W23Hp3kk_wIFA_eK priority: 102 providerName: IEEE |
| Title | Research on the spectral reconstruction of a low-dimensional filter array micro-spectrometer based on a truncated singular value decomposition-convex optimization algorithm |
| URI | https://ieeexplore.ieee.org/document/10077374 https://www.proquest.com/docview/2797293266 https://doaj.org/article/83a6dd57f4e34c9088146cc5ead66812 |
| Volume | 15 |
| WOSCitedRecordID | wos000965126500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1943-0647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069159 issn: 1943-0655 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1943-0647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069159 issn: 1943-0655 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELFChiaanmwA25TRwnto_9WlWoX4el6s1ybAdW6m7Q7raFC7-IH8lM4rRFHLhwiZJVdr3JjOfNJM9vGPsQZBSxqiLPEf65RMDlOo85z-sKAagOoumed1yeqLMzfXVlLh61-iJOWC8P3N-4XV24KoRSNTIW0hMrB-e29yXegYq0syj6ZsoMxVQfgyuDKD0skcnM7qeL4_PJDnUK3ykEpTD5HzDUqfWn9ip_xeQOaMbr7HnKEGGv_2cv2ZM4f8VepGwR0lxcvma_BtIctHPANA6olTw9twAqKR-EYaFtwMFJe8cPScm_V-GA8ZRek-MoC_cDTomVx_vvtzMiyMA-olugX3YwWdyQciwNjjhHtFW4dNc3EQ4jEdIT64sfEH_9O5xjDJqlxZ2wd_2lXUxXX2cb7PP4aHJwzFPvBe6LUq14I5WKZWiMD3UehMKjYGrEftOYqo5C1ljaah1q6V0hZaGcwtooawrtdCidKN6wtXk7j28ZeAy4uqm9NjGXyuB-DKqMRkWRaS-yEfs4mMJ-6yU2bFeaZMZ2hrNkOJsMN2L7ZK37M0keu_sAncYmp7H_cpoR2yBbPxouU6pQcsS2BuPbNJeXViiDFQimudW7_zH2JntG19Ozf7bYGnpDfM-e-tvVdLnY7twYt6c_j7a7xYi_Ad1e-fA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgIMGF8lHEQgEfuCFv8-HE9hEQ1QLL0sOCerMcewIrdTcouy3wn_iRzDhOBUIcuMVR7Fh6tmfGfvPM2LMgoYC6BpGj-RcSDa7QOeQib2o0QE0o2rjf8WmuFgt9empOUrJ6zIUBgEg-gyk9xrP80Plz2io7ohN9VSp5lV2rpCyyIV1rXHhrg6Z5zIvJzNHbk9mH5ZSuB5-WBfkt-R-2J0r0pztV_lqIo3U53v_Pft1mt5IbyV8MuN9hV2Bzl-0nl5KnCbu9x36OzDrebTj6ejxmVvZYNUbCl-qxvGu542fdNxFI7n-Q6uDtis7Suet794Ovibonhvrdmlg0nExgoJYdx4ZIXhaLtPlA3FZOOuLAAxBrPVHDRCS5f-cdLlTrlAHK3dnnrl_tvqwP2Mfj18tXM5EuaBC-rNROtFIpqEJrfGjyUCgsBdOgg2BaUzdQyAbjX61DI70rpSyVUxhAZW2pnQ6VK8r7bG_TbeAB4x5XZd02XhvIpTL4DEFVYBQUmfZFNmHPR-js10GHw8b4JTM2Am0JaJuAnrCXhO7ll6ShHV8gbDZNSatLV4dQqVZCKT3xvdBqeF_h3KpJlW3CDgjq3343oDxhh-NgsWnCb22hDIYp6AvXD_9R7Sm7MVu-n9v5m8W7R-wmdXdgAB2yPcQIHrPr_mK32vZP4qj-Bfz_-tE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Spectral+Reconstruction+of+a+Low-Dimensional+Filter+Array+Micro-Spectrometer+Based+on+a+Truncated+Singular+Value+Decomposition-Convex+Optimization+Algorithm&rft.jtitle=IEEE+photonics+journal&rft.au=Jiakun+Zhang&rft.au=Liu+Zhang&rft.au=Ying+Song&rft.au=Yan+Zheng&rft.date=2023-04-01&rft.pub=IEEE&rft.eissn=1943-0647&rft.volume=15&rft.issue=2&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FJPHOT.2023.3256561&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_83a6dd57f4e34c9088146cc5ead66812 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0655&client=summon |