Fuzzy Visual Hull Algorithm for Three-Dimensional Shape Reconstruction of TKA Implants from X-Ray Cone-Beam Images
Three-Dimensional (3-D) shape reconstruction of total knee arthroplasty (TKA) implants in vivo plays a key role to investigate implanted knee kinematics. TKA implants typically consist of metal femoral and tibial components and a polyethylene tibial insert. X-ray computed tomography (CT) causes seve...
Uloženo v:
| Vydáno v: | Journal of advanced computational intelligence and intelligent informatics Ročník 14; číslo 2; s. 122 - 127 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
20.03.2010
|
| ISSN: | 1343-0130, 1883-8014 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Three-Dimensional (3-D) shape reconstruction of total knee arthroplasty (TKA) implants
in vivo
plays a key role to investigate implanted knee kinematics. TKA implants typically consist of metal femoral and tibial components and a polyethylene tibial insert. X-ray computed tomography (CT) causes severe metal artifacts, making the 3-D shape in reconstructed images extremely difficult to understand. This article proposes a new method of 3-D reconstruction from X-ray cone-beam images. Called a fuzzy visual hull, it introduces fuzzy logic in recognizing X-ray images. X-ray cone-beam images are fuzzified and back-projected into a fuzzy voxel space. Defuzzifying the fuzzy voxel space enables the 3-D TKA implant shape to be reconstructed. The results of evaluation using TKA implants
in vitro
and computer-synthesized images demonstrated that the fuzzy visual hull provides high robustness against noise added to X-ray cone-beam images. The new approach also reconstructed the 3-D polyethylene insert despite the difficulty of recognizing the region in conventional X-ray CT. |
|---|---|
| ISSN: | 1343-0130 1883-8014 |
| DOI: | 10.20965/jaciii.2010.p0122 |