Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing

Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation, including durability, large-area scalability, and low fabrication cost, but the degradation of a tactile spatial resolution has remained challeng...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics Vol. 37; no. 5; pp. 1570 - 1583
Main Authors: Park, Hyunkyu, Park, Kyungseo, Mo, Sangwoo, Kim, Jung
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1552-3098, 1941-0468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation, including durability, large-area scalability, and low fabrication cost, but the degradation of a tactile spatial resolution has remained challenging. This article describes a deep neural network based EIT reconstruction framework, the EIT neural network (EIT-NN), alleviating this tradeoff between tactile sensing performance and hardware simplicity. EIT-NN learns a computationally efficient, nonlinear reconstruction attribute, achieving high-resolution tactile sensation and well-generalized reconstruction capability to address arbitrary complex touch modalities. We train EIT-NN by presenting a sim-to-real dataset synthesis strategy for computationally efficient generalizability. Furthermore, we propose a spatial sensitivity aware mean-squared error loss function, which uses an intrinsic spatial sensitivity of the sensor to guarantee a well-posed EIT operation. We validate an outperformance of EIT-NN against conventional EIT sensing methods by conducting a simulation study, a single-touch indentation test, and a two-point discrimination test. The results show improved spatial resolution, sensitivity, and localization accuracy. The beneficial features of the generalized sensing of EIT-NN were demonstrated by examining touch modality discrimination performance.
AbstractList Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation, including durability, large-area scalability, and low fabrication cost, but the degradation of a tactile spatial resolution has remained challenging. This article describes a deep neural network based EIT reconstruction framework, the EIT neural network (EIT-NN), alleviating this tradeoff between tactile sensing performance and hardware simplicity. EIT-NN learns a computationally efficient, nonlinear reconstruction attribute, achieving high-resolution tactile sensation and well-generalized reconstruction capability to address arbitrary complex touch modalities. We train EIT-NN by presenting a sim-to-real dataset synthesis strategy for computationally efficient generalizability. Furthermore, we propose a spatial sensitivity aware mean-squared error loss function, which uses an intrinsic spatial sensitivity of the sensor to guarantee a well-posed EIT operation. We validate an outperformance of EIT-NN against conventional EIT sensing methods by conducting a simulation study, a single-touch indentation test, and a two-point discrimination test. The results show improved spatial resolution, sensitivity, and localization accuracy. The beneficial features of the generalized sensing of EIT-NN were demonstrated by examining touch modality discrimination performance.
Author Park, Kyungseo
Park, Hyunkyu
Kim, Jung
Mo, Sangwoo
Author_xml – sequence: 1
  givenname: Hyunkyu
  orcidid: 0000-0001-5121-2917
  surname: Park
  fullname: Park, Hyunkyu
  email: hkpark93@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 2
  givenname: Kyungseo
  orcidid: 0000-0002-9146-2686
  surname: Park
  fullname: Park, Kyungseo
  email: bbq2686@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 3
  givenname: Sangwoo
  orcidid: 0000-0002-3141-7859
  surname: Mo
  fullname: Mo, Sangwoo
  email: swmo@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 4
  givenname: Jung
  orcidid: 0000-0002-1825-6325
  surname: Kim
  fullname: Kim, Jung
  email: jungkim@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
BookMark eNp9kE1rGzEQhkVJoYnbe6EXQc_rjD539-g6TmtwGkjd8yJLs47S9WqjlQn-95VxkkMOOc3APM8M816Qsz70SMhXBlPGoL5c391OOXA2FaBBSP6BnLNasgKkrs5yrxQvBNTVJ3Ixjg8AXNYgzsn-CnGgv3EfTZdLegrxH_1hRnR00aFN0ds8WO4GdKa3SNdhF7bRDPfe0j_Yj77f0htM98GFLmwPtA2RrkzcYjGLaOhd2ISU0bWxyXf4onwmH1vTjfjluU7I3-vFev6rWN3-XM5nq8IKVaYCnUYAZVu1MW27Aem0LqtSo2k3DnUFUlSKS62gbh0DLSuhrBPKlEwJJ6SYkO-nvUMMj3scU_MQ9rHPJxuuyooLzWuRKX2ibAzjGLFtrE8m-dCnaHzXMGiOETc54uYYcfMccRbhjThEvzPx8J7y7aR4RHzFa1Hmz0rxH43YiSM
CODEN ITREAE
CitedBy_id crossref_primary_10_3390_mi15121513
crossref_primary_10_1109_JSEN_2022_3144038
crossref_primary_10_1109_ACCESS_2023_3276444
crossref_primary_10_1007_s11432_023_4130_3
crossref_primary_10_1016_j_neunet_2024_106810
crossref_primary_10_1109_JSEN_2024_3447099
crossref_primary_10_1109_JSEN_2022_3155125
crossref_primary_10_1109_LRA_2024_3417699
crossref_primary_10_1002_aisy_202400790
crossref_primary_10_1002_admt_202401280
crossref_primary_10_3389_fsens_2025_1598903
crossref_primary_10_1109_TASE_2025_3585040
crossref_primary_10_1109_LRA_2023_3240368
crossref_primary_10_1126_scirobotics_abm7187
crossref_primary_10_1109_JSEN_2024_3408158
crossref_primary_10_1109_TIM_2024_3383886
crossref_primary_10_1109_TOH_2024_3371092
crossref_primary_10_1126_sciadv_adv2124
crossref_primary_10_1109_JSEN_2025_3557949
crossref_primary_10_1089_soro_2024_0025
crossref_primary_10_1109_TCI_2022_3177361
crossref_primary_10_1109_TIM_2025_3604919
crossref_primary_10_3390_s24113380
crossref_primary_10_1017_dce_2024_39
crossref_primary_10_1109_JSEN_2025_3592469
crossref_primary_10_1016_j_measurement_2024_115332
crossref_primary_10_3390_s25010076
crossref_primary_10_1109_LSENS_2023_3307077
crossref_primary_10_1109_TIM_2022_3220279
crossref_primary_10_1109_TASE_2022_3156184
crossref_primary_10_1109_TIM_2024_3436112
crossref_primary_10_1109_JSEN_2025_3590761
crossref_primary_10_1109_JSEN_2024_3371000
crossref_primary_10_1038_s41467_025_61838_3
crossref_primary_10_1109_ACCESS_2022_3203584
crossref_primary_10_1109_TIM_2025_3561379
crossref_primary_10_1109_TRO_2025_3593087
crossref_primary_10_1109_JSEN_2022_3163521
crossref_primary_10_1002_aisy_202300082
crossref_primary_10_1038_s41598_023_47036_5
crossref_primary_10_1111_jtxs_12778
crossref_primary_10_1016_j_sna_2024_115427
crossref_primary_10_1109_TIM_2025_3545509
crossref_primary_10_1002_aisy_202200050
crossref_primary_10_1109_TRO_2024_3508395
crossref_primary_10_1109_LSENS_2024_3388575
crossref_primary_10_1109_TRO_2024_3378174
crossref_primary_10_1109_JSEN_2024_3387067
crossref_primary_10_1002_admt_202501369
crossref_primary_10_1109_LRA_2025_3579014
crossref_primary_10_1109_TIM_2025_3546404
crossref_primary_10_1109_JSEN_2023_3338246
Cites_doi 10.1109/JSEN.2014.2375346
10.1038/s41598-017-07727-2
10.1088/0266-5611/16/5/321
10.1111/j.1445-2197.2005.03557.x
10.1115/1.4029474
10.1109/TOH.2009.47
10.1038/nmat4731
10.1109/LRA.2019.2930493
10.1109/LRA.2018.2800791
10.1038/srep39837
10.1016/0040-6090(94)90863-X
10.1080/0309190021000059687
10.1109/TRO.2011.2106330
10.1002/mp.12344
10.1038/nature25988
10.1088/0266-5611/28/9/095011
10.1109/TRO.2011.2132930
10.1038/s41598-019-45484-6
10.1137/110826692
10.1021/acsnano.8b03488
10.5617/jeb.3350
10.1109/ICRA40945.2020.9197361
10.1109/TRO.2009.2033627
10.1201/9781420034462
10.1016/j.jcp.2019.109119
10.1038/s41586-019-1234-z
10.1108/IR-06-2019-0132
10.1038/s41598-017-11663-6
10.1109/IST.2018.8577115
10.1109/JMEMS.2006.886021
10.1109/TMI.2018.2828303
10.1038/s42256-019-0095-3
10.1590/S0101-82052006000200002
10.1109/42.251118
10.1109/IROS40897.2019.8968532
10.1088/0967-3334/30/6/S03
10.1002/aisy.201900161
10.1109/ICRA.2019.8794276
10.1016/j.sna.2009.12.009
10.1016/j.sna.2009.08.015
10.1109/TMAG.2015.2488901
10.1109/TRO.2008.917006
10.1177/0278364912455441
10.1016/j.sna.2019.06.026
10.1088/0967-3334/27/5/S03
10.1126/scirobotics.aax2198
10.1088/0957-0233/7/3/005
10.3390/s130506578
10.1109/TII.2019.2895469
10.1109/TBME.2012.2188398
10.3390/a12050088
10.1109/TMI.2018.2816739
10.1038/s41592-019-0622-5
10.1016/j.ifacol.2018.07.114
10.1109/TRO.2011.2125310
10.1016/j.enganabound.2006.12.003
10.1109/CIBEC.2014.7020959
10.1109/ICSENS.2002.1037366
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2021.3060342
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1583
ExternalDocumentID 10_1109_TRO_2021_3060342
9376677
Genre orig-research
GrantInformation_xml – fundername: ICT R&D program of MSIP/IITP
  grantid: 2017-0-01724
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-ed6e005cf5baffb04d667876eafbde6804385246509fd1064835cd35a7153d343
IEDL.DBID RIE
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702631200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Mon Jun 30 03:37:29 EDT 2025
Sat Nov 29 01:47:27 EST 2025
Tue Nov 18 21:24:09 EST 2025
Wed Aug 27 02:27:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-ed6e005cf5baffb04d667876eafbde6804385246509fd1064835cd35a7153d343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1825-6325
0000-0002-3141-7859
0000-0002-9146-2686
0000-0001-5121-2917
PQID 2578236293
PQPubID 27625
PageCount 14
ParticipantIDs proquest_journals_2578236293
ieee_primary_9376677
crossref_primary_10_1109_TRO_2021_3060342
crossref_citationtrail_10_1109_TRO_2021_3060342
PublicationCentury 2000
PublicationDate 2021-Oct.
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref50
ref45
zhang (ref12) 2019; 19
wang (ref46) 2001; 13
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
shan (ref5) 0
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
doel (ref51) 2012; 34
kingma (ref60) 2014
ref24
ref26
ref25
ref63
ref22
ref21
holder (ref23) 2004
ref28
ref27
ref29
ref62
piacenza (ref20) 2018
ref61
References_xml – ident: ref21
  doi: 10.1109/JSEN.2014.2375346
– ident: ref31
  doi: 10.1038/s41598-017-07727-2
– ident: ref48
  doi: 10.1088/0266-5611/16/5/321
– ident: ref62
  doi: 10.1111/j.1445-2197.2005.03557.x
– ident: ref39
  doi: 10.1115/1.4029474
– ident: ref17
  doi: 10.1109/TOH.2009.47
– ident: ref1
  doi: 10.1038/nmat4731
– ident: ref14
  doi: 10.1109/LRA.2019.2930493
– ident: ref15
  doi: 10.1109/LRA.2018.2800791
– ident: ref25
  doi: 10.1038/srep39837
– ident: ref57
  doi: 10.1016/0040-6090(94)90863-X
– ident: ref42
  doi: 10.1080/0309190021000059687
– year: 2014
  ident: ref60
  article-title: Adam: A method for stochastic optimization
– ident: ref7
  doi: 10.1109/TRO.2011.2106330
– ident: ref56
  doi: 10.1002/mp.12344
– ident: ref53
  doi: 10.1038/nature25988
– ident: ref47
  doi: 10.1088/0266-5611/28/9/095011
– volume: 19
  year: 2019
  ident: ref12
  article-title: A piezoresistive tactile sensor for a large area employing neural network
  publication-title: " Sensors
– ident: ref8
  doi: 10.1109/TRO.2011.2132930
– ident: ref36
  doi: 10.1038/s41598-019-45484-6
– volume: 34
  start-page: 185
  year: 2012
  ident: ref51
  article-title: Adaptive and stochastic algorithms for electrical impedance tomography and dc resistivity problems with piecewise constant solutions and many measurements
  publication-title: SIAM J Sci Comput
  doi: 10.1137/110826692
– ident: ref38
  doi: 10.1021/acsnano.8b03488
– ident: ref44
  doi: 10.5617/jeb.3350
– ident: ref33
  doi: 10.1109/ICRA40945.2020.9197361
– ident: ref2
  doi: 10.1109/TRO.2009.2033627
– year: 2004
  ident: ref23
  publication-title: Electrical Impedance Tomography Methods History and Applications
  doi: 10.1201/9781420034462
– ident: ref30
  doi: 10.1016/j.jcp.2019.109119
– year: 2018
  ident: ref20
  article-title: Touch sensors with overlapping signals: Concept investigation on planar sensors with resistive or optical transduction
– ident: ref3
  doi: 10.1038/s41586-019-1234-z
– ident: ref61
  doi: 10.1108/IR-06-2019-0132
– ident: ref19
  doi: 10.1038/s41598-017-11663-6
– ident: ref32
  doi: 10.1109/IST.2018.8577115
– ident: ref9
  doi: 10.1109/JMEMS.2006.886021
– ident: ref35
  doi: 10.1109/TMI.2018.2828303
– ident: ref54
  doi: 10.1038/s42256-019-0095-3
– ident: ref58
  doi: 10.1590/S0101-82052006000200002
– ident: ref45
  doi: 10.1109/42.251118
– ident: ref34
  doi: 10.1109/IROS40897.2019.8968532
– ident: ref24
  doi: 10.1088/0967-3334/30/6/S03
– start-page: 1818
  year: 0
  ident: ref5
  article-title: The design and fabrication of a flexible three-dimensional force sensor skin
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst
– ident: ref22
  doi: 10.1002/aisy.201900161
– ident: ref41
  doi: 10.1109/ICRA.2019.8794276
– ident: ref13
  doi: 10.1016/j.sna.2009.12.009
– ident: ref6
  doi: 10.1016/j.sna.2009.08.015
– ident: ref27
  doi: 10.1109/TMAG.2015.2488901
– ident: ref4
  doi: 10.1109/TRO.2008.917006
– ident: ref63
  doi: 10.1177/0278364912455441
– ident: ref10
  doi: 10.1016/j.sna.2019.06.026
– ident: ref59
  doi: 10.1088/0967-3334/27/5/S03
– ident: ref16
  doi: 10.1126/scirobotics.aax2198
– ident: ref43
  doi: 10.1088/0957-0233/7/3/005
– ident: ref18
  doi: 10.3390/s130506578
– ident: ref50
  doi: 10.1109/TII.2019.2895469
– ident: ref52
  doi: 10.1109/TBME.2012.2188398
– volume: 13
  year: 2001
  ident: ref46
  article-title: Inverse solutions for electrical impedance tomography based on conjugate gradients methods
  publication-title: Meas Sci Technol
– ident: ref37
  doi: 10.3390/a12050088
– ident: ref49
  doi: 10.1109/TMI.2018.2816739
– ident: ref55
  doi: 10.1038/s41592-019-0622-5
– ident: ref29
  doi: 10.1016/j.ifacol.2018.07.114
– ident: ref40
  doi: 10.1109/TRO.2011.2125310
– ident: ref26
  doi: 10.1016/j.enganabound.2006.12.003
– ident: ref28
  doi: 10.1109/CIBEC.2014.7020959
– ident: ref11
  doi: 10.1109/ICSENS.2002.1037366
SSID ssj0024903
Score 2.6124716
Snippet Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1570
SubjectTerms Artificial intelligence (AI) based methods
Artificial neural networks
Computational efficiency
Conductivity
deep learning in robotics and automation
Discrimination
Electrical impedance
Electrodes
force and tactile sensing
Hardness tests
Image reconstruction
Indentation
Neural networks
Reconstruction
Robot sensing systems
Sensitivity
Sensors
Spatial resolution
Tactile sensors (robotics)
Tomography
Touch
Voltage measurement
Title Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing
URI https://ieeexplore.ieee.org/document/9376677
https://www.proquest.com/docview/2578236293
Volume 37
WOSCitedRecordID wos000702631200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hE0ezBi4mF0m277REVoomiQUy4Ne3u1pAgJTz8_c5sC2o0Jt562O1jv-7M7M7s9wGce9JLWo5MLdvlieW2qAiAO9xC52ULEQcydHKxCdHrBcNh-FSCy_VZGK21KT7TDbo0uXyVySVtlTXRlfq-EGUoCyHys1qfvHqhUUEmRjGL22GwSknaYXPQf8SFoNNqYHhMjHffXJDRVPlhiI136e787712YbuIIlk7h30PSnqyD1tfuAWrsLzResqIewMb9vJib3aFPkuxjpG-IXTYHUbNioBng-wtZ68eSfZMVe2TV_Zg5KXNxjvD4JbdU9m41cY4k_WzJMOHswEdjBjrVZcDeOl2Bte3VqGxYEnuiYWlla9xIsrUS-I0TWxX4ZeghdRxmijtB5Qo9ByXePZShctHFyM2qbgXCzSVirv8ECqTbKKPgInYdmJHEKEZaZiI0PeESLgMUpznQgY1aK6GPZIFATnpYIwjsxCxwwiBigioqACqBhfrHtOcfOOPtlUCZt2uwKQG9RWyUTE75xGZKQc9d8iPf-91Apt077xorw6VxWypT2FDvi9G89mZ-fE-ABsu1Ak
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQwIOvBGDATlwQaKsS9qmPfIUE9tAUCRuVZukaBKsCDZ-P3baDRAIiVsPidL2S2wndr4PYN9XftbiKndcT2SO16IiAMGFg87LlTINVcRLsQnZ64UPD9FNDQ4nd2GMMbb4zBzRo83l60KN6Kisia40CKScghnf83irvK31yawXWR1k4hRzhBuF46SkGzXj22vcCvLWEQbIxHn3zQlZVZUfptj6l4ul_73ZMixWcSQ7LoFfgZoZrMLCF3bBNRidGfPCiH0DG_bKcm92gl5Ls3MrfkP4sDbGzZqgZ3HxXPJX9xW7o7r2wSPrWoFpe_TOMLxlHSocd44x0mS3RVbg4CymqxFPZtxlHe4vzuPTS6dSWXCU8OXQMTowuBRV7mdpnmeup_FL0EaaNM-0CUJKFfrcI6a9XOMG0sOYTWnhpxKNpRae2IDpQTEwm8Bk6vKUS6I0IxUTGQW-lJlQYY4rXaqwDs3xb09URUFOShhPid2KuFGCQCUEVFIBVYeDSY-Xkn7jj7ZrBMykXYVJHRpjZJNqfb4lZKg4-u5IbP3eaw_mLuNuJ-m0e1fbME_jlCV8DZgevo7MDsyq92H_7XXXTsIPStLXUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Based+Electrical+Impedance+Tomographic+Sensing+Methodology+for+Large-Area+Robotic+Tactile+Sensing&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Park%2C+Hyunkyu&rft.au=Park%2C+Kyungseo&rft.au=Mo%2C+Sangwoo&rft.au=Jung%2C+Kim&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=37&rft.issue=5&rft.spage=1570&rft_id=info:doi/10.1109%2FTRO.2021.3060342&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon