Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing
Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation, including durability, large-area scalability, and low fabrication cost, but the degradation of a tactile spatial resolution has remained challeng...
Uloženo v:
| Vydáno v: | IEEE transactions on robotics Ročník 37; číslo 5; s. 1570 - 1583 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1552-3098, 1941-0468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation, including durability, large-area scalability, and low fabrication cost, but the degradation of a tactile spatial resolution has remained challenging. This article describes a deep neural network based EIT reconstruction framework, the EIT neural network (EIT-NN), alleviating this tradeoff between tactile sensing performance and hardware simplicity. EIT-NN learns a computationally efficient, nonlinear reconstruction attribute, achieving high-resolution tactile sensation and well-generalized reconstruction capability to address arbitrary complex touch modalities. We train EIT-NN by presenting a sim-to-real dataset synthesis strategy for computationally efficient generalizability. Furthermore, we propose a spatial sensitivity aware mean-squared error loss function, which uses an intrinsic spatial sensitivity of the sensor to guarantee a well-posed EIT operation. We validate an outperformance of EIT-NN against conventional EIT sensing methods by conducting a simulation study, a single-touch indentation test, and a two-point discrimination test. The results show improved spatial resolution, sensitivity, and localization accuracy. The beneficial features of the generalized sensing of EIT-NN were demonstrated by examining touch modality discrimination performance. |
|---|---|
| AbstractList | Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation, including durability, large-area scalability, and low fabrication cost, but the degradation of a tactile spatial resolution has remained challenging. This article describes a deep neural network based EIT reconstruction framework, the EIT neural network (EIT-NN), alleviating this tradeoff between tactile sensing performance and hardware simplicity. EIT-NN learns a computationally efficient, nonlinear reconstruction attribute, achieving high-resolution tactile sensation and well-generalized reconstruction capability to address arbitrary complex touch modalities. We train EIT-NN by presenting a sim-to-real dataset synthesis strategy for computationally efficient generalizability. Furthermore, we propose a spatial sensitivity aware mean-squared error loss function, which uses an intrinsic spatial sensitivity of the sensor to guarantee a well-posed EIT operation. We validate an outperformance of EIT-NN against conventional EIT sensing methods by conducting a simulation study, a single-touch indentation test, and a two-point discrimination test. The results show improved spatial resolution, sensitivity, and localization accuracy. The beneficial features of the generalized sensing of EIT-NN were demonstrated by examining touch modality discrimination performance. |
| Author | Park, Kyungseo Park, Hyunkyu Kim, Jung Mo, Sangwoo |
| Author_xml | – sequence: 1 givenname: Hyunkyu orcidid: 0000-0001-5121-2917 surname: Park fullname: Park, Hyunkyu email: hkpark93@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea – sequence: 2 givenname: Kyungseo orcidid: 0000-0002-9146-2686 surname: Park fullname: Park, Kyungseo email: bbq2686@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea – sequence: 3 givenname: Sangwoo orcidid: 0000-0002-3141-7859 surname: Mo fullname: Mo, Sangwoo email: swmo@kaist.ac.kr organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea – sequence: 4 givenname: Jung orcidid: 0000-0002-1825-6325 surname: Kim fullname: Kim, Jung email: jungkim@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea |
| BookMark | eNp9kE1rGzEQhkVJoYnbe6EXQc_rjD539-g6TmtwGkjd8yJLs47S9WqjlQn-95VxkkMOOc3APM8M816Qsz70SMhXBlPGoL5c391OOXA2FaBBSP6BnLNasgKkrs5yrxQvBNTVJ3Ixjg8AXNYgzsn-CnGgv3EfTZdLegrxH_1hRnR00aFN0ds8WO4GdKa3SNdhF7bRDPfe0j_Yj77f0htM98GFLmwPtA2RrkzcYjGLaOhd2ISU0bWxyXf4onwmH1vTjfjluU7I3-vFev6rWN3-XM5nq8IKVaYCnUYAZVu1MW27Aem0LqtSo2k3DnUFUlSKS62gbh0DLSuhrBPKlEwJJ6SYkO-nvUMMj3scU_MQ9rHPJxuuyooLzWuRKX2ibAzjGLFtrE8m-dCnaHzXMGiOETc54uYYcfMccRbhjThEvzPx8J7y7aR4RHzFa1Hmz0rxH43YiSM |
| CODEN | ITREAE |
| CitedBy_id | crossref_primary_10_3390_mi15121513 crossref_primary_10_1109_JSEN_2022_3144038 crossref_primary_10_1109_ACCESS_2023_3276444 crossref_primary_10_1007_s11432_023_4130_3 crossref_primary_10_1016_j_neunet_2024_106810 crossref_primary_10_1109_JSEN_2024_3447099 crossref_primary_10_1109_JSEN_2022_3155125 crossref_primary_10_1109_LRA_2024_3417699 crossref_primary_10_1002_aisy_202400790 crossref_primary_10_1002_admt_202401280 crossref_primary_10_3389_fsens_2025_1598903 crossref_primary_10_1109_TASE_2025_3585040 crossref_primary_10_1109_LRA_2023_3240368 crossref_primary_10_1126_scirobotics_abm7187 crossref_primary_10_1109_JSEN_2024_3408158 crossref_primary_10_1109_TIM_2024_3383886 crossref_primary_10_1109_TOH_2024_3371092 crossref_primary_10_1126_sciadv_adv2124 crossref_primary_10_1109_JSEN_2025_3557949 crossref_primary_10_1089_soro_2024_0025 crossref_primary_10_1109_TCI_2022_3177361 crossref_primary_10_1109_TIM_2025_3604919 crossref_primary_10_3390_s24113380 crossref_primary_10_1017_dce_2024_39 crossref_primary_10_1109_JSEN_2025_3592469 crossref_primary_10_1016_j_measurement_2024_115332 crossref_primary_10_3390_s25010076 crossref_primary_10_1109_LSENS_2023_3307077 crossref_primary_10_1109_TIM_2022_3220279 crossref_primary_10_1109_TASE_2022_3156184 crossref_primary_10_1109_TIM_2024_3436112 crossref_primary_10_1109_JSEN_2025_3590761 crossref_primary_10_1109_JSEN_2024_3371000 crossref_primary_10_1038_s41467_025_61838_3 crossref_primary_10_1109_ACCESS_2022_3203584 crossref_primary_10_1109_TIM_2025_3561379 crossref_primary_10_1109_TRO_2025_3593087 crossref_primary_10_1109_JSEN_2022_3163521 crossref_primary_10_1002_aisy_202300082 crossref_primary_10_1038_s41598_023_47036_5 crossref_primary_10_1111_jtxs_12778 crossref_primary_10_1016_j_sna_2024_115427 crossref_primary_10_1109_TIM_2025_3545509 crossref_primary_10_1002_aisy_202200050 crossref_primary_10_1109_TRO_2024_3508395 crossref_primary_10_1109_LSENS_2024_3388575 crossref_primary_10_1109_TRO_2024_3378174 crossref_primary_10_1109_JSEN_2024_3387067 crossref_primary_10_1002_admt_202501369 crossref_primary_10_1109_LRA_2025_3579014 crossref_primary_10_1109_TIM_2025_3546404 crossref_primary_10_1109_JSEN_2023_3338246 |
| Cites_doi | 10.1109/JSEN.2014.2375346 10.1038/s41598-017-07727-2 10.1088/0266-5611/16/5/321 10.1111/j.1445-2197.2005.03557.x 10.1115/1.4029474 10.1109/TOH.2009.47 10.1038/nmat4731 10.1109/LRA.2019.2930493 10.1109/LRA.2018.2800791 10.1038/srep39837 10.1016/0040-6090(94)90863-X 10.1080/0309190021000059687 10.1109/TRO.2011.2106330 10.1002/mp.12344 10.1038/nature25988 10.1088/0266-5611/28/9/095011 10.1109/TRO.2011.2132930 10.1038/s41598-019-45484-6 10.1137/110826692 10.1021/acsnano.8b03488 10.5617/jeb.3350 10.1109/ICRA40945.2020.9197361 10.1109/TRO.2009.2033627 10.1201/9781420034462 10.1016/j.jcp.2019.109119 10.1038/s41586-019-1234-z 10.1108/IR-06-2019-0132 10.1038/s41598-017-11663-6 10.1109/IST.2018.8577115 10.1109/JMEMS.2006.886021 10.1109/TMI.2018.2828303 10.1038/s42256-019-0095-3 10.1590/S0101-82052006000200002 10.1109/42.251118 10.1109/IROS40897.2019.8968532 10.1088/0967-3334/30/6/S03 10.1002/aisy.201900161 10.1109/ICRA.2019.8794276 10.1016/j.sna.2009.12.009 10.1016/j.sna.2009.08.015 10.1109/TMAG.2015.2488901 10.1109/TRO.2008.917006 10.1177/0278364912455441 10.1016/j.sna.2019.06.026 10.1088/0967-3334/27/5/S03 10.1126/scirobotics.aax2198 10.1088/0957-0233/7/3/005 10.3390/s130506578 10.1109/TII.2019.2895469 10.1109/TBME.2012.2188398 10.3390/a12050088 10.1109/TMI.2018.2816739 10.1038/s41592-019-0622-5 10.1016/j.ifacol.2018.07.114 10.1109/TRO.2011.2125310 10.1016/j.enganabound.2006.12.003 10.1109/CIBEC.2014.7020959 10.1109/ICSENS.2002.1037366 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TRO.2021.3060342 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0468 |
| EndPage | 1583 |
| ExternalDocumentID | 10_1109_TRO_2021_3060342 9376677 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ICT R&D program of MSIP/IITP grantid: 2017-0-01724 |
| GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-ed6e005cf5baffb04d667876eafbde6804385246509fd1064835cd35a7153d343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702631200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1552-3098 |
| IngestDate | Mon Jun 30 03:37:29 EDT 2025 Sat Nov 29 01:47:27 EST 2025 Tue Nov 18 21:24:09 EST 2025 Wed Aug 27 02:27:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-ed6e005cf5baffb04d667876eafbde6804385246509fd1064835cd35a7153d343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1825-6325 0000-0002-3141-7859 0000-0002-9146-2686 0000-0001-5121-2917 |
| PQID | 2578236293 |
| PQPubID | 27625 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2578236293 ieee_primary_9376677 crossref_primary_10_1109_TRO_2021_3060342 crossref_citationtrail_10_1109_TRO_2021_3060342 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct. 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on robotics |
| PublicationTitleAbbrev | TRO |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref50 ref45 zhang (ref12) 2019; 19 wang (ref46) 2001; 13 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref40 shan (ref5) 0 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 doel (ref51) 2012; 34 kingma (ref60) 2014 ref24 ref26 ref25 ref63 ref22 ref21 holder (ref23) 2004 ref28 ref27 ref29 ref62 piacenza (ref20) 2018 ref61 |
| References_xml | – ident: ref21 doi: 10.1109/JSEN.2014.2375346 – ident: ref31 doi: 10.1038/s41598-017-07727-2 – ident: ref48 doi: 10.1088/0266-5611/16/5/321 – ident: ref62 doi: 10.1111/j.1445-2197.2005.03557.x – ident: ref39 doi: 10.1115/1.4029474 – ident: ref17 doi: 10.1109/TOH.2009.47 – ident: ref1 doi: 10.1038/nmat4731 – ident: ref14 doi: 10.1109/LRA.2019.2930493 – ident: ref15 doi: 10.1109/LRA.2018.2800791 – ident: ref25 doi: 10.1038/srep39837 – ident: ref57 doi: 10.1016/0040-6090(94)90863-X – ident: ref42 doi: 10.1080/0309190021000059687 – year: 2014 ident: ref60 article-title: Adam: A method for stochastic optimization – ident: ref7 doi: 10.1109/TRO.2011.2106330 – ident: ref56 doi: 10.1002/mp.12344 – ident: ref53 doi: 10.1038/nature25988 – ident: ref47 doi: 10.1088/0266-5611/28/9/095011 – volume: 19 year: 2019 ident: ref12 article-title: A piezoresistive tactile sensor for a large area employing neural network publication-title: " Sensors – ident: ref8 doi: 10.1109/TRO.2011.2132930 – ident: ref36 doi: 10.1038/s41598-019-45484-6 – volume: 34 start-page: 185 year: 2012 ident: ref51 article-title: Adaptive and stochastic algorithms for electrical impedance tomography and dc resistivity problems with piecewise constant solutions and many measurements publication-title: SIAM J Sci Comput doi: 10.1137/110826692 – ident: ref38 doi: 10.1021/acsnano.8b03488 – ident: ref44 doi: 10.5617/jeb.3350 – ident: ref33 doi: 10.1109/ICRA40945.2020.9197361 – ident: ref2 doi: 10.1109/TRO.2009.2033627 – year: 2004 ident: ref23 publication-title: Electrical Impedance Tomography Methods History and Applications doi: 10.1201/9781420034462 – ident: ref30 doi: 10.1016/j.jcp.2019.109119 – year: 2018 ident: ref20 article-title: Touch sensors with overlapping signals: Concept investigation on planar sensors with resistive or optical transduction – ident: ref3 doi: 10.1038/s41586-019-1234-z – ident: ref61 doi: 10.1108/IR-06-2019-0132 – ident: ref19 doi: 10.1038/s41598-017-11663-6 – ident: ref32 doi: 10.1109/IST.2018.8577115 – ident: ref9 doi: 10.1109/JMEMS.2006.886021 – ident: ref35 doi: 10.1109/TMI.2018.2828303 – ident: ref54 doi: 10.1038/s42256-019-0095-3 – ident: ref58 doi: 10.1590/S0101-82052006000200002 – ident: ref45 doi: 10.1109/42.251118 – ident: ref34 doi: 10.1109/IROS40897.2019.8968532 – ident: ref24 doi: 10.1088/0967-3334/30/6/S03 – start-page: 1818 year: 0 ident: ref5 article-title: The design and fabrication of a flexible three-dimensional force sensor skin publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst – ident: ref22 doi: 10.1002/aisy.201900161 – ident: ref41 doi: 10.1109/ICRA.2019.8794276 – ident: ref13 doi: 10.1016/j.sna.2009.12.009 – ident: ref6 doi: 10.1016/j.sna.2009.08.015 – ident: ref27 doi: 10.1109/TMAG.2015.2488901 – ident: ref4 doi: 10.1109/TRO.2008.917006 – ident: ref63 doi: 10.1177/0278364912455441 – ident: ref10 doi: 10.1016/j.sna.2019.06.026 – ident: ref59 doi: 10.1088/0967-3334/27/5/S03 – ident: ref16 doi: 10.1126/scirobotics.aax2198 – ident: ref43 doi: 10.1088/0957-0233/7/3/005 – ident: ref18 doi: 10.3390/s130506578 – ident: ref50 doi: 10.1109/TII.2019.2895469 – ident: ref52 doi: 10.1109/TBME.2012.2188398 – volume: 13 year: 2001 ident: ref46 article-title: Inverse solutions for electrical impedance tomography based on conjugate gradients methods publication-title: Meas Sci Technol – ident: ref37 doi: 10.3390/a12050088 – ident: ref49 doi: 10.1109/TMI.2018.2816739 – ident: ref55 doi: 10.1038/s41592-019-0622-5 – ident: ref29 doi: 10.1016/j.ifacol.2018.07.114 – ident: ref40 doi: 10.1109/TRO.2011.2125310 – ident: ref26 doi: 10.1016/j.enganabound.2006.12.003 – ident: ref28 doi: 10.1109/CIBEC.2014.7020959 – ident: ref11 doi: 10.1109/ICSENS.2002.1037366 |
| SSID | ssj0024903 |
| Score | 2.6124716 |
| Snippet | Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1570 |
| SubjectTerms | Artificial intelligence (AI) based methods Artificial neural networks Computational efficiency Conductivity deep learning in robotics and automation Discrimination Electrical impedance Electrodes force and tactile sensing Hardness tests Image reconstruction Indentation Neural networks Reconstruction Robot sensing systems Sensitivity Sensors Spatial resolution Tactile sensors (robotics) Tomography Touch Voltage measurement |
| Title | Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing |
| URI | https://ieeexplore.ieee.org/document/9376677 https://www.proquest.com/docview/2578236293 |
| Volume | 37 |
| WOSCitedRecordID | wos000702631200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Libary (IEL) customDbUrl: eissn: 1941-0468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024903 issn: 1552-3098 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0B4gAHdkTZ5AMXJNKmcRLHR5YikKAgKIhbFC9BlUpTdeH7mXHSAgIhccvBzuIXz-KZeQNwhGo0yznXntHcoIMSGy_JE99rhoEJlFJGOiql5xvRbicvL_J-Dk5mtTDWWpd8Zut06WL5ptATOiproCqNYyHmYV4IUdZqffLqSdcFmRjFPO7LZBqS9GWj83CHjmDQrKN5TIx331SQ66nyQxA77XK5-r_3WoOVyopkpyXs6zBn-xuw_IVbcBMmF9YOGHFv4MB2mezNzlBnGdZyrW8IHXaNVrMh4FmneCvZq7uaPVJWe_-V3br20u7gnaFxy24obdw7RTuTPRSqwIezDhVG9Ox0yhY8XbY651de1WPB0zwSY8-a2OJG1HmksjxXfmjwS1BC2ixXxsYJBQqjICSevdyg-xiixaYNjzKBotLwkG_DQr_o2x1gsQk4tzaLsigOlVZZnAeKCy5DqZtK-zVoTJc91RUBOfXB6KXOEfFlikClBFRaAVWD49mMQUm-8cfYTQJmNq7CpAb7U2TTaneOUhJTAWpuyXd_n7UHS3TvMmlvHxbGw4k9gEX9Pu6Ohofux_sAewfWiQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBHVFWH7ggEZrGzuIjq0CUgiAgblG8BCFBg6Dl-5lx0gICIXHLYUZO8uxZ7PEbgG10o3nBufaM5gYTlMh4SZH4XksEJlBKGemolO7acaeT3N_LqxHYHd6Fsda64jO7R4_uLN-Uuk9bZU10pVEUx6MwHgoRtKrbWp_MetL1QSZOMY_7MhkcSvqymV5fYioYtPYwQCbOu29OyHVV-WGKnX85mf3fm83BTB1Hsv0K-HkYsd0FmP7CLrgI_SNrXxixb6Bgpyr3ZgfotQw7ds1vCB92hnGzIehZWj5X_NWPmt1QXXv3gV24BtNu651heMvaVDju7WOkya5LVeLgLKWrEU92oLIEtyfH6eGpV3dZ8DQP455nTWRxKeoiVHlRKF8Y_BK0kTYvlLFRQkeFYSCIaa8wmEAKjNm04WEeo7E0XPBlGOuWXbsCLDIB59bmYR5GQmmVR0WgeMylkLqltN-A5uC3Z7qmIKdOGE-ZS0V8mSFQGQGV1UA1YGeo8VLRb_whu0jADOVqTBqwPkA2q9fnW0aGKkDfLfnq71pbMHmaXrSz9lnnfA2maJyqhG8dxnqvfbsBE_q99_j2uukm4QfK7dnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Based+Electrical+Impedance+Tomographic+Sensing+Methodology+for+Large-Area+Robotic+Tactile+Sensing&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Park%2C+Hyunkyu&rft.au=Park%2C+Kyungseo&rft.au=Mo%2C+Sangwoo&rft.au=Kim%2C+Jung&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=37&rft.issue=5&rft.spage=1570&rft.epage=1583&rft_id=info:doi/10.1109%2FTRO.2021.3060342&rft.externalDocID=9376677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |