A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks

SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies the operation of switches in the data plane. The good programmability of SDN infrastructure also improves network feasibility. To alleviate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications Jg. 25; H. 4; S. 74 - 81
Hauptverfasser: Mao, Bomin, Tang, Fengxiao, Fadlullah, Zubair Md, Kato, Nei, Akashi, Osamu, Inoue, Takeru, Mizutani, Kimihiro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1284, 1558-0687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies the operation of switches in the data plane. The good programmability of SDN infrastructure also improves network feasibility. To alleviate the burden of the explosive growth in network traffic, in this article we propose a non-supervised deep learning based routing strategy running in the SDN controller. In our proposal, we utilize the CNNs as our deep learning architecture, and the controller runs the CNNs to choose the best path combination for packet forwarding in switches. More importantly, in our proposal, the controller collects the network traffic trace and periodically trains the CNNs to adapt them to the changing traffic patterns. Simulation results demonstrate that our proposal is able to retain learning from previous experiences and outperform conventional routing protocols.
AbstractList SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies the operation of switches in the data plane. The good programmability of SDN infrastructure also improves network feasibility. To alleviate the burden of the explosive growth in network traffic, in this article we propose a non-supervised deep learning based routing strategy running in the SDN controller. In our proposal, we utilize the CNNs as our deep learning architecture, and the controller runs the CNNs to choose the best path combination for packet forwarding in switches. More importantly, in our proposal, the controller collects the network traffic trace and periodically trains the CNNs to adapt them to the changing traffic patterns. Simulation results demonstrate that our proposal is able to retain learning from previous experiences and outperform conventional routing protocols.
Author Tang, Fengxiao
Mizutani, Kimihiro
Kato, Nei
Fadlullah, Zubair Md
Akashi, Osamu
Mao, Bomin
Inoue, Takeru
Author_xml – sequence: 1
  givenname: Bomin
  surname: Mao
  fullname: Mao, Bomin
– sequence: 2
  givenname: Fengxiao
  surname: Tang
  fullname: Tang, Fengxiao
– sequence: 3
  givenname: Zubair Md
  surname: Fadlullah
  fullname: Fadlullah, Zubair Md
– sequence: 4
  givenname: Nei
  surname: Kato
  fullname: Kato, Nei
– sequence: 5
  givenname: Osamu
  surname: Akashi
  fullname: Akashi, Osamu
– sequence: 6
  givenname: Takeru
  surname: Inoue
  fullname: Inoue, Takeru
– sequence: 7
  givenname: Kimihiro
  surname: Mizutani
  fullname: Mizutani, Kimihiro
BookMark eNp9kDtPwzAQgC0EEm1hR2KJxJxiJ_EjYwlPqS1DizpGTnIGlxAHO23Fv8dRCwMDy93pdN-d7hui48Y0gNAFwWNCcHo9W2XjCBMxJhzjhPAjNCCUihAzwY_7OmYhiURyiobOrTEmnFE2QO0kmJst1D424WLTgt1qB1VwC9CGU5C20c1reCP73hy6nbHvwdJKpXQZZKbprKmDGXRvpgqUscHCqG4nLXhe6cYzK22hBud-YHeGTpSsHZwf8gi93N8ts8dw-vzwlE2mYRlT3oVQxJWKCpwmqihoiUURlZWQaSpS4X-hquRFmjJRgSBVRHkR8aRQSYmViGPPxSN0td_bWvO5Adfla7OxjT-ZRwR7RYIx6qfwfqq0xjkLKm-t_pD2Kyc4773m3mvee80PXj3C_iCl7mSnexlS1_-Bl3tQA8DvHZHQhHESfwNSO4d-
CODEN IWCEAS
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2981130
crossref_primary_10_1109_JIOT_2022_3231329
crossref_primary_10_1109_TVT_2019_2959410
crossref_primary_10_1155_2022_3866143
crossref_primary_10_1007_s11277_021_08576_z
crossref_primary_10_1109_LCOMM_2019_2932988
crossref_primary_10_1007_s13198_023_02144_3
crossref_primary_10_1109_TVT_2020_3005120
crossref_primary_10_1109_ACCESS_2020_3008721
crossref_primary_10_1109_MCOM_001_1800923
crossref_primary_10_1109_TCCN_2021_3089178
crossref_primary_10_1109_TVT_2019_2900460
crossref_primary_10_1109_JIOT_2022_3210703
crossref_primary_10_1109_JIOT_2022_3143829
crossref_primary_10_1007_s13198_021_01176_x
crossref_primary_10_1109_JIOT_2024_3407512
crossref_primary_10_1109_TVT_2020_2972806
crossref_primary_10_1007_s12083_021_01185_4
crossref_primary_10_1109_ACCESS_2019_2934111
crossref_primary_10_1109_ACCESS_2024_3469583
crossref_primary_10_1109_TVT_2020_3047877
crossref_primary_10_1109_ACCESS_2024_3362353
crossref_primary_10_3390_electronics14081689
crossref_primary_10_1109_ACCESS_2020_2975088
crossref_primary_10_1155_2022_8777890
crossref_primary_10_1007_s11277_021_09160_1
crossref_primary_10_1109_TCCN_2023_3235719
crossref_primary_10_1109_TVT_2019_2911544
crossref_primary_10_1109_TVT_2020_3006229
crossref_primary_10_1109_TVT_2020_3003478
crossref_primary_10_1109_JIOT_2021_3118471
crossref_primary_10_1109_JIOT_2022_3218780
crossref_primary_10_1016_j_cosrev_2023_100572
crossref_primary_10_1109_JIOT_2023_3309832
crossref_primary_10_1109_TC_2018_2874483
crossref_primary_10_1109_TNSM_2025_3567654
crossref_primary_10_1109_TVT_2020_3006262
crossref_primary_10_1109_ACCESS_2019_2932047
crossref_primary_10_1080_1448837X_2024_2398276
crossref_primary_10_1109_TVT_2019_2905622
crossref_primary_10_1016_j_comcom_2020_05_040
crossref_primary_10_1109_TETC_2019_2899407
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_1109_ACCESS_2024_3424418
crossref_primary_10_1109_TVT_2019_2951594
crossref_primary_10_1109_TVT_2020_3019687
crossref_primary_10_1016_j_engappai_2022_105472
crossref_primary_10_1002_dac_5455
crossref_primary_10_1109_TWC_2021_3052222
crossref_primary_10_1109_ACCESS_2020_3032469
crossref_primary_10_3390_eng4020063
crossref_primary_10_1007_s10586_021_03402_4
crossref_primary_10_1109_TVT_2020_3022043
crossref_primary_10_3390_app12041951
crossref_primary_10_1109_TVT_2020_3001301
crossref_primary_10_1109_JIOT_2021_3089334
crossref_primary_10_1109_TVT_2020_2976958
crossref_primary_10_1109_TWC_2023_3246082
crossref_primary_10_1002_sat_1482
crossref_primary_10_1007_s13198_023_02168_9
crossref_primary_10_1109_JIOT_2020_3042901
crossref_primary_10_1109_TNSM_2019_2927886
crossref_primary_10_1109_ACCESS_2022_3153521
crossref_primary_10_1109_JIOT_2018_2876152
crossref_primary_10_1109_JIOT_2020_3047079
crossref_primary_10_1109_ACCESS_2020_2995511
crossref_primary_10_1016_j_jnca_2024_104051
crossref_primary_10_1109_MWC_001_1900489
crossref_primary_10_1109_MNET_001_1800510
crossref_primary_10_1109_TVT_2020_2993262
crossref_primary_10_1109_TVT_2020_3029864
crossref_primary_10_1109_COMST_2021_3130901
crossref_primary_10_1109_TVT_2020_2980905
crossref_primary_10_1109_TVT_2020_3036934
crossref_primary_10_1109_JSYST_2020_2996185
crossref_primary_10_1109_JIOT_2023_3256357
crossref_primary_10_1109_TNSM_2022_3164335
crossref_primary_10_1109_COMST_2021_3053118
crossref_primary_10_1109_COMST_2023_3244674
crossref_primary_10_1109_TETC_2018_2847296
crossref_primary_10_1109_TVT_2022_3232567
crossref_primary_10_1109_ACCESS_2019_2928564
crossref_primary_10_1109_ACCESS_2020_3022291
crossref_primary_10_1109_JSTARS_2020_2988477
crossref_primary_10_1109_TVT_2020_3009746
Cites_doi 10.1109/MNET.2017.1700208
10.1038/nature14539
10.1109/MNET.2015.7166190
10.1109/MWC.2016.7422408
10.1109/TC.2017.2709742
10.1145/1355734.1355746
10.1109/MWC.2017.1700244
10.1109/MCOM.2016.1600169CM
10.1038/nature24270
10.1109/MNET.2015.7166187
10.1109/MNET.2016.7474344
10.1109/MWC.2016.1600317WC
10.1109/COMST.2017.2707140
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/MWC.2018.1700417
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0687
EndPage 81
ExternalDocumentID 10_1109_MWC_2018_1700417
8454671
Genre orig-research
GroupedDBID -~X
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
RIG
ID FETCH-LOGICAL-c357t-eb3df2b094fbb5c08b2cd8a998981535fc7b9968de81d257b274bf4c0f8332b03
IEDL.DBID RIE
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443979200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1284
IngestDate Mon Jun 30 10:22:05 EDT 2025
Sat Nov 29 03:07:40 EST 2025
Tue Nov 18 21:09:54 EST 2025
Wed Aug 27 02:56:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-eb3df2b094fbb5c08b2cd8a998981535fc7b9968de81d257b274bf4c0f8332b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2100048665
PQPubID 75748
PageCount 8
ParticipantIDs crossref_primary_10_1109_MWC_2018_1700417
crossref_citationtrail_10_1109_MWC_2018_1700417
ieee_primary_8454671
proquest_journals_2100048665
PublicationCentury 2000
PublicationDate 2018-AUGUST
2018-8-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-AUGUST
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE wireless communications
PublicationTitleAbbrev WC-M
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref11
zhou (ref3) 2018
ref10
lecun (ref12) 2015; 521
ref2
ref1
ref8
ref7
ref9
ref4
ref6
ref5
niyaz (ref14) 2016
silver (ref15) 2017; 550
References_xml – year: 2018
  ident: ref3
  publication-title: State of the Art Taxonomy and Open Issues on NOMA in Cognitive Radio Networks
– ident: ref7
  doi: 10.1109/MNET.2017.1700208
– volume: 521
  start-page: 436
  year: 2015
  ident: ref12
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref8
  doi: 10.1109/MNET.2015.7166190
– ident: ref2
  doi: 10.1109/MWC.2016.7422408
– year: 2016
  ident: ref14
  publication-title: A deep learning based ddos detection system in software-defined networking (sdn)
– ident: ref10
  doi: 10.1109/TC.2017.2709742
– ident: ref4
  doi: 10.1145/1355734.1355746
– ident: ref11
  doi: 10.1109/MWC.2017.1700244
– ident: ref1
  doi: 10.1109/MCOM.2016.1600169CM
– volume: 550
  start-page: 354
  year: 2017
  ident: ref15
  article-title: Mastering the Game of Go without Human Knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: ref6
  doi: 10.1109/MNET.2015.7166187
– ident: ref5
  doi: 10.1109/MNET.2016.7474344
– ident: ref9
  doi: 10.1109/MWC.2016.1600317WC
– ident: ref13
  doi: 10.1109/COMST.2017.2707140
SSID ssj0017656
Score 2.5625303
Snippet SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Communications traffic
Computer architecture
Control systems
Deep learning
Machine learning
Network management systems
Protocol (computers)
Routing protocols
Supervised learning
Switches
Switching theory
Traffic control
Training data
Wireless networks
Title A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks
URI https://ieeexplore.ieee.org/document/8454671
https://www.proquest.com/docview/2100048665
Volume 25
WOSCitedRecordID wos000443979200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017656
  issn: 1536-1284
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5TfBG8K84befBFMK7rkjZ5nNPhy4qgom-lSU5EGNvYRf--J2k7BUWQQiklh5Z8PSc5zcn3EXJeiMSTnhhmheWMC8WZbmvLEqXApUorXuggNpFmmXx5UfcNcrncCwMAofgMrvxlWMu3Y7Pwv8pakgv0a8x1VtI0KfdqLVcM0iQotaIDe10ZyeslyUi1Bs89X8MlrzwXHQ_SZF9DUNBU-RGIw-jS3_rfe22TzWoWSbsl7DukAaNdsv6NW3CPTLo0G7_DEM8j9rCY-JgwA0tvACasYlV9ZdeFv5eVteAUBy7PKEF7Zf06HQR5aYrzWvqA4fqjmALaO3yIpb5sdohhsjae7ZOn_u1j745V8grMdEQ6Z5hGWxdrzO-c1sJEUsfGykJ5RUnsRuFMqjEbkhZwTouerTGB1Y6byMlOB-06B2R1NB7BIaHYwPGkbYWGlDsHWhRSaVAitkWEaDdJq-7x3FTc414CY5iHHCRSOWKUe4zyCqMmuVhaTErejT_a7nlMlu0qOJrkpAY1rxxzlsftsI0-ScTR71bHZCOOyqMsNTshq_PpAk7Jmnmfv82mZ-G7-wQwtNXv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5EC9qH1vqDXrWah74UjLe3l-wmj3qtWPSWgoq-LZtkIsJxd9wP_fedZPdOoSL0ZVmWDFny7Uwym8n3AfyoZBZITyx30gkupBbcdIzjmdboc220qEwUm8iLQt3d6b8rcLQ8C4OIsfgMj8Nt3Mt3IzsPv8raSkjya8p11qQQaVKf1lruGeRZ1GolFw7KMkosNiUT3e7f9kIVlzoObHQiipO9TEJRVeWfUBznl7PP__dmm_CpWUeykxr4L7CCwy34-IpdcBvGJ6wYPeKArkN-NR-HqDBFx34hjnnDq3rPT6vwrKirwRlNXYFTgvXqCnbWjwLTjFa27IoC9lM1QbL31IljoXB2QIFyYTzdgZuz39e9c94ILHDblfmMUyLtfGoow_PGSJsok1qnKh00JWkYpbe5oXxIOaRVLfm2oRTWeGETr7pdsuvuwupwNMSvwKiBF1nHSYO58B6NrJQ2qGXqqoTwbkF7MeKlbdjHgwjGoIxZSKJLwqgMGJUNRi34ubQY18wb77TdDpgs2zVwtGB_AWrZuOa0TDvxIH2WyW9vWx3C-vl1_7K8_FNc7MFG6Keu-NuH1dlkjt_hg32cPUwnB_H7ewYdiNh6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Non-Supervised+Deep-Learning-Based+Network+Traffic+Control+Method+for+Software+Defined+Wireless+Networks&rft.jtitle=IEEE+wireless+communications&rft.au=Mao%2C+Bomin&rft.au=Tang%2C+Fengxiao&rft.au=Fadlullah%2C+Zubair+Md&rft.au=Kato%2C+Nei&rft.date=2018-08-01&rft.pub=IEEE&rft.issn=1536-1284&rft.volume=25&rft.issue=4&rft.spage=74&rft.epage=81&rft_id=info:doi/10.1109%2FMWC.2018.1700417&rft.externalDocID=8454671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon