A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks
SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies the operation of switches in the data plane. The good programmability of SDN infrastructure also improves network feasibility. To alleviate...
Gespeichert in:
| Veröffentlicht in: | IEEE wireless communications Jg. 25; H. 4; S. 74 - 81 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1536-1284, 1558-0687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies the operation of switches in the data plane. The good programmability of SDN infrastructure also improves network feasibility. To alleviate the burden of the explosive growth in network traffic, in this article we propose a non-supervised deep learning based routing strategy running in the SDN controller. In our proposal, we utilize the CNNs as our deep learning architecture, and the controller runs the CNNs to choose the best path combination for packet forwarding in switches. More importantly, in our proposal, the controller collects the network traffic trace and periodically trains the CNNs to adapt them to the changing traffic patterns. Simulation results demonstrate that our proposal is able to retain learning from previous experiences and outperform conventional routing protocols. |
|---|---|
| AbstractList | SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies the operation of switches in the data plane. The good programmability of SDN infrastructure also improves network feasibility. To alleviate the burden of the explosive growth in network traffic, in this article we propose a non-supervised deep learning based routing strategy running in the SDN controller. In our proposal, we utilize the CNNs as our deep learning architecture, and the controller runs the CNNs to choose the best path combination for packet forwarding in switches. More importantly, in our proposal, the controller collects the network traffic trace and periodically trains the CNNs to adapt them to the changing traffic patterns. Simulation results demonstrate that our proposal is able to retain learning from previous experiences and outperform conventional routing protocols. |
| Author | Tang, Fengxiao Mizutani, Kimihiro Kato, Nei Fadlullah, Zubair Md Akashi, Osamu Mao, Bomin Inoue, Takeru |
| Author_xml | – sequence: 1 givenname: Bomin surname: Mao fullname: Mao, Bomin – sequence: 2 givenname: Fengxiao surname: Tang fullname: Tang, Fengxiao – sequence: 3 givenname: Zubair Md surname: Fadlullah fullname: Fadlullah, Zubair Md – sequence: 4 givenname: Nei surname: Kato fullname: Kato, Nei – sequence: 5 givenname: Osamu surname: Akashi fullname: Akashi, Osamu – sequence: 6 givenname: Takeru surname: Inoue fullname: Inoue, Takeru – sequence: 7 givenname: Kimihiro surname: Mizutani fullname: Mizutani, Kimihiro |
| BookMark | eNp9kDtPwzAQgC0EEm1hR2KJxJxiJ_EjYwlPqS1DizpGTnIGlxAHO23Fv8dRCwMDy93pdN-d7hui48Y0gNAFwWNCcHo9W2XjCBMxJhzjhPAjNCCUihAzwY_7OmYhiURyiobOrTEmnFE2QO0kmJst1D424WLTgt1qB1VwC9CGU5C20c1reCP73hy6nbHvwdJKpXQZZKbprKmDGXRvpgqUscHCqG4nLXhe6cYzK22hBud-YHeGTpSsHZwf8gi93N8ts8dw-vzwlE2mYRlT3oVQxJWKCpwmqihoiUURlZWQaSpS4X-hquRFmjJRgSBVRHkR8aRQSYmViGPPxSN0td_bWvO5Adfla7OxjT-ZRwR7RYIx6qfwfqq0xjkLKm-t_pD2Kyc4773m3mvee80PXj3C_iCl7mSnexlS1_-Bl3tQA8DvHZHQhHESfwNSO4d- |
| CODEN | IWCEAS |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2981130 crossref_primary_10_1109_JIOT_2022_3231329 crossref_primary_10_1109_TVT_2019_2959410 crossref_primary_10_1155_2022_3866143 crossref_primary_10_1007_s11277_021_08576_z crossref_primary_10_1109_LCOMM_2019_2932988 crossref_primary_10_1007_s13198_023_02144_3 crossref_primary_10_1109_TVT_2020_3005120 crossref_primary_10_1109_ACCESS_2020_3008721 crossref_primary_10_1109_MCOM_001_1800923 crossref_primary_10_1109_TCCN_2021_3089178 crossref_primary_10_1109_TVT_2019_2900460 crossref_primary_10_1109_JIOT_2022_3210703 crossref_primary_10_1109_JIOT_2022_3143829 crossref_primary_10_1007_s13198_021_01176_x crossref_primary_10_1109_JIOT_2024_3407512 crossref_primary_10_1109_TVT_2020_2972806 crossref_primary_10_1007_s12083_021_01185_4 crossref_primary_10_1109_ACCESS_2019_2934111 crossref_primary_10_1109_ACCESS_2024_3469583 crossref_primary_10_1109_TVT_2020_3047877 crossref_primary_10_1109_ACCESS_2024_3362353 crossref_primary_10_3390_electronics14081689 crossref_primary_10_1109_ACCESS_2020_2975088 crossref_primary_10_1155_2022_8777890 crossref_primary_10_1007_s11277_021_09160_1 crossref_primary_10_1109_TCCN_2023_3235719 crossref_primary_10_1109_TVT_2019_2911544 crossref_primary_10_1109_TVT_2020_3006229 crossref_primary_10_1109_TVT_2020_3003478 crossref_primary_10_1109_JIOT_2021_3118471 crossref_primary_10_1109_JIOT_2022_3218780 crossref_primary_10_1016_j_cosrev_2023_100572 crossref_primary_10_1109_JIOT_2023_3309832 crossref_primary_10_1109_TC_2018_2874483 crossref_primary_10_1109_TNSM_2025_3567654 crossref_primary_10_1109_TVT_2020_3006262 crossref_primary_10_1109_ACCESS_2019_2932047 crossref_primary_10_1080_1448837X_2024_2398276 crossref_primary_10_1109_TVT_2019_2905622 crossref_primary_10_1016_j_comcom_2020_05_040 crossref_primary_10_1109_TETC_2019_2899407 crossref_primary_10_1109_JPROC_2022_3153408 crossref_primary_10_1109_ACCESS_2024_3424418 crossref_primary_10_1109_TVT_2019_2951594 crossref_primary_10_1109_TVT_2020_3019687 crossref_primary_10_1016_j_engappai_2022_105472 crossref_primary_10_1002_dac_5455 crossref_primary_10_1109_TWC_2021_3052222 crossref_primary_10_1109_ACCESS_2020_3032469 crossref_primary_10_3390_eng4020063 crossref_primary_10_1007_s10586_021_03402_4 crossref_primary_10_1109_TVT_2020_3022043 crossref_primary_10_3390_app12041951 crossref_primary_10_1109_TVT_2020_3001301 crossref_primary_10_1109_JIOT_2021_3089334 crossref_primary_10_1109_TVT_2020_2976958 crossref_primary_10_1109_TWC_2023_3246082 crossref_primary_10_1002_sat_1482 crossref_primary_10_1007_s13198_023_02168_9 crossref_primary_10_1109_JIOT_2020_3042901 crossref_primary_10_1109_TNSM_2019_2927886 crossref_primary_10_1109_ACCESS_2022_3153521 crossref_primary_10_1109_JIOT_2018_2876152 crossref_primary_10_1109_JIOT_2020_3047079 crossref_primary_10_1109_ACCESS_2020_2995511 crossref_primary_10_1016_j_jnca_2024_104051 crossref_primary_10_1109_MWC_001_1900489 crossref_primary_10_1109_MNET_001_1800510 crossref_primary_10_1109_TVT_2020_2993262 crossref_primary_10_1109_TVT_2020_3029864 crossref_primary_10_1109_COMST_2021_3130901 crossref_primary_10_1109_TVT_2020_2980905 crossref_primary_10_1109_TVT_2020_3036934 crossref_primary_10_1109_JSYST_2020_2996185 crossref_primary_10_1109_JIOT_2023_3256357 crossref_primary_10_1109_TNSM_2022_3164335 crossref_primary_10_1109_COMST_2021_3053118 crossref_primary_10_1109_COMST_2023_3244674 crossref_primary_10_1109_TETC_2018_2847296 crossref_primary_10_1109_TVT_2022_3232567 crossref_primary_10_1109_ACCESS_2019_2928564 crossref_primary_10_1109_ACCESS_2020_3022291 crossref_primary_10_1109_JSTARS_2020_2988477 crossref_primary_10_1109_TVT_2020_3009746 |
| Cites_doi | 10.1109/MNET.2017.1700208 10.1038/nature14539 10.1109/MNET.2015.7166190 10.1109/MWC.2016.7422408 10.1109/TC.2017.2709742 10.1145/1355734.1355746 10.1109/MWC.2017.1700244 10.1109/MCOM.2016.1600169CM 10.1038/nature24270 10.1109/MNET.2015.7166187 10.1109/MNET.2016.7474344 10.1109/MWC.2016.1600317WC 10.1109/COMST.2017.2707140 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1109/MWC.2018.1700417 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0687 |
| EndPage | 81 |
| ExternalDocumentID | 10_1109_MWC_2018_1700417 8454671 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS TN5 AAYXX CITATION 7SP 8FD F28 FR3 L7M RIG |
| ID | FETCH-LOGICAL-c357t-eb3df2b094fbb5c08b2cd8a998981535fc7b9968de81d257b274bf4c0f8332b03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443979200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1284 |
| IngestDate | Mon Jun 30 10:22:05 EDT 2025 Sat Nov 29 03:07:40 EST 2025 Tue Nov 18 21:09:54 EST 2025 Wed Aug 27 02:56:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-eb3df2b094fbb5c08b2cd8a998981535fc7b9968de81d257b274bf4c0f8332b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2100048665 |
| PQPubID | 75748 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_MWC_2018_1700417 crossref_citationtrail_10_1109_MWC_2018_1700417 ieee_primary_8454671 proquest_journals_2100048665 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-AUGUST 2018-8-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-AUGUST |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE wireless communications |
| PublicationTitleAbbrev | WC-M |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref11 zhou (ref3) 2018 ref10 lecun (ref12) 2015; 521 ref2 ref1 ref8 ref7 ref9 ref4 ref6 ref5 niyaz (ref14) 2016 silver (ref15) 2017; 550 |
| References_xml | – year: 2018 ident: ref3 publication-title: State of the Art Taxonomy and Open Issues on NOMA in Cognitive Radio Networks – ident: ref7 doi: 10.1109/MNET.2017.1700208 – volume: 521 start-page: 436 year: 2015 ident: ref12 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref8 doi: 10.1109/MNET.2015.7166190 – ident: ref2 doi: 10.1109/MWC.2016.7422408 – year: 2016 ident: ref14 publication-title: A deep learning based ddos detection system in software-defined networking (sdn) – ident: ref10 doi: 10.1109/TC.2017.2709742 – ident: ref4 doi: 10.1145/1355734.1355746 – ident: ref11 doi: 10.1109/MWC.2017.1700244 – ident: ref1 doi: 10.1109/MCOM.2016.1600169CM – volume: 550 start-page: 354 year: 2017 ident: ref15 article-title: Mastering the Game of Go without Human Knowledge publication-title: Nature doi: 10.1038/nature24270 – ident: ref6 doi: 10.1109/MNET.2015.7166187 – ident: ref5 doi: 10.1109/MNET.2016.7474344 – ident: ref9 doi: 10.1109/MWC.2016.1600317WC – ident: ref13 doi: 10.1109/COMST.2017.2707140 |
| SSID | ssj0017656 |
| Score | 2.5625303 |
| Snippet | SDN has been regarded as the next-generation network paradigm as it decouples complex network management from packet forwarding, which significantly simplifies... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 74 |
| SubjectTerms | Communications traffic Computer architecture Control systems Deep learning Machine learning Network management systems Protocol (computers) Routing protocols Supervised learning Switches Switching theory Traffic control Training data Wireless networks |
| Title | A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks |
| URI | https://ieeexplore.ieee.org/document/8454671 https://www.proquest.com/docview/2100048665 |
| Volume | 25 |
| WOSCitedRecordID | wos000443979200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017656 issn: 1536-1284 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5TfBG8K84befBFMK7rkjZ5nNPhy4qgom-lSU5EGNvYRf--J2k7BUWQQiklh5Z8PSc5zcn3EXJeiMSTnhhmheWMC8WZbmvLEqXApUorXuggNpFmmXx5UfcNcrncCwMAofgMrvxlWMu3Y7Pwv8pakgv0a8x1VtI0KfdqLVcM0iQotaIDe10ZyeslyUi1Bs89X8MlrzwXHQ_SZF9DUNBU-RGIw-jS3_rfe22TzWoWSbsl7DukAaNdsv6NW3CPTLo0G7_DEM8j9rCY-JgwA0tvACasYlV9ZdeFv5eVteAUBy7PKEF7Zf06HQR5aYrzWvqA4fqjmALaO3yIpb5sdohhsjae7ZOn_u1j745V8grMdEQ6Z5hGWxdrzO-c1sJEUsfGykJ5RUnsRuFMqjEbkhZwTouerTGB1Y6byMlOB-06B2R1NB7BIaHYwPGkbYWGlDsHWhRSaVAitkWEaDdJq-7x3FTc414CY5iHHCRSOWKUe4zyCqMmuVhaTErejT_a7nlMlu0qOJrkpAY1rxxzlsftsI0-ScTR71bHZCOOyqMsNTshq_PpAk7Jmnmfv82mZ-G7-wQwtNXv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5EC9qH1vqDXrWah74UjLe3l-wmj3qtWPSWgoq-LZtkIsJxd9wP_fedZPdOoSL0ZVmWDFny7Uwym8n3AfyoZBZITyx30gkupBbcdIzjmdboc220qEwUm8iLQt3d6b8rcLQ8C4OIsfgMj8Nt3Mt3IzsPv8raSkjya8p11qQQaVKf1lruGeRZ1GolFw7KMkosNiUT3e7f9kIVlzoObHQiipO9TEJRVeWfUBznl7PP__dmm_CpWUeykxr4L7CCwy34-IpdcBvGJ6wYPeKArkN-NR-HqDBFx34hjnnDq3rPT6vwrKirwRlNXYFTgvXqCnbWjwLTjFa27IoC9lM1QbL31IljoXB2QIFyYTzdgZuz39e9c94ILHDblfmMUyLtfGoow_PGSJsok1qnKh00JWkYpbe5oXxIOaRVLfm2oRTWeGETr7pdsuvuwupwNMSvwKiBF1nHSYO58B6NrJQ2qGXqqoTwbkF7MeKlbdjHgwjGoIxZSKJLwqgMGJUNRi34ubQY18wb77TdDpgs2zVwtGB_AWrZuOa0TDvxIH2WyW9vWx3C-vl1_7K8_FNc7MFG6Keu-NuH1dlkjt_hg32cPUwnB_H7ewYdiNh6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Non-Supervised+Deep-Learning-Based+Network+Traffic+Control+Method+for+Software+Defined+Wireless+Networks&rft.jtitle=IEEE+wireless+communications&rft.au=Mao%2C+Bomin&rft.au=Tang%2C+Fengxiao&rft.au=Fadlullah%2C+Zubair+Md&rft.au=Kato%2C+Nei&rft.date=2018-08-01&rft.pub=IEEE&rft.issn=1536-1284&rft.volume=25&rft.issue=4&rft.spage=74&rft.epage=81&rft_id=info:doi/10.1109%2FMWC.2018.1700417&rft.externalDocID=8454671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon |