Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology
The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) ensemble algorithms were used to construct novel ensemble computational models (CNN-LSTM, CNN-XG, CNN-SVM, and CNN-RF) fo...
Uloženo v:
| Vydáno v: | Geocarto international Ročník ahead-of-print; číslo ahead-of-print; s. 1 - 29 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
12.08.2022
|
| Témata: | |
| ISSN: | 1010-6049, 1752-0762 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) ensemble algorithms were used to construct novel ensemble computational models (CNN-LSTM, CNN-XG, CNN-SVM, and CNN-RF) for flood hazard mapping in the monsoon-dominated catchment, Bangladesh. The results revealed that geology, elevation, the normalized difference vegetation index (NDVI), and rainfall are the most significant parameters in flash floods based on the Pearson correlation technique. Statistical method such as the area under the curve (AUC) was used to evaluate model performance. The CNN-RF model could be a promising tool for precisely predicting and mapping flash floods as it is outperformed the other models (AUC = 1.0). Furthermore, to meet sustainable development goals (SDGs), a blockchain-based technology is proposed to create a decentralized flood management tool for help seekers and help providers during and post floods. The suggested tool accelerates emergency rescue operations during flood events. |
|---|---|
| AbstractList | The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) ensemble algorithms were used to construct novel ensemble computational models (CNN-LSTM, CNN-XG, CNN-SVM, and CNN-RF) for flood hazard mapping in the monsoon-dominated catchment, Bangladesh. The results revealed that geology, elevation, the normalized difference vegetation index (NDVI), and rainfall are the most significant parameters in flash floods based on the Pearson correlation technique. Statistical method such as the area under the curve (AUC) was used to evaluate model performance. The CNN-RF model could be a promising tool for precisely predicting and mapping flash floods as it is outperformed the other models (AUC = 1.0). Furthermore, to meet sustainable development goals (SDGs), a blockchain-based technology is proposed to create a decentralized flood management tool for help seekers and help providers during and post floods. The suggested tool accelerates emergency rescue operations during flood events. |
| Author | Costache, Romulus Sharma, Gitika Chen, Ningsheng Pal, Subodh Chandra Abdullah-Al-Mahbub, Md Rahman, Mahfuzur Islam, Abu Reza Md. Towfiqul Mia, Md. Uzzal Alam, Edris Elbeltagi, Ahmed Islam, H. M. Touhidul Washakh, Rana Muhammad Ali Islam, Md Monirul |
| Author_xml | – sequence: 1 givenname: Md. Uzzal surname: Mia fullname: Mia, Md. Uzzal organization: Department of Disaster Management, Begum Rokeya University – sequence: 2 givenname: Mahfuzur orcidid: 0000-0001-8402-156X surname: Rahman fullname: Rahman, Mahfuzur organization: Department of Civil Engineering, International University of Business Agriculture and Technology (IUBAT) – sequence: 3 givenname: Ahmed orcidid: 0000-0002-5506-9502 surname: Elbeltagi fullname: Elbeltagi, Ahmed organization: Agricultural Engineering Dept, Faculty of Agriculture, Mansoura University – sequence: 4 givenname: Md surname: Abdullah-Al-Mahbub fullname: Abdullah-Al-Mahbub, Md organization: Department of Disaster Management, Begum Rokeya University – sequence: 5 givenname: Gitika surname: Sharma fullname: Sharma, Gitika organization: Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology – sequence: 6 givenname: H. M. Touhidul surname: Islam fullname: Islam, H. M. Touhidul organization: Department of Disaster Management, Begum Rokeya University – sequence: 7 givenname: Subodh Chandra surname: Pal fullname: Pal, Subodh Chandra organization: Department of Geography, The University of Burdwan – sequence: 8 givenname: Romulus orcidid: 0000-0002-6876-8572 surname: Costache fullname: Costache, Romulus organization: Danube Delta National Institute for Research and Development – sequence: 9 givenname: Abu Reza Md. Towfiqul orcidid: 0000-0001-5779-1382 surname: Islam fullname: Islam, Abu Reza Md. Towfiqul organization: Department of Disaster Management, Begum Rokeya University – sequence: 10 givenname: Md Monirul surname: Islam fullname: Islam, Md Monirul organization: Department of Civil Engineering, International University of Business Agriculture and Technology (IUBAT) – sequence: 11 givenname: Ningsheng surname: Chen fullname: Chen, Ningsheng organization: Academy of Plateau Science and Sustainability – sequence: 12 givenname: Edris surname: Alam fullname: Alam, Edris organization: Department of Geography and Environmental Studies, University of Chittagong – sequence: 13 givenname: Rana Muhammad Ali surname: Washakh fullname: Washakh, Rana Muhammad Ali organization: School of Architecture, Neijiang Normal University |
| BookMark | eNqFkM1KAzEUhYNUsK0-gpAXmJqb-ceNUvwDwYW6Hu5kkjY2TUqSUvr2prRuXOjq3AvnHDjfhIyss5KQa2AzYA27AQasYkU744zzGQfgbcPPyBjqkmesrvgo3cmTHUwXZBLCF2N53VT5mIj3bYioLfZGUmWcG6jXYUUxBBnCWtpIt0HbBR2k3FAj0dv0ZT0GOVA0C-d1XK4D3SWhSHvjxEosUyGNUiytM26xvyTnCk2QVyedks_Hh4_5c_b69vQyv3_NRF7WMZMNS2u4ggIL1kNVyaHtgaHqFaRNfd-gqhHylhd1WYLAoa0rmQ8tCBA5YD4lt8de4V0IXqpO6IhROxs9atMB6w68uh9e3YFXd-KV0uWv9MbrNfr9v7m7Y05b5fwad86boYu4N84rj1bo0OV_V3wDfieFdQ |
| CitedBy_id | crossref_primary_10_1007_s11042_024_19150_7 crossref_primary_10_1007_s41207_024_00553_9 crossref_primary_10_3390_en15186790 crossref_primary_10_1016_j_asr_2024_10_047 crossref_primary_10_3390_rs17060946 crossref_primary_10_1007_s42979_025_04268_8 crossref_primary_10_1029_2023EF003749 crossref_primary_10_1007_s12145_025_01816_x crossref_primary_10_1080_19475705_2024_2409202 crossref_primary_10_3390_land12040810 crossref_primary_10_1109_JSTARS_2025_3559205 crossref_primary_10_5194_nhess_25_3087_2025 crossref_primary_10_1007_s41748_023_00369_7 crossref_primary_10_1080_10807039_2025_2516586 |
| Cites_doi | 10.1109/ITMQIS.2018.8524970 10.1680/fr.41561.007 10.1111/j.1753-318X.2012.01147.x 10.1139/er-2020-0019 10.1007/s12665-022-10269-0 10.1016/j.catena.2019.104450 10.1145/2939672.2939785 10.7930/J0Z31WJ2 10.1016/j.scitotenv.2018.02.278 10.1016/j.scitotenv.2019.02.328 10.3389/fmars.2021.646926 10.1016/j.scitotenv.2018.10.064 10.3390/rs11020196 10.4018/978-1-4666-7272-7.ch004 10.1016/j.geomorph.2016.10.017 10.1007/s11269-009-9404-7 10.26480/mjg.01.2019.01.11 10.1007/s11269-019-02301-z 10.3390/rs13132638 10.1007/s10346-013-0391-7 10.1016/j.jenvman.2022.115316 10.1038/nclimate1911 10.1016/j.jhydrol.2020.125552 10.1038/s42256-019-0048-x 10.1007/s11069-015-1699-5 10.1016/j.jhydrol.2022.127747 10.1016/j.jhydrol.2019.03.073 10.1016/j.rsase.2020.100343 10.5194/hess-22-2637-2018 10.1007/s00477-020-01862-5 10.1016/j.advwatres.2016.05.002 10.1016/j.scitotenv.2017.10.037 10.1109/JAS.2021.1004003 10.1007/s11269-011-9866-2 10.1007/978-1-4020-4598-1_13 10.1016/j.gsf.2020.09.006 10.3390/app8081369 10.1111/jfr3.12211 10.3390/s18113704 10.1016/j.catena.2019.104426 10.1016/j.jpdc.2021.03.011 10.1016/j.rsase.2020.100379 10.1007/s41748-019-00123-y 10.1007/s11069-019-03749-3 10.1007/s41976-019-00018-6 10.1016/j.jclepro.2021.127737 10.1007/s11069-015-2137-4 10.1016/j.jhydrol.2020.125197 10.1038/sdata.2018.296 10.1016/j.asr.2019.12.003 10.1016/j.jhydrol.2021.126500 10.1109/CVPRW50498.2020.00113 10.1007/s12665-011-1504-z 10.1016/j.jclepro.2021.129039 10.1016/j.catena.2020.104851 10.3390/s19061302 10.1016/j.scitotenv.2018.01.266 10.1007/s11069-016-2357-2 10.1109/MTS.2015.2494358 10.1016/B978-0-12-394846-5.00006-0 10.1016/j.jhydrol.2020.125275 10.1007/s11069-016-2444-4 10.1007/978-3-319-58039-5_11 10.1162/neco.1997.9.8.1735 10.1111/j.1539-6924.2012.01844.x 10.1016/j.scitotenv.2017.09.262 10.1080/02626667.2011.555836 10.1080/15487733.2005.11907970 10.1007/s11069-016-2239-7 10.1016/j.ecolecon.2004.01.020 10.1080/00207233.2016.1236647 10.1007/s12665-019-8285-1 10.3390/su11195426 10.1080/19475705.2015.1052021 10.1186/s13673-020-0210-9 10.1007/s11069-015-1911-7 10.1016/j.jhydrol.2014.03.008 10.1016/j.jtrangeo.2019.102562 10.1155/2012/974638 10.3390/w11081654 10.1007/s13201-019-1102-x 10.1007/s12665-021-09889-9 10.3390/urbansci1010007 10.1023/A:1010933404324 10.1016/j.enconman.2018.02.087 10.1007/s10203-020-00315-6 10.1016/j.quaint.2019.01.022 10.1007/s12145-020-00530-0 10.1016/j.jenvman.2021.113086 10.1016/j.jenvman.2019.06.102 10.1016/j.scitotenv.2017.10.114 10.3390/w12030899 10.1016/j.aei.2019.100944 10.1016/j.gsf.2020.09.022 10.1016/j.scitotenv.2019.02.422 10.1007/978-3-030-04110-6_7 10.3390/ijerph17114140 10.1093/comjnl/bxy082 10.1016/j.jag.2009.06.002 10.1016/j.jhydrol.2020.125007 10.7202/019218ar 10.3390/s19071486 10.1007/s00477-010-0426-8 10.1016/j.asoc.2012.10.026 10.1016/j.ipm.2020.102468 10.3390/su14073982 10.1016/j.scitotenv.2020.141565 10.1016/j.jhydrol.2019.124482 10.1016/j.scitotenv.2019.06.529 10.2174/9781681088624121010009 10.1007/978-3-642-24797-2_2 10.3390/rs12020266 10.1016/S0893-6080(05)80023-1 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 |
| Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 |
| DBID | 0YH AAYXX CITATION |
| DOI | 10.1080/10106049.2022.2112982 |
| DatabaseName | Taylor & Francis Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics |
| EISSN | 1752-0762 |
| EndPage | 29 |
| ExternalDocumentID | 10_1080_10106049_2022_2112982 2112982 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0YH 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ~02 ~S~ AAYXX CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c357t-e800802f14a40b166ed9b10afbf1112bb8af7a139247551cad976e3d91c1c31a3 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843609600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1010-6049 |
| IngestDate | Sat Nov 29 03:13:50 EST 2025 Tue Nov 18 22:27:40 EST 2025 Mon Oct 20 23:47:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | ahead-of-print |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-e800802f14a40b166ed9b10afbf1112bb8af7a139247551cad976e3d91c1c31a3 |
| ORCID | 0000-0001-5779-1382 0000-0002-6876-8572 0000-0002-5506-9502 0000-0001-8402-156X |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2112982 |
| PageCount | 29 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_10106049_2022_2112982 crossref_primary_10_1080_10106049_2022_2112982 crossref_citationtrail_10_1080_10106049_2022_2112982 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-12 |
| PublicationDateYYYYMMDD | 2022-08-12 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Geocarto international |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_28_1 e_1_3_2_20_1 e_1_3_2_66_1 e_1_3_2_85_1 e_1_3_2_47_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_62_1 e_1_3_2_104_1 e_1_3_2_81_1 e_1_3_2_123_1 Wubalem A (e_1_3_2_116_1) 2020 e_1_3_2_108_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 Zhou ZH. (e_1_3_2_124_1) 2009; 1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_96_1 Baig MA (e_1_3_2_9_1) 2022; 2022 e_1_3_2_3_1 Costache R (e_1_3_2_24_1) 2022 e_1_3_2_92_1 e_1_3_2_50_1 e_1_3_2_73_1 Sheela K (e_1_3_2_102_1) 2021 Ahmed N (e_1_3_2_4_1) 2021 e_1_3_2_112_1 e_1_3_2_29_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_63_1 e_1_3_2_86_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 e_1_3_2_40_1 e_1_3_2_82_1 e_1_3_2_103_1 e_1_3_2_122_1 e_1_3_2_107_1 e_1_3_2_17_1 e_1_3_2_2_1 e_1_3_2_55_1 e_1_3_2_32_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_59_1 e_1_3_2_36_1 e_1_3_2_78_1 e_1_3_2_93_1 e_1_3_2_115_1 e_1_3_2_51_1 e_1_3_2_111_1 e_1_3_2_70_1 e_1_3_2_49_1 e_1_3_2_41_1 e_1_3_2_87_1 e_1_3_2_22_1 e_1_3_2_64_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_68_1 e_1_3_2_83_1 e_1_3_2_121_1 e_1_3_2_60_1 Youssef AM (e_1_3_2_119_1) 2022 e_1_3_2_106_1 e_1_3_2_18_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_75_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_79_1 e_1_3_2_98_1 e_1_3_2_114_1 e_1_3_2_94_1 e_1_3_2_110_1 e_1_3_2_71_1 e_1_3_2_90_1 e_1_3_2_118_1 e_1_3_2_27_1 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_88_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_80_1 e_1_3_2_101_1 e_1_3_2_61_1 e_1_3_2_84_1 e_1_3_2_105_1 e_1_3_2_120_1 BBS (e_1_3_2_10_1) 2011 e_1_3_2_109_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_34_1 e_1_3_2_15_1 Hall JW (e_1_3_2_43_1) 2011 e_1_3_2_57_1 e_1_3_2_99_1 e_1_3_2_113_1 Sayers P (e_1_3_2_97_1) 2013 e_1_3_2_95_1 e_1_3_2_72_1 e_1_3_2_91_1 e_1_3_2_117_1 |
| References_xml | – ident: e_1_3_2_79_1 doi: 10.1109/ITMQIS.2018.8524970 – ident: e_1_3_2_69_1 doi: 10.1680/fr.41561.007 – ident: e_1_3_2_99_1 doi: 10.1111/j.1753-318X.2012.01147.x – ident: e_1_3_2_51_1 doi: 10.1139/er-2020-0019 – ident: e_1_3_2_91_1 doi: 10.1007/s12665-022-10269-0 – ident: e_1_3_2_93_1 doi: 10.1016/j.catena.2019.104450 – ident: e_1_3_2_18_1 doi: 10.1145/2939672.2939785 – ident: e_1_3_2_70_1 doi: 10.7930/J0Z31WJ2 – ident: e_1_3_2_48_1 doi: 10.1016/j.scitotenv.2018.02.278 – ident: e_1_3_2_94_1 doi: 10.1016/j.scitotenv.2019.02.328 – ident: e_1_3_2_19_1 doi: 10.3389/fmars.2021.646926 – ident: e_1_3_2_21_1 doi: 10.1016/j.scitotenv.2018.10.064 – ident: e_1_3_2_39_1 doi: 10.3390/rs11020196 – start-page: 3 volume-title: Flood risk science and management year: 2011 ident: e_1_3_2_43_1 – ident: e_1_3_2_103_1 doi: 10.4018/978-1-4666-7272-7.ch004 – ident: e_1_3_2_28_1 doi: 10.1016/j.geomorph.2016.10.017 – ident: e_1_3_2_44_1 doi: 10.1007/s11269-009-9404-7 – ident: e_1_3_2_37_1 doi: 10.26480/mjg.01.2019.01.11 – ident: e_1_3_2_26_1 doi: 10.1007/s11269-019-02301-z – ident: e_1_3_2_53_1 doi: 10.3390/rs13132638 – ident: e_1_3_2_55_1 doi: 10.1007/s10346-013-0391-7 – ident: e_1_3_2_23_1 doi: 10.1016/j.jenvman.2022.115316 – ident: e_1_3_2_45_1 doi: 10.1038/nclimate1911 – ident: e_1_3_2_58_1 doi: 10.1016/j.jhydrol.2020.125552 – ident: e_1_3_2_90_1 doi: 10.1038/s42256-019-0048-x – ident: e_1_3_2_17_1 doi: 10.1007/s11069-015-1699-5 – ident: e_1_3_2_25_1 doi: 10.1016/j.jhydrol.2022.127747 – ident: e_1_3_2_60_1 doi: 10.1016/j.jhydrol.2019.03.073 – ident: e_1_3_2_68_1 doi: 10.1016/j.rsase.2020.100343 – ident: e_1_3_2_120_1 doi: 10.5194/hess-22-2637-2018 – ident: e_1_3_2_106_1 doi: 10.1007/s00477-020-01862-5 – volume-title: Flood risks management: a strategic approach year: 2013 ident: e_1_3_2_97_1 – ident: e_1_3_2_30_1 doi: 10.1016/j.advwatres.2016.05.002 – ident: e_1_3_2_122_1 doi: 10.1016/j.scitotenv.2017.10.037 – ident: e_1_3_2_42_1 doi: 10.1109/JAS.2021.1004003 – ident: e_1_3_2_114_1 doi: 10.1007/s11269-011-9866-2 – ident: e_1_3_2_71_1 doi: 10.1007/978-1-4020-4598-1_13 – ident: e_1_3_2_50_1 doi: 10.1016/j.gsf.2020.09.006 – start-page: 1 year: 2020 ident: e_1_3_2_116_1 article-title: Comparison of statistical and analytical hierarchy process methods on flood susceptibility mapping: in a case study of Tana sub-basin in northwestern Ethiopia publication-title: Nat Hazards Earth Syst Sci Discuss – ident: e_1_3_2_6_1 doi: 10.3390/app8081369 – ident: e_1_3_2_100_1 doi: 10.1111/jfr3.12211 – ident: e_1_3_2_76_1 doi: 10.3390/s18113704 – ident: e_1_3_2_16_1 doi: 10.1016/j.catena.2019.104426 – ident: e_1_3_2_77_1 doi: 10.1016/j.jpdc.2021.03.011 – start-page: 1 year: 2022 ident: e_1_3_2_119_1 article-title: Comparative study of convolutional neural network (CNN) and support vector machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt publication-title: Geocarto Int. 2022 – ident: e_1_3_2_27_1 doi: 10.1016/j.rsase.2020.100379 – ident: e_1_3_2_84_1 doi: 10.1007/s41748-019-00123-y – ident: e_1_3_2_3_1 doi: 10.1007/s11069-019-03749-3 – ident: e_1_3_2_80_1 doi: 10.1007/s41976-019-00018-6 – ident: e_1_3_2_81_1 doi: 10.1016/j.jclepro.2021.127737 – ident: e_1_3_2_121_1 doi: 10.1007/s11069-015-2137-4 – ident: e_1_3_2_74_1 doi: 10.1016/j.jhydrol.2020.125197 – ident: e_1_3_2_78_1 doi: 10.1038/sdata.2018.296 – ident: e_1_3_2_22_1 doi: 10.1016/j.asr.2019.12.003 – ident: e_1_3_2_67_1 doi: 10.1016/j.jhydrol.2021.126500 – ident: e_1_3_2_11_1 doi: 10.1109/CVPRW50498.2020.00113 – ident: e_1_3_2_61_1 doi: 10.1007/s12665-011-1504-z – ident: e_1_3_2_117_1 doi: 10.1016/j.jclepro.2021.129039 – ident: e_1_3_2_118_1 doi: 10.1016/j.catena.2020.104851 – ident: e_1_3_2_49_1 doi: 10.3390/s19061302 – ident: e_1_3_2_59_1 doi: 10.1016/j.scitotenv.2018.01.266 – ident: e_1_3_2_57_1 doi: 10.1007/s11069-016-2357-2 – ident: e_1_3_2_105_1 doi: 10.1109/MTS.2015.2494358 – ident: e_1_3_2_40_1 doi: 10.1016/B978-0-12-394846-5.00006-0 – ident: e_1_3_2_73_1 doi: 10.1016/j.jhydrol.2020.125275 – ident: e_1_3_2_34_1 doi: 10.1007/s11069-016-2444-4 – ident: e_1_3_2_64_1 doi: 10.1007/978-3-319-58039-5_11 – ident: e_1_3_2_46_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_3_2_56_1 doi: 10.1111/j.1539-6924.2012.01844.x – ident: e_1_3_2_98_1 – ident: e_1_3_2_109_1 doi: 10.1016/j.scitotenv.2017.09.262 – ident: e_1_3_2_63_1 doi: 10.1080/02626667.2011.555836 – ident: e_1_3_2_75_1 doi: 10.1080/15487733.2005.11907970 – ident: e_1_3_2_86_1 doi: 10.1007/s11069-016-2239-7 – ident: e_1_3_2_14_1 doi: 10.1016/j.ecolecon.2004.01.020 – ident: e_1_3_2_12_1 doi: 10.1080/00207233.2016.1236647 – ident: e_1_3_2_92_1 doi: 10.1007/s12665-019-8285-1 – ident: e_1_3_2_52_1 doi: 10.3390/su11195426 – ident: e_1_3_2_35_1 doi: 10.1080/19475705.2015.1052021 – ident: e_1_3_2_107_1 doi: 10.1186/s13673-020-0210-9 – ident: e_1_3_2_36_1 doi: 10.1007/s11069-015-1911-7 – ident: e_1_3_2_108_1 doi: 10.1016/j.jhydrol.2014.03.008 – volume: 2022 start-page: 1 year: 2022 ident: e_1_3_2_9_1 article-title: How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping? publication-title: Natural Hazards – ident: e_1_3_2_123_1 doi: 10.1016/j.jtrangeo.2019.102562 – volume-title: Population and housing census, Bangladesh Bureau of Statistics (BBS) year: 2011 ident: e_1_3_2_10_1 – ident: e_1_3_2_110_1 doi: 10.1155/2012/974638 – ident: e_1_3_2_65_1 doi: 10.3390/w11081654 – start-page: 1 year: 2022 ident: e_1_3_2_24_1 article-title: Stacking state-of-the-art ensemble for flash-flood potential assessment publication-title: Geocarto Int. 2022 – ident: e_1_3_2_95_1 doi: 10.1007/s13201-019-1102-x – ident: e_1_3_2_2_1 doi: 10.1007/s12665-021-09889-9 – ident: e_1_3_2_89_1 doi: 10.3390/urbansci1010007 – ident: e_1_3_2_13_1 doi: 10.1023/A:1010933404324 – ident: e_1_3_2_33_1 doi: 10.1016/j.enconman.2018.02.087 – ident: e_1_3_2_111_1 doi: 10.1007/s10203-020-00315-6 – ident: e_1_3_2_5_1 doi: 10.1016/j.quaint.2019.01.022 – ident: e_1_3_2_72_1 doi: 10.1007/s12145-020-00530-0 – ident: e_1_3_2_82_1 doi: 10.1016/j.jenvman.2021.113086 – ident: e_1_3_2_113_1 doi: 10.1016/j.jenvman.2019.06.102 – ident: e_1_3_2_47_1 doi: 10.1016/j.scitotenv.2017.10.114 – ident: e_1_3_2_62_1 doi: 10.3390/w12030899 – ident: e_1_3_2_87_1 doi: 10.1016/j.aei.2019.100944 – ident: e_1_3_2_83_1 doi: 10.1016/j.gsf.2020.09.022 – ident: e_1_3_2_15_1 doi: 10.1016/j.scitotenv.2019.02.422 – ident: e_1_3_2_29_1 doi: 10.1007/978-3-030-04110-6_7 – ident: e_1_3_2_20_1 doi: 10.3390/ijerph17114140 – ident: e_1_3_2_31_1 doi: 10.1093/comjnl/bxy082 – ident: e_1_3_2_54_1 doi: 10.1016/j.jag.2009.06.002 – ident: e_1_3_2_7_1 doi: 10.1016/j.jhydrol.2020.125007 – ident: e_1_3_2_88_1 doi: 10.7202/019218ar – start-page: 1 year: 2021 ident: e_1_3_2_4_1 article-title: Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network publication-title: Geocarto Int. 2021 – ident: e_1_3_2_38_1 doi: 10.3390/s19071486 – ident: e_1_3_2_104_1 doi: 10.1007/s00477-010-0426-8 – ident: e_1_3_2_66_1 doi: 10.1016/j.asoc.2012.10.026 – ident: e_1_3_2_32_1 doi: 10.1016/j.ipm.2020.102468 – volume: 1 start-page: 270 year: 2009 ident: e_1_3_2_124_1 article-title: Ensemble learning publication-title: Encycl Biom – ident: e_1_3_2_96_1 doi: 10.3390/su14073982 – ident: e_1_3_2_8_1 doi: 10.1016/j.scitotenv.2020.141565 – ident: e_1_3_2_112_1 doi: 10.1016/j.jhydrol.2019.124482 – ident: e_1_3_2_85_1 doi: 10.1016/j.scitotenv.2019.06.529 – start-page: 131 volume-title: Blockchain applications for secure IoT frameworks: Technologies shaping the future year: 2021 ident: e_1_3_2_102_1 doi: 10.2174/9781681088624121010009 – ident: e_1_3_2_41_1 doi: 10.1007/978-3-642-24797-2_2 – ident: e_1_3_2_101_1 doi: 10.3390/rs12020266 – ident: e_1_3_2_115_1 doi: 10.1016/S0893-6080(05)80023-1 |
| SSID | ssj0037863 |
| Score | 2.3852942 |
| Snippet | The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Blockchain deep learning algorithm flash floods relief sustainable development |
| Title | Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2112982 |
| Volume | ahead-of-print |
| WOSCitedRecordID | wos000843609600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: TFW dateStart: 19860101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQAcHCo4B4ywNrqvqROBkRomJAFRKvMkW2Y7cVpUVNQOLf40uc0g7AAEuiDBdFF_vu8-m77xA6YywyDneoIAGpTx5msOeY2-4yDjVjNuOlbsHDteh2414vufFswtzTKuEMbSuhiDJWw-aWKq8Zce5OQPIF2kwobVFADLGLwsvUHU3g_NV-uqqDMRNxVHHsXbgBm7qJ57vXLKSnBfHSubTT2fyHD95CGx5z4vNqkWyjJTNuojU__nzw0USrJQ9U5ztI3341VGELpHYM5HMsZwKeGJjyfZwZ84r9yIl-ALkww3LUn0yHxeAlx1DexRIrlyqf9cC9EBezGv4uuu9c3l1cBX4OQ6BZKIrAxGVHriVc8rYiUWSyRJG2tMq6SEmViqUV0kFJyoUDYFpmDuMYliVEE82IZHuoMZ6MzT7CVspYcCWssJzbtk7cwjA0ZNQBfc1DcYB47f5Ue5FymJUxSonXMq19mYIvU-_LA9Samb1WKh2_GSTz_zYtyvKIrWaZpOxH28M_2B6hdXiEojShx6hRTN_MCVrR78Uwn56WS9dd7zqPn0-b6SY |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4MavDiAzXiswevS-hj6e7RGAlG5CIqt03bbYGIQGA18d_b2QfCQT3oaQ-baZrZdubbyTffIHTJWMM43KG8EKQ-uR_DnWPuusvA14zZmKe6BU9t0ekEvV643AsDtEr4h7aZUEQaq-FyQzG6oMS5JwHNF-gzobRGATIELgyv-y7Xgn5-t_lcRGMmgkZGsnfxBmyKLp7vllnJTyvqpUt5p7nzHzveRds56sRX2THZQ2tmXEHlfAD64KOCNlMmqJ7vI_3w1VKFLdDaMdDPsVxIeGLgyvdxbMwU50Mn-h5kwxjLUX8yGyaD1zmGAi-WWLlk-aIHbkGcLKr4B-ixedO9bnn5JAZPM18kngnSnlxLuOR1RRoNE4eK1KVV1sVKqlQgrZAOTFIuHATTMnYox7A4JJpoRiQ7RKXxZGyOELZSBoIrYYXl3NZ16I6GoT6jDupr7osq4oX_I53LlMO0jFFEcjXTwpcR-DLKfVlFtYXZNNPp-M0gXP64UZIWSGw2zSRiP9oe_8H2ApVb3ft21L7t3J2gLXgFJWpCT1Epmb2ZM7Sh35PhfHaenuNPKsTsPg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQ74VHAVGeHlhT1bETJyMCKhBVVYkC3SLHsduK0lZNQOLf40uc0g7AAFOG6KLocr77cvruO4QuKPWVwR2xE4LUJ_MSOHPUHHcReJJSnbBct-CpyVutoNsN25ZNmFpaJfxD60IoIs_VcLgniS4ZceZKQPIFxkxct-YCYghMFl4x0NmHIO80nstkTHngFxx7k27Aphzi-e4xC-VpQbx0ruw0tv_hhXfQlsWc-LIIkl20pEYVtGHXn_c_Kmgt54HKdA_Jh6-BKqyB1I6BfI7FTMATA1O-hxOlJtiunOg5UAsTLIa98XSQ9V9TDO1dLHBsSuWL7JsH4mzWw99Hj42bztWtY_cwOJJ6PHNUkE_kasIEq8fE91USxqQudKxNpnTjOBCaCwMlXcYNAJMiMRhH0SQkkkhKBD1Ay6PxSB0irIUIOIu55poxXZehCQzletQ1QF8yj1cRK90fSStSDrsyhhGxWqalLyPwZWR9WUW1mdmkUOn4zSCc_7ZRlrdHdLHLJKI_2h79wfYcrbevG1HzrnV_jDbhDvSniXuClrPpmzpFq_I9G6TTszyKPwFnAOrw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+flood+risk+assessment+using+deep+learning-based+algorithms+with+a+blockchain+technology&rft.jtitle=Geocarto+international&rft.au=Mia%2C+Md.+Uzzal&rft.au=Rahman%2C+Mahfuzur&rft.au=Elbeltagi%2C+Ahmed&rft.au=Abdullah-Al-Mahbub%2C+Md&rft.date=2022-08-12&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=29&rft_id=info:doi/10.1080%2F10106049.2022.2112982&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2022_2112982 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon |