Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology

The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) ensemble algorithms were used to construct novel ensemble computational models (CNN-LSTM, CNN-XG, CNN-SVM, and CNN-RF) fo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geocarto international Ročník ahead-of-print; číslo ahead-of-print; s. 1 - 29
Hlavní autori: Mia, Md. Uzzal, Rahman, Mahfuzur, Elbeltagi, Ahmed, Abdullah-Al-Mahbub, Md, Sharma, Gitika, Islam, H. M. Touhidul, Pal, Subodh Chandra, Costache, Romulus, Islam, Abu Reza Md. Towfiqul, Islam, Md Monirul, Chen, Ningsheng, Alam, Edris, Washakh, Rana Muhammad Ali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 12.08.2022
Predmet:
ISSN:1010-6049, 1752-0762
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) ensemble algorithms were used to construct novel ensemble computational models (CNN-LSTM, CNN-XG, CNN-SVM, and CNN-RF) for flood hazard mapping in the monsoon-dominated catchment, Bangladesh. The results revealed that geology, elevation, the normalized difference vegetation index (NDVI), and rainfall are the most significant parameters in flash floods based on the Pearson correlation technique. Statistical method such as the area under the curve (AUC) was used to evaluate model performance. The CNN-RF model could be a promising tool for precisely predicting and mapping flash floods as it is outperformed the other models (AUC = 1.0). Furthermore, to meet sustainable development goals (SDGs), a blockchain-based technology is proposed to create a decentralized flood management tool for help seekers and help providers during and post floods. The suggested tool accelerates emergency rescue operations during flood events.
AbstractList The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) ensemble algorithms were used to construct novel ensemble computational models (CNN-LSTM, CNN-XG, CNN-SVM, and CNN-RF) for flood hazard mapping in the monsoon-dominated catchment, Bangladesh. The results revealed that geology, elevation, the normalized difference vegetation index (NDVI), and rainfall are the most significant parameters in flash floods based on the Pearson correlation technique. Statistical method such as the area under the curve (AUC) was used to evaluate model performance. The CNN-RF model could be a promising tool for precisely predicting and mapping flash floods as it is outperformed the other models (AUC = 1.0). Furthermore, to meet sustainable development goals (SDGs), a blockchain-based technology is proposed to create a decentralized flood management tool for help seekers and help providers during and post floods. The suggested tool accelerates emergency rescue operations during flood events.
Author Costache, Romulus
Sharma, Gitika
Chen, Ningsheng
Pal, Subodh Chandra
Abdullah-Al-Mahbub, Md
Rahman, Mahfuzur
Islam, Abu Reza Md. Towfiqul
Mia, Md. Uzzal
Alam, Edris
Elbeltagi, Ahmed
Islam, H. M. Touhidul
Washakh, Rana Muhammad Ali
Islam, Md Monirul
Author_xml – sequence: 1
  givenname: Md. Uzzal
  surname: Mia
  fullname: Mia, Md. Uzzal
  organization: Department of Disaster Management, Begum Rokeya University
– sequence: 2
  givenname: Mahfuzur
  orcidid: 0000-0001-8402-156X
  surname: Rahman
  fullname: Rahman, Mahfuzur
  organization: Department of Civil Engineering, International University of Business Agriculture and Technology (IUBAT)
– sequence: 3
  givenname: Ahmed
  orcidid: 0000-0002-5506-9502
  surname: Elbeltagi
  fullname: Elbeltagi, Ahmed
  organization: Agricultural Engineering Dept, Faculty of Agriculture, Mansoura University
– sequence: 4
  givenname: Md
  surname: Abdullah-Al-Mahbub
  fullname: Abdullah-Al-Mahbub, Md
  organization: Department of Disaster Management, Begum Rokeya University
– sequence: 5
  givenname: Gitika
  surname: Sharma
  fullname: Sharma, Gitika
  organization: Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology
– sequence: 6
  givenname: H. M. Touhidul
  surname: Islam
  fullname: Islam, H. M. Touhidul
  organization: Department of Disaster Management, Begum Rokeya University
– sequence: 7
  givenname: Subodh Chandra
  surname: Pal
  fullname: Pal, Subodh Chandra
  organization: Department of Geography, The University of Burdwan
– sequence: 8
  givenname: Romulus
  orcidid: 0000-0002-6876-8572
  surname: Costache
  fullname: Costache, Romulus
  organization: Danube Delta National Institute for Research and Development
– sequence: 9
  givenname: Abu Reza Md. Towfiqul
  orcidid: 0000-0001-5779-1382
  surname: Islam
  fullname: Islam, Abu Reza Md. Towfiqul
  organization: Department of Disaster Management, Begum Rokeya University
– sequence: 10
  givenname: Md Monirul
  surname: Islam
  fullname: Islam, Md Monirul
  organization: Department of Civil Engineering, International University of Business Agriculture and Technology (IUBAT)
– sequence: 11
  givenname: Ningsheng
  surname: Chen
  fullname: Chen, Ningsheng
  organization: Academy of Plateau Science and Sustainability
– sequence: 12
  givenname: Edris
  surname: Alam
  fullname: Alam, Edris
  organization: Department of Geography and Environmental Studies, University of Chittagong
– sequence: 13
  givenname: Rana Muhammad Ali
  surname: Washakh
  fullname: Washakh, Rana Muhammad Ali
  organization: School of Architecture, Neijiang Normal University
BookMark eNqFkM1KAzEUhYNUsK0-gpAXmJqb-ceNUvwDwYW6Hu5kkjY2TUqSUvr2prRuXOjq3AvnHDjfhIyss5KQa2AzYA27AQasYkU744zzGQfgbcPPyBjqkmesrvgo3cmTHUwXZBLCF2N53VT5mIj3bYioLfZGUmWcG6jXYUUxBBnCWtpIt0HbBR2k3FAj0dv0ZT0GOVA0C-d1XK4D3SWhSHvjxEosUyGNUiytM26xvyTnCk2QVyedks_Hh4_5c_b69vQyv3_NRF7WMZMNS2u4ggIL1kNVyaHtgaHqFaRNfd-gqhHylhd1WYLAoa0rmQ8tCBA5YD4lt8de4V0IXqpO6IhROxs9atMB6w68uh9e3YFXd-KV0uWv9MbrNfr9v7m7Y05b5fwad86boYu4N84rj1bo0OV_V3wDfieFdQ
CitedBy_id crossref_primary_10_1007_s11042_024_19150_7
crossref_primary_10_1007_s41207_024_00553_9
crossref_primary_10_3390_en15186790
crossref_primary_10_1016_j_asr_2024_10_047
crossref_primary_10_3390_rs17060946
crossref_primary_10_1007_s42979_025_04268_8
crossref_primary_10_1029_2023EF003749
crossref_primary_10_1007_s12145_025_01816_x
crossref_primary_10_1080_19475705_2024_2409202
crossref_primary_10_3390_land12040810
crossref_primary_10_1109_JSTARS_2025_3559205
crossref_primary_10_5194_nhess_25_3087_2025
crossref_primary_10_1007_s41748_023_00369_7
crossref_primary_10_1080_10807039_2025_2516586
Cites_doi 10.1109/ITMQIS.2018.8524970
10.1680/fr.41561.007
10.1111/j.1753-318X.2012.01147.x
10.1139/er-2020-0019
10.1007/s12665-022-10269-0
10.1016/j.catena.2019.104450
10.1145/2939672.2939785
10.7930/J0Z31WJ2
10.1016/j.scitotenv.2018.02.278
10.1016/j.scitotenv.2019.02.328
10.3389/fmars.2021.646926
10.1016/j.scitotenv.2018.10.064
10.3390/rs11020196
10.4018/978-1-4666-7272-7.ch004
10.1016/j.geomorph.2016.10.017
10.1007/s11269-009-9404-7
10.26480/mjg.01.2019.01.11
10.1007/s11269-019-02301-z
10.3390/rs13132638
10.1007/s10346-013-0391-7
10.1016/j.jenvman.2022.115316
10.1038/nclimate1911
10.1016/j.jhydrol.2020.125552
10.1038/s42256-019-0048-x
10.1007/s11069-015-1699-5
10.1016/j.jhydrol.2022.127747
10.1016/j.jhydrol.2019.03.073
10.1016/j.rsase.2020.100343
10.5194/hess-22-2637-2018
10.1007/s00477-020-01862-5
10.1016/j.advwatres.2016.05.002
10.1016/j.scitotenv.2017.10.037
10.1109/JAS.2021.1004003
10.1007/s11269-011-9866-2
10.1007/978-1-4020-4598-1_13
10.1016/j.gsf.2020.09.006
10.3390/app8081369
10.1111/jfr3.12211
10.3390/s18113704
10.1016/j.catena.2019.104426
10.1016/j.jpdc.2021.03.011
10.1016/j.rsase.2020.100379
10.1007/s41748-019-00123-y
10.1007/s11069-019-03749-3
10.1007/s41976-019-00018-6
10.1016/j.jclepro.2021.127737
10.1007/s11069-015-2137-4
10.1016/j.jhydrol.2020.125197
10.1038/sdata.2018.296
10.1016/j.asr.2019.12.003
10.1016/j.jhydrol.2021.126500
10.1109/CVPRW50498.2020.00113
10.1007/s12665-011-1504-z
10.1016/j.jclepro.2021.129039
10.1016/j.catena.2020.104851
10.3390/s19061302
10.1016/j.scitotenv.2018.01.266
10.1007/s11069-016-2357-2
10.1109/MTS.2015.2494358
10.1016/B978-0-12-394846-5.00006-0
10.1016/j.jhydrol.2020.125275
10.1007/s11069-016-2444-4
10.1007/978-3-319-58039-5_11
10.1162/neco.1997.9.8.1735
10.1111/j.1539-6924.2012.01844.x
10.1016/j.scitotenv.2017.09.262
10.1080/02626667.2011.555836
10.1080/15487733.2005.11907970
10.1007/s11069-016-2239-7
10.1016/j.ecolecon.2004.01.020
10.1080/00207233.2016.1236647
10.1007/s12665-019-8285-1
10.3390/su11195426
10.1080/19475705.2015.1052021
10.1186/s13673-020-0210-9
10.1007/s11069-015-1911-7
10.1016/j.jhydrol.2014.03.008
10.1016/j.jtrangeo.2019.102562
10.1155/2012/974638
10.3390/w11081654
10.1007/s13201-019-1102-x
10.1007/s12665-021-09889-9
10.3390/urbansci1010007
10.1023/A:1010933404324
10.1016/j.enconman.2018.02.087
10.1007/s10203-020-00315-6
10.1016/j.quaint.2019.01.022
10.1007/s12145-020-00530-0
10.1016/j.jenvman.2021.113086
10.1016/j.jenvman.2019.06.102
10.1016/j.scitotenv.2017.10.114
10.3390/w12030899
10.1016/j.aei.2019.100944
10.1016/j.gsf.2020.09.022
10.1016/j.scitotenv.2019.02.422
10.1007/978-3-030-04110-6_7
10.3390/ijerph17114140
10.1093/comjnl/bxy082
10.1016/j.jag.2009.06.002
10.1016/j.jhydrol.2020.125007
10.7202/019218ar
10.3390/s19071486
10.1007/s00477-010-0426-8
10.1016/j.asoc.2012.10.026
10.1016/j.ipm.2020.102468
10.3390/su14073982
10.1016/j.scitotenv.2020.141565
10.1016/j.jhydrol.2019.124482
10.1016/j.scitotenv.2019.06.529
10.2174/9781681088624121010009
10.1007/978-3-642-24797-2_2
10.3390/rs12020266
10.1016/S0893-6080(05)80023-1
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
DBID 0YH
AAYXX
CITATION
DOI 10.1080/10106049.2022.2112982
DatabaseName Taylor & Francis Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
EISSN 1752-0762
EndPage 29
ExternalDocumentID 10_1080_10106049_2022_2112982
2112982
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0YH
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
~02
~S~
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c357t-e800802f14a40b166ed9b10afbf1112bb8af7a139247551cad976e3d91c1c31a3
IEDL.DBID 0YH
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843609600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1010-6049
IngestDate Sat Nov 29 03:13:50 EST 2025
Tue Nov 18 22:27:40 EST 2025
Mon Oct 20 23:47:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-e800802f14a40b166ed9b10afbf1112bb8af7a139247551cad976e3d91c1c31a3
ORCID 0000-0001-5779-1382
0000-0002-6876-8572
0000-0002-5506-9502
0000-0001-8402-156X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2112982
PageCount 29
ParticipantIDs informaworld_taylorfrancis_310_1080_10106049_2022_2112982
crossref_primary_10_1080_10106049_2022_2112982
crossref_citationtrail_10_1080_10106049_2022_2112982
PublicationCentury 2000
PublicationDate 2022-08-12
PublicationDateYYYYMMDD 2022-08-12
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-12
  day: 12
PublicationDecade 2020
PublicationTitle Geocarto international
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_66_1
e_1_3_2_85_1
e_1_3_2_47_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_62_1
e_1_3_2_104_1
e_1_3_2_81_1
e_1_3_2_123_1
Wubalem A (e_1_3_2_116_1) 2020
e_1_3_2_108_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
Zhou ZH. (e_1_3_2_124_1) 2009; 1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_96_1
Baig MA (e_1_3_2_9_1) 2022; 2022
e_1_3_2_3_1
Costache R (e_1_3_2_24_1) 2022
e_1_3_2_92_1
e_1_3_2_50_1
e_1_3_2_73_1
Sheela K (e_1_3_2_102_1) 2021
Ahmed N (e_1_3_2_4_1) 2021
e_1_3_2_112_1
e_1_3_2_29_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_86_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
e_1_3_2_40_1
e_1_3_2_82_1
e_1_3_2_103_1
e_1_3_2_122_1
e_1_3_2_107_1
e_1_3_2_17_1
e_1_3_2_2_1
e_1_3_2_55_1
e_1_3_2_32_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_59_1
e_1_3_2_36_1
e_1_3_2_78_1
e_1_3_2_93_1
e_1_3_2_115_1
e_1_3_2_51_1
e_1_3_2_111_1
e_1_3_2_70_1
e_1_3_2_49_1
e_1_3_2_41_1
e_1_3_2_87_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_68_1
e_1_3_2_83_1
e_1_3_2_121_1
e_1_3_2_60_1
Youssef AM (e_1_3_2_119_1) 2022
e_1_3_2_106_1
e_1_3_2_18_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_75_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_98_1
e_1_3_2_114_1
e_1_3_2_94_1
e_1_3_2_110_1
e_1_3_2_71_1
e_1_3_2_90_1
e_1_3_2_118_1
e_1_3_2_27_1
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_88_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_61_1
e_1_3_2_84_1
e_1_3_2_105_1
e_1_3_2_120_1
BBS (e_1_3_2_10_1) 2011
e_1_3_2_109_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_34_1
e_1_3_2_15_1
Hall JW (e_1_3_2_43_1) 2011
e_1_3_2_57_1
e_1_3_2_99_1
e_1_3_2_113_1
Sayers P (e_1_3_2_97_1) 2013
e_1_3_2_95_1
e_1_3_2_72_1
e_1_3_2_91_1
e_1_3_2_117_1
References_xml – ident: e_1_3_2_79_1
  doi: 10.1109/ITMQIS.2018.8524970
– ident: e_1_3_2_69_1
  doi: 10.1680/fr.41561.007
– ident: e_1_3_2_99_1
  doi: 10.1111/j.1753-318X.2012.01147.x
– ident: e_1_3_2_51_1
  doi: 10.1139/er-2020-0019
– ident: e_1_3_2_91_1
  doi: 10.1007/s12665-022-10269-0
– ident: e_1_3_2_93_1
  doi: 10.1016/j.catena.2019.104450
– ident: e_1_3_2_18_1
  doi: 10.1145/2939672.2939785
– ident: e_1_3_2_70_1
  doi: 10.7930/J0Z31WJ2
– ident: e_1_3_2_48_1
  doi: 10.1016/j.scitotenv.2018.02.278
– ident: e_1_3_2_94_1
  doi: 10.1016/j.scitotenv.2019.02.328
– ident: e_1_3_2_19_1
  doi: 10.3389/fmars.2021.646926
– ident: e_1_3_2_21_1
  doi: 10.1016/j.scitotenv.2018.10.064
– ident: e_1_3_2_39_1
  doi: 10.3390/rs11020196
– start-page: 3
  volume-title: Flood risk science and management
  year: 2011
  ident: e_1_3_2_43_1
– ident: e_1_3_2_103_1
  doi: 10.4018/978-1-4666-7272-7.ch004
– ident: e_1_3_2_28_1
  doi: 10.1016/j.geomorph.2016.10.017
– ident: e_1_3_2_44_1
  doi: 10.1007/s11269-009-9404-7
– ident: e_1_3_2_37_1
  doi: 10.26480/mjg.01.2019.01.11
– ident: e_1_3_2_26_1
  doi: 10.1007/s11269-019-02301-z
– ident: e_1_3_2_53_1
  doi: 10.3390/rs13132638
– ident: e_1_3_2_55_1
  doi: 10.1007/s10346-013-0391-7
– ident: e_1_3_2_23_1
  doi: 10.1016/j.jenvman.2022.115316
– ident: e_1_3_2_45_1
  doi: 10.1038/nclimate1911
– ident: e_1_3_2_58_1
  doi: 10.1016/j.jhydrol.2020.125552
– ident: e_1_3_2_90_1
  doi: 10.1038/s42256-019-0048-x
– ident: e_1_3_2_17_1
  doi: 10.1007/s11069-015-1699-5
– ident: e_1_3_2_25_1
  doi: 10.1016/j.jhydrol.2022.127747
– ident: e_1_3_2_60_1
  doi: 10.1016/j.jhydrol.2019.03.073
– ident: e_1_3_2_68_1
  doi: 10.1016/j.rsase.2020.100343
– ident: e_1_3_2_120_1
  doi: 10.5194/hess-22-2637-2018
– ident: e_1_3_2_106_1
  doi: 10.1007/s00477-020-01862-5
– volume-title: Flood risks management: a strategic approach
  year: 2013
  ident: e_1_3_2_97_1
– ident: e_1_3_2_30_1
  doi: 10.1016/j.advwatres.2016.05.002
– ident: e_1_3_2_122_1
  doi: 10.1016/j.scitotenv.2017.10.037
– ident: e_1_3_2_42_1
  doi: 10.1109/JAS.2021.1004003
– ident: e_1_3_2_114_1
  doi: 10.1007/s11269-011-9866-2
– ident: e_1_3_2_71_1
  doi: 10.1007/978-1-4020-4598-1_13
– ident: e_1_3_2_50_1
  doi: 10.1016/j.gsf.2020.09.006
– start-page: 1
  year: 2020
  ident: e_1_3_2_116_1
  article-title: Comparison of statistical and analytical hierarchy process methods on flood susceptibility mapping: in a case study of Tana sub-basin in northwestern Ethiopia
  publication-title: Nat Hazards Earth Syst Sci Discuss
– ident: e_1_3_2_6_1
  doi: 10.3390/app8081369
– ident: e_1_3_2_100_1
  doi: 10.1111/jfr3.12211
– ident: e_1_3_2_76_1
  doi: 10.3390/s18113704
– ident: e_1_3_2_16_1
  doi: 10.1016/j.catena.2019.104426
– ident: e_1_3_2_77_1
  doi: 10.1016/j.jpdc.2021.03.011
– start-page: 1
  year: 2022
  ident: e_1_3_2_119_1
  article-title: Comparative study of convolutional neural network (CNN) and support vector machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt
  publication-title: Geocarto Int. 2022
– ident: e_1_3_2_27_1
  doi: 10.1016/j.rsase.2020.100379
– ident: e_1_3_2_84_1
  doi: 10.1007/s41748-019-00123-y
– ident: e_1_3_2_3_1
  doi: 10.1007/s11069-019-03749-3
– ident: e_1_3_2_80_1
  doi: 10.1007/s41976-019-00018-6
– ident: e_1_3_2_81_1
  doi: 10.1016/j.jclepro.2021.127737
– ident: e_1_3_2_121_1
  doi: 10.1007/s11069-015-2137-4
– ident: e_1_3_2_74_1
  doi: 10.1016/j.jhydrol.2020.125197
– ident: e_1_3_2_78_1
  doi: 10.1038/sdata.2018.296
– ident: e_1_3_2_22_1
  doi: 10.1016/j.asr.2019.12.003
– ident: e_1_3_2_67_1
  doi: 10.1016/j.jhydrol.2021.126500
– ident: e_1_3_2_11_1
  doi: 10.1109/CVPRW50498.2020.00113
– ident: e_1_3_2_61_1
  doi: 10.1007/s12665-011-1504-z
– ident: e_1_3_2_117_1
  doi: 10.1016/j.jclepro.2021.129039
– ident: e_1_3_2_118_1
  doi: 10.1016/j.catena.2020.104851
– ident: e_1_3_2_49_1
  doi: 10.3390/s19061302
– ident: e_1_3_2_59_1
  doi: 10.1016/j.scitotenv.2018.01.266
– ident: e_1_3_2_57_1
  doi: 10.1007/s11069-016-2357-2
– ident: e_1_3_2_105_1
  doi: 10.1109/MTS.2015.2494358
– ident: e_1_3_2_40_1
  doi: 10.1016/B978-0-12-394846-5.00006-0
– ident: e_1_3_2_73_1
  doi: 10.1016/j.jhydrol.2020.125275
– ident: e_1_3_2_34_1
  doi: 10.1007/s11069-016-2444-4
– ident: e_1_3_2_64_1
  doi: 10.1007/978-3-319-58039-5_11
– ident: e_1_3_2_46_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_3_2_56_1
  doi: 10.1111/j.1539-6924.2012.01844.x
– ident: e_1_3_2_98_1
– ident: e_1_3_2_109_1
  doi: 10.1016/j.scitotenv.2017.09.262
– ident: e_1_3_2_63_1
  doi: 10.1080/02626667.2011.555836
– ident: e_1_3_2_75_1
  doi: 10.1080/15487733.2005.11907970
– ident: e_1_3_2_86_1
  doi: 10.1007/s11069-016-2239-7
– ident: e_1_3_2_14_1
  doi: 10.1016/j.ecolecon.2004.01.020
– ident: e_1_3_2_12_1
  doi: 10.1080/00207233.2016.1236647
– ident: e_1_3_2_92_1
  doi: 10.1007/s12665-019-8285-1
– ident: e_1_3_2_52_1
  doi: 10.3390/su11195426
– ident: e_1_3_2_35_1
  doi: 10.1080/19475705.2015.1052021
– ident: e_1_3_2_107_1
  doi: 10.1186/s13673-020-0210-9
– ident: e_1_3_2_36_1
  doi: 10.1007/s11069-015-1911-7
– ident: e_1_3_2_108_1
  doi: 10.1016/j.jhydrol.2014.03.008
– volume: 2022
  start-page: 1
  year: 2022
  ident: e_1_3_2_9_1
  article-title: How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping?
  publication-title: Natural Hazards
– ident: e_1_3_2_123_1
  doi: 10.1016/j.jtrangeo.2019.102562
– volume-title: Population and housing census, Bangladesh Bureau of Statistics (BBS)
  year: 2011
  ident: e_1_3_2_10_1
– ident: e_1_3_2_110_1
  doi: 10.1155/2012/974638
– ident: e_1_3_2_65_1
  doi: 10.3390/w11081654
– start-page: 1
  year: 2022
  ident: e_1_3_2_24_1
  article-title: Stacking state-of-the-art ensemble for flash-flood potential assessment
  publication-title: Geocarto Int. 2022
– ident: e_1_3_2_95_1
  doi: 10.1007/s13201-019-1102-x
– ident: e_1_3_2_2_1
  doi: 10.1007/s12665-021-09889-9
– ident: e_1_3_2_89_1
  doi: 10.3390/urbansci1010007
– ident: e_1_3_2_13_1
  doi: 10.1023/A:1010933404324
– ident: e_1_3_2_33_1
  doi: 10.1016/j.enconman.2018.02.087
– ident: e_1_3_2_111_1
  doi: 10.1007/s10203-020-00315-6
– ident: e_1_3_2_5_1
  doi: 10.1016/j.quaint.2019.01.022
– ident: e_1_3_2_72_1
  doi: 10.1007/s12145-020-00530-0
– ident: e_1_3_2_82_1
  doi: 10.1016/j.jenvman.2021.113086
– ident: e_1_3_2_113_1
  doi: 10.1016/j.jenvman.2019.06.102
– ident: e_1_3_2_47_1
  doi: 10.1016/j.scitotenv.2017.10.114
– ident: e_1_3_2_62_1
  doi: 10.3390/w12030899
– ident: e_1_3_2_87_1
  doi: 10.1016/j.aei.2019.100944
– ident: e_1_3_2_83_1
  doi: 10.1016/j.gsf.2020.09.022
– ident: e_1_3_2_15_1
  doi: 10.1016/j.scitotenv.2019.02.422
– ident: e_1_3_2_29_1
  doi: 10.1007/978-3-030-04110-6_7
– ident: e_1_3_2_20_1
  doi: 10.3390/ijerph17114140
– ident: e_1_3_2_31_1
  doi: 10.1093/comjnl/bxy082
– ident: e_1_3_2_54_1
  doi: 10.1016/j.jag.2009.06.002
– ident: e_1_3_2_7_1
  doi: 10.1016/j.jhydrol.2020.125007
– ident: e_1_3_2_88_1
  doi: 10.7202/019218ar
– start-page: 1
  year: 2021
  ident: e_1_3_2_4_1
  article-title: Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network
  publication-title: Geocarto Int. 2021
– ident: e_1_3_2_38_1
  doi: 10.3390/s19071486
– ident: e_1_3_2_104_1
  doi: 10.1007/s00477-010-0426-8
– ident: e_1_3_2_66_1
  doi: 10.1016/j.asoc.2012.10.026
– ident: e_1_3_2_32_1
  doi: 10.1016/j.ipm.2020.102468
– volume: 1
  start-page: 270
  year: 2009
  ident: e_1_3_2_124_1
  article-title: Ensemble learning
  publication-title: Encycl Biom
– ident: e_1_3_2_96_1
  doi: 10.3390/su14073982
– ident: e_1_3_2_8_1
  doi: 10.1016/j.scitotenv.2020.141565
– ident: e_1_3_2_112_1
  doi: 10.1016/j.jhydrol.2019.124482
– ident: e_1_3_2_85_1
  doi: 10.1016/j.scitotenv.2019.06.529
– start-page: 131
  volume-title: Blockchain applications for secure IoT frameworks: Technologies shaping the future
  year: 2021
  ident: e_1_3_2_102_1
  doi: 10.2174/9781681088624121010009
– ident: e_1_3_2_41_1
  doi: 10.1007/978-3-642-24797-2_2
– ident: e_1_3_2_101_1
  doi: 10.3390/rs12020266
– ident: e_1_3_2_115_1
  doi: 10.1016/S0893-6080(05)80023-1
SSID ssj0037863
Score 2.3853815
Snippet The couplings of convolutional neural networks (CNN) with random forest (RF), support vector machine (SVM), long short-term memory (LSTM), and extreme gradient...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Blockchain
deep learning algorithm
flash floods
relief
sustainable development
Title Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology
URI https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2112982
Volume ahead-of-print
WOSCitedRecordID wos000843609600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: TFW
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQD8HCo4AoL3lgTVXHTpyMCFF1qpAookyRn20FtFUTkPj3-BKntAMwwJIow0XRxbn7fPnuO4SudGKJipgIrAv-AVPwk5AwHkipecSZ5jTS5bAJ3uslg0F659mEuadVwh7aVkIRZayGj1vIvGbEuTMByRdoMwnDVgiIIXFReCN0WxPYf7WfunUwpjyJK469CzdgUzfxfHeblfS0Il66lHY6e__wwPto12NOfF0tkgO0ZiYNtO3Hn48-Gmir5IGq_BCp-6-GKmyB1I6BfI7FQsATA1N-iLUxM-xHTgwDyIUai5fhdD4uRq85hvIuFli6VPmsRu6GuFjU8I_QQ-e2f9MN_ByGQNGIF4FJyo5cS5hgbUni2OhUkraw0rpIGUqZCMuFg5Ih4w6AKaEdxjFUp0QRRYmgx2h9Mp2YE4RjqtJYpFJTkTCXnh3ei6xDoNw42JZa3kSsdn-mvEg5zMp4yYjXMq19mYEvM-_LJmotzGaVSsdvBunyu82Ksjxiq1kmGf3R9vQPtmdoBy6hKE3Cc7RezN_MBdpU78U4n1-WS9cd-53HT8AC6g8
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4Y1OjFB2rE5x68lrDdbbc9GiPBiFzEyK3ZJxARCFQT_707fSAc1IOeemhm00x3Z75Ov_kGoSsdWaICJjzrgr_HFPwkJIx7UmoecKY5DXQ2bIJ3OlGvFy_3wgCtEr6hbS4UkcVqONxQjC4pce5KQPMF-kx8v-4DZIhcGF4PXK4F_fxu87mMxpRHYU6yd_EGbMounu-WWclPK-qlS3mnufsfT7yHdgrUia_zbbKP1sy4iraKAeiDjyrazJigan6A1ONXSxW2QGvHQD_HYiHhiYEr38famCkuhk70PciGGotRfzIbpoPXOYYCLxZYumT5ogZuQZwuqviH6Kl5271pecUkBk_RgKeeibKeXEuYYA1JwtDoWJKGsNK6WOlLGQnLhQOTPuMOgimhHcoxVMdEEUWJoEeoMp6MzTHCIVVxKGKpqYiYS9AO8QXWYVBuHHCLLa8hVvo_UYVMOUzLGCWkUDMtfZmAL5PClzVUX5hNc52O3wzi5ZebpFmBxObTTBL6o-3JH2wv0Var-9BO2ned-1O0DbegRE38M1RJZ2_mHG2o93Q4n11k-_gTogHtJw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQ74VHAfHGA2uqOnbiZERABQJVSBTRLfKzrSilagMS_x5f4pQyAANMGaKzoot99-Xy3XcInerEEhUxEVgX_AOm4CchYTyQUvOIM81ppIthE7zVSjqd9M6zCSeeVgnf0LYUiihiNRzukbYVI85dCUi-QJtJGNZDQAyJi8ILDjrHsMnbzccqGFOexCXH3oUbsKmaeL5b5kt6-iJeOpN2muv_8MAbaM1jTnxWbpJNNGeGNbTix5_33mtoqeCBqskWUvefDVXYAqkdA_kci6mAJwamfBdrY0bYj5zoBpALNRaD7su4n_eeJxjKu1hg6VLlk-q5BXE-reFvo4fmZfv8KvBzGAJFI54HJik6ci1hgjUkiWOjU0kawkrrImUoZSIsFw5Khow7AKaEdhjHUJ0SRRQlgu6g-eHL0OwiHFOVxiKVmoqEufTs8F5kHQLlxsG21PI9xCr3Z8qLlMOsjEFGvJZp5csMfJl5X-6h-tRsVKp0_GaQzr7bLC_KI7acZZLRH233_2B7gpbvLprZ7XXr5gCtwh2oT5PwEM3n41dzhBbVW96fjI-LXfwB2_Tr2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+flood+risk+assessment+using+deep+learning-based+algorithms+with+a+blockchain+technology&rft.jtitle=Geocarto+international&rft.au=Mia%2C+Md.+Uzzal&rft.au=Rahman%2C+Mahfuzur&rft.au=Elbeltagi%2C+Ahmed&rft.au=Abdullah-Al-Mahbub%2C+Md&rft.date=2022-08-12&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=29&rft_id=info:doi/10.1080%2F10106049.2022.2112982&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2022_2112982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon