Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach

This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative MultiRobot Task Allocation (CMRTA) problem, where the robots have to minimize the total team cost and, additionally, balance their workloads. We formulate the CMRTA problem as a more complex vari...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 5; no. 2; pp. 2529 - 2536
Main Authors: Wei, Changyun, Ji, Ze, Cai, Boliang
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative MultiRobot Task Allocation (CMRTA) problem, where the robots have to minimize the total team cost and, additionally, balance their workloads. We formulate the CMRTA problem as a more complex variant of multiple Travelling Salesman Problems (mTSP) and, in particular, address how to minimize the total travel distance of the entire robot team, as well as how to minimize the highest travel distance of an individual robot. The proposed approach extends the standard single-objective Particle Swarm Optimization (PSO) to cope with the multiple objectives, and its novel feature lies in a Pareto front refinement strategy and a probability-based leader selection strategy. To validate the proposed approach, we first use three benchmark functions to evaluate the performance of finding the true Pareto fronts in comparison with four existing well-known algorithms in continuous spaces. Afterwards, we use six datasets to investigate the task allocation mechanisms in dealing with the CMRTA problem in discrete spaces.
AbstractList This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative MultiRobot Task Allocation (CMRTA) problem, where the robots have to minimize the total team cost and, additionally, balance their workloads. We formulate the CMRTA problem as a more complex variant of multiple Travelling Salesman Problems (mTSP) and, in particular, address how to minimize the total travel distance of the entire robot team, as well as how to minimize the highest travel distance of an individual robot. The proposed approach extends the standard single-objective Particle Swarm Optimization (PSO) to cope with the multiple objectives, and its novel feature lies in a Pareto front refinement strategy and a probability-based leader selection strategy. To validate the proposed approach, we first use three benchmark functions to evaluate the performance of finding the true Pareto fronts in comparison with four existing well-known algorithms in continuous spaces. Afterwards, we use six datasets to investigate the task allocation mechanisms in dealing with the CMRTA problem in discrete spaces.
This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative Multi-Robot Task Allocation (CMRTA) problem, where the robots have to minimize the total team cost and, additionally, balance their workloads. We formulate the CMRTA problem as a more complex variant of multiple Travelling Salesman Problems (mTSP) and, in particular, address how to minimize the total travel distance of the entire robot team, as well as how to minimize the highest travel distance of an individual robot. The proposed approach extends the standard single-objective Particle Swarm Optimization (PSO) to cope with the multiple objectives, and its novel feature lies in a Pareto front refinement strategy and a probability-based leader selection strategy. To validate the proposed approach, we first use three benchmark functions to evaluate the performance of finding the true Pareto fronts in comparison with four existing well-known algorithms in continuous spaces. Afterwards, we use six datasets to investigate the task allocation mechanisms in dealing with the CMRTA problem in discrete spaces.
Author Ji, Ze
Cai, Boliang
Wei, Changyun
Author_xml – sequence: 1
  givenname: Changyun
  orcidid: 0000-0002-5788-6573
  surname: Wei
  fullname: Wei, Changyun
  email: c.wei@hhu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
– sequence: 2
  givenname: Ze
  orcidid: 0000-0002-8968-9902
  surname: Ji
  fullname: Ji, Ze
  email: jiz1@cardiff.ac.uk
  organization: School of Engineering, Cardiff University, Cardiff, United Kingdom
– sequence: 3
  givenname: Boliang
  surname: Cai
  fullname: Cai, Boliang
  email: boliang_cai@outlook.com
  organization: College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
BookMark eNp9kMtLw0AQxhdRsNbeBS8LnlNnH9lNvIXiCyqVWs9hs9ng1jQbN1tF_3rTByIePM3r980w3wk6bFxjEDojMCYE0svpPBtToDCmqaRJyg_QgDIpIyaFOPyVH6NR1y0BgMRUsjQeIP2ofLC6NvjpQ_kVnrXBruyXCtY1uHIeT5xrje_rd4Mf1nWw0dwVLuCF6l5xVtdOb9krnO3Hs2Jp9BbP2tY7pV9O0VGl6s6M9nGInm-uF5O7aDq7vZ9k00izWIbIyLLkDOJSiqSUoLRMTCoSXUilRUmkMAWUhijJNaFxQSoaC0UJN6Ao77tsiC52e_uzb2vThXzp1r7pT-aUCcqBckF7Suwo7V3XeVPl2obtD8ErW-cE8o2nee9pvvE033vaC-GPsPV2pfznf5LzncQaY37wJE0BuGTfQL6Dpg
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_robot_2023_104410
crossref_primary_10_1016_j_robot_2023_104536
crossref_primary_10_3390_su17156772
crossref_primary_10_1155_2021_5518927
crossref_primary_10_3390_electronics12183842
crossref_primary_10_1016_j_kscej_2025_100238
crossref_primary_10_1016_j_cosrev_2021_100369
crossref_primary_10_3390_drones7110679
crossref_primary_10_3390_vehicles7020035
crossref_primary_10_1016_j_oceaneng_2024_117285
crossref_primary_10_1109_TEVC_2024_3364493
crossref_primary_10_1016_j_cor_2025_107109
crossref_primary_10_1109_TASE_2024_3367237
crossref_primary_10_1155_2021_5582646
crossref_primary_10_1007_s00500_022_07423_y
crossref_primary_10_3390_drones7050297
crossref_primary_10_1109_ACCESS_2025_3604143
crossref_primary_10_3390_math10244714
crossref_primary_10_1017_S0263574725102178
crossref_primary_10_1109_LRA_2025_3592146
crossref_primary_10_1016_j_swevo_2024_101558
crossref_primary_10_3233_AIS_230196
crossref_primary_10_1016_j_neucom_2024_128141
crossref_primary_10_1109_TASE_2023_3343449
crossref_primary_10_1016_j_eswa_2024_126116
crossref_primary_10_1109_TASE_2025_3560121
crossref_primary_10_1016_j_oceaneng_2022_113510
crossref_primary_10_1109_ACCESS_2020_3034441
crossref_primary_10_20965_jaciii_2025_p0606
crossref_primary_10_3390_app11135959
crossref_primary_10_1002_net_22268
crossref_primary_10_1109_TRO_2024_3359530
crossref_primary_10_1080_00207543_2021_1955994
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1007_s42401_024_00334_w
crossref_primary_10_1109_LRA_2022_3220155
crossref_primary_10_1109_TITS_2025_3557442
crossref_primary_10_1007_s10489_024_06147_w
crossref_primary_10_1109_TSMC_2025_3559437
crossref_primary_10_3390_app15052849
crossref_primary_10_1016_j_asoc_2025_113959
crossref_primary_10_1145_3719210
crossref_primary_10_1177_01423312231183588
crossref_primary_10_3390_machines10080622
crossref_primary_10_1109_TITS_2023_3336659
crossref_primary_10_1007_s43154_022_00087_4
crossref_primary_10_1109_ACCESS_2023_3329883
crossref_primary_10_1002_tee_23877
crossref_primary_10_1109_LRA_2022_3184446
crossref_primary_10_1016_j_neucom_2025_131099
crossref_primary_10_1109_TAES_2024_3355028
crossref_primary_10_1016_j_neunet_2024_106359
crossref_primary_10_1016_j_asoc_2023_111223
crossref_primary_10_3390_a17010003
crossref_primary_10_1109_TMECH_2024_3396222
crossref_primary_10_1016_j_engappai_2024_109423
crossref_primary_10_1007_s12555_022_1182_5
crossref_primary_10_1109_TSMC_2023_3239953
crossref_primary_10_1016_j_oceaneng_2024_119614
crossref_primary_10_1177_14727978241299513
crossref_primary_10_1109_ACCESS_2024_3524586
crossref_primary_10_1109_TASE_2023_3321835
crossref_primary_10_1109_TRO_2025_3598139
crossref_primary_10_3390_drones9030161
crossref_primary_10_1007_s13369_021_05710_8
crossref_primary_10_1016_j_dajour_2023_100254
crossref_primary_10_1016_j_jksuci_2023_02_022
crossref_primary_10_3390_app12062865
crossref_primary_10_1016_j_jksuci_2023_101580
crossref_primary_10_1049_cim2_12090
crossref_primary_10_1016_j_neucom_2024_127836
crossref_primary_10_1007_s11227_021_03831_3
crossref_primary_10_3390_s21196536
crossref_primary_10_1109_TASE_2023_3336076
crossref_primary_10_1016_j_ins_2025_122512
crossref_primary_10_1016_j_asoc_2023_110628
crossref_primary_10_1109_ACCESS_2022_3165198
crossref_primary_10_1109_JIOT_2025_3569576
crossref_primary_10_1016_j_jii_2022_100366
crossref_primary_10_1016_j_swevo_2024_101565
Cites_doi 10.1109/IROS.2017.8206000
10.1145/3205455.3205572
10.1007/978-3-540-88063-9_10
10.1007/s00158-017-1764-7
10.1109/MCDM.2009.4938830
10.1007/s00158-015-1319-8
10.1016/j.advengsoft.2016.06.006
10.1109/TC.2013.229
10.1007/s10489-016-0825-8
10.1016/j.eswa.2015.10.039
10.1016/j.cie.2014.10.029
10.1016/j.compstruct.2017.02.038
10.1177/0278364904045564
10.1109/TASE.2015.2446614
10.1109/TSMCB.2012.2231860
10.1007/s00500-016-2279-7
10.1109/TCYB.2014.2371918
10.1109/MIS.2019.2942580
10.1016/j.omega.2004.10.004
10.1016/j.advengsoft.2011.05.014
10.1007/s00500-014-1262-4
10.1016/j.asoc.2018.11.048
10.1109/CEC.2002.1004388
10.1002/rob.20216
10.1016/j.asoc.2017.12.031
10.1177/0278364906063426
10.1016/j.engappai.2013.03.001
10.1109/4235.996017
10.1109/SFCS.1976.6
10.1007/s10845-015-1039-3
10.1016/j.cie.2015.12.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2972894
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 2536
ExternalDocumentID 10_1109_LRA_2020_2972894
8990047
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170307
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61703138
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-e7dd4305d768d70ac78e968cb7ac6d176eb0de1a74c125b1f256a214e0a24a743
IEDL.DBID RIE
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526521500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 03:01:50 EDT 2025
Tue Nov 18 19:37:57 EST 2025
Sat Nov 29 06:03:06 EST 2025
Wed Aug 27 02:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-e7dd4305d768d70ac78e968cb7ac6d176eb0de1a74c125b1f256a214e0a24a743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5788-6573
0000-0002-8968-9902
PQID 2362402462
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2020_2972894
proquest_journals_2362402462
crossref_primary_10_1109_LRA_2020_2972894
ieee_primary_8990047
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References zitzler (ref35) 2001
ref34
ref12
ref36
ref14
ref31
ref33
ref11
ref10
ref2
ref1
ref17
lu (ref15) 2019; 76
ref16
ref18
sierra (ref32) 0
coello (ref30) 2007
jer (ref13) 2015; 19
ref24
ref23
ref26
ref25
ref20
liang (ref19) 2015; 19
ref21
ref28
ramezani (ref22) 0
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/IROS.2017.8206000
– ident: ref36
  doi: 10.1145/3205455.3205572
– ident: ref9
  doi: 10.1007/978-3-540-88063-9_10
– ident: ref27
  doi: 10.1007/s00158-017-1764-7
– ident: ref33
  doi: 10.1109/MCDM.2009.4938830
– ident: ref29
  doi: 10.1007/s00158-015-1319-8
– ident: ref25
  doi: 10.1016/j.advengsoft.2016.06.006
– ident: ref18
  doi: 10.1109/TC.2013.229
– volume: 19
  year: 2015
  ident: ref13
  article-title: Kursawe function optimisation using hybrid micro genetic algorithm (HMGA)
  publication-title: Soft Comput
– ident: ref16
  doi: 10.1007/s10489-016-0825-8
– ident: ref17
  doi: 10.1016/j.eswa.2015.10.039
– ident: ref8
  doi: 10.1016/j.cie.2014.10.029
– year: 2007
  ident: ref30
  publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– ident: ref24
  doi: 10.1016/j.compstruct.2017.02.038
– ident: ref1
  doi: 10.1177/0278364904045564
– ident: ref3
  doi: 10.1109/TASE.2015.2446614
– ident: ref14
  doi: 10.1109/TSMCB.2012.2231860
– ident: ref28
  doi: 10.1007/s00500-016-2279-7
– start-page: 95
  year: 2001
  ident: ref35
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems EUROGEN
– ident: ref12
  doi: 10.1109/TCYB.2014.2371918
– ident: ref2
  doi: 10.1109/MIS.2019.2942580
– ident: ref6
  doi: 10.1016/j.omega.2004.10.004
– start-page: 237
  year: 0
  ident: ref22
  article-title: Task scheduling optimization in cloud computing applying multi-objective particle swarm optimization
  publication-title: Proc Int Conf Service-Oriented Comput
– ident: ref34
  doi: 10.1016/j.advengsoft.2011.05.014
– volume: 19
  start-page: 431
  year: 2015
  ident: ref19
  article-title: An adaptive particle swarm optimization method based on clustering
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1262-4
– volume: 76
  start-page: 436
  year: 2019
  ident: ref15
  article-title: Mission-oriented ant-team ACO for min-max MTSP
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.048
– ident: ref31
  doi: 10.1109/CEC.2002.1004388
– ident: ref4
  doi: 10.1002/rob.20216
– ident: ref26
  doi: 10.1016/j.asoc.2017.12.031
– ident: ref5
  doi: 10.1177/0278364906063426
– ident: ref21
  doi: 10.1016/j.engappai.2013.03.001
– ident: ref23
  doi: 10.1109/4235.996017
– ident: ref10
  doi: 10.1109/SFCS.1976.6
– ident: ref20
  doi: 10.1007/s10845-015-1039-3
– ident: ref7
  doi: 10.1016/j.cie.2015.12.007
– start-page: 505
  year: 0
  ident: ref32
  article-title: Improving PSO-based multi-objective optimization using crowding, mutation and-dominance
  publication-title: Proc Int Conf Evol Multi-Criterion Optim
SSID ssj0001527395
Score 2.5054555
Snippet This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative MultiRobot Task Allocation (CMRTA) problem, where the...
This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative Multi-Robot Task Allocation (CMRTA) problem, where the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2529
SubjectTerms Algorithms
cooperating robots
Multi-robot systems
Multiple objective analysis
Multiple robots
Optimization
optimization and optimal control
Particle swarm optimization
Robots
Title Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach
URI https://ieeexplore.ieee.org/document/8990047
https://www.proquest.com/docview/2362402462
Volume 5
WOSCitedRecordID wos000526521500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH448aAHf01xOkcOXgS7tWmaNN7KcHhQN-YPditpkoE6V9mm3vzbTdpsKorgrbQvpeRL33tfkvcF4CiQWWRwZR6VUewRobnHOdGeiiJpE4hwWAjP312wq6t4MOC9JThZ1MJorYvNZ7ppL4u1fJXLFztV1jLcwKobVqDCGC1rtT7nU6ySGI_mK5E-b130E8P_sN_EnBlaQb5FnuIolR_-twgqnY3_fc4mrLvkESUl2luwpMfbsPZFUrAKsufGArp-E5Mn1DUu4cnVWiKToKJ2nj_rUu4bFdW3Xj_P8hm6EdNHlIxsbLO2pyhxj7vZQ-kUUeL0x3fgtnN20z733EEKngwjNvM0U8pKeynDLRTzhWSx5jSWGROSqoBRnflKB4IRafKdLBiaPEjggGhfYGLuhruwPM7Heg-QFDgzxJMITCUxuUusMA19RQ3AUg3DuAateSen0qmM28MuRmnBNnyeGlhSC0vqYKnB8aLFc6mw8Ydt1cKwsHMI1KA-xzF1v-A0xSY0G3JMKN7_vdUBrNp3l9tw6rA8m7zoQ1iRr7P76aQBlcv3s0Yxxj4A1UDPBg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB2xTnNQ--CHZr07RpfCuiTKzb0Cl7K2mSgTpX2ab-fZM2m4oi-FbaE1rypeecL8n5AnDkiSzQuFInFEHkEK6YwxhRjgwCYRIIv1cIz98ntNmMul3WnoGTaS2MUqrYfKZq5rJYy5e5eDVTZXXNDYy64SzMB4Rgt6zW-pxRMVpiLJisRbqsntzEmgFit4YZ1cSCfIs9xWEqPzxwEVYuVv_3QWuwYtNHFJd4r8OMGmzA8hdRwQqIth0N6PadD59RSzuFZ1ttiXSKis7y_EWVgt-oqL91bvIsH6MOHz2huG-im7E9RbF93MoeS7eIYqtAvgl3F-eds4Zjj1JwhB_QsaOolEbcS2p2IanLBY0UCyORUS5C6dFQZa5UHqdE6Iwn83o6E-LYI8rlmOi7_hbMDfKB2gYkOM409SQch4Lo7CWSOPRdGWqIhez5URXqk05OhdUZN8dd9NOCb7gs1bCkBpbUwlKF42mLl1Jj4w_bioFhamcRqMLeBMfU_oSjFOvgrOkxCfHO760OYbHRuU7S5LJ5tQtL5j3lppw9mBsPX9U-LIi38cNoeFCMtA_aStEc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimization+for+Cooperative+Multi-Robot+Task+Allocation%3A+A+Multi-Objective+Approach&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Wei%2C+Changyun&rft.au=Ji%2C+Ze&rft.au=Cai%2C+Boliang&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=2529&rft.epage=2536&rft_id=info:doi/10.1109%2FLRA.2020.2972894&rft.externalDocID=8990047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon