Scheduling local and express trains in suburban rail transit lines: Mixed–integer nonlinear programming and adaptive genetic algorithm
We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose...
Gespeichert in:
| Veröffentlicht in: | Computers & operations research Jg. 135; S. 105436 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
01.11.2021
Pergamon Press Inc |
| Schlagworte: | |
| ISSN: | 0305-0548, 0305-0548 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose two mixed–integer linear programming models for the train timetabling problem under the TSM with and without capacity constraints. Next, we develop two mixed–integer nonlinear programming models under the ELM with and without “overtaking”; thus, a total of four optimization models are proposed. The objective is to minimize the passenger travel time (PTT). Owing to the NP–hardness of the studied problem, we propose an adaptive genetic algorithm (A–GA) that can efficiently solve the four proposed models. The A–GA is customized to solve the train timetabling problem with train capacity, overtaking, and other operational constraints, reducing the PTT. To evaluate the performance of the proposed algorithm, we conduct numerical experiments on 60 randomly generated realistic instances and a real–world case study based on Shanghai Metro Line 16. The computational results for the realistic instances indicate that our A–GA can obtain near–optimal solutions with significantly less computation time than an established commercial solver. The computational results from the real-world case study quantify the benefits of considering the combination of the ELM and overtaking strategies in train timetabling. Furthermore, we perform a sensitivity analysis on key parameters of our mathematical formulations. The results provide insights to railway managers on how to set key parameters when applying the proposed formulations and solution methodology in practice.
•We propose mixed–integer programming formulations for train timetabling in suburban transit lines.•We consider passengers being left behind under limited train capacity and express/local stopping mode.•We accurately calculate passenger waiting times under oversaturated traffic conditions.•We present an adaptive genetic algorithm for optimizing train timetables with overtaking possibility.•The proposed algorithm yields good quality solutions in a short computation time. |
|---|---|
| AbstractList | We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose two mixed–integer linear programming models for the train timetabling problem under the TSM with and without capacity constraints. Next, we develop two mixed–integer nonlinear programming models under the ELM with and without "overtaking"; thus, a total of four optimization models are proposed. The objective is to minimize the passenger travel time (PTT). Owing to the NP–hardness of the studied problem, we propose an adaptive genetic algorithm (A–GA) that can efficiently solve the four proposed models. The A–GA is customized to solve the train timetabling problem with train capacity, overtaking, and other operational constraints, reducing the PTT. To evaluate the performance of the proposed algorithm, we conduct numerical experiments on 60 randomly generated realistic instances and a real–world case study based on Shanghai Metro Line 16. The computational results for the realistic instances indicate that our A–GA can obtain near–optimal solutions with significantly less computation time than an established commercial solver. The computational results from the real-world case study quantify the benefits of considering the combination of the ELM and overtaking strategies in train timetabling. Furthermore, we perform a sensitivity analysis on key parameters of our mathematical formulations. The results provide insights to railway managers on how to set key parameters when applying the proposed formulations and solution methodology in practice. We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose two mixed–integer linear programming models for the train timetabling problem under the TSM with and without capacity constraints. Next, we develop two mixed–integer nonlinear programming models under the ELM with and without “overtaking”; thus, a total of four optimization models are proposed. The objective is to minimize the passenger travel time (PTT). Owing to the NP–hardness of the studied problem, we propose an adaptive genetic algorithm (A–GA) that can efficiently solve the four proposed models. The A–GA is customized to solve the train timetabling problem with train capacity, overtaking, and other operational constraints, reducing the PTT. To evaluate the performance of the proposed algorithm, we conduct numerical experiments on 60 randomly generated realistic instances and a real–world case study based on Shanghai Metro Line 16. The computational results for the realistic instances indicate that our A–GA can obtain near–optimal solutions with significantly less computation time than an established commercial solver. The computational results from the real-world case study quantify the benefits of considering the combination of the ELM and overtaking strategies in train timetabling. Furthermore, we perform a sensitivity analysis on key parameters of our mathematical formulations. The results provide insights to railway managers on how to set key parameters when applying the proposed formulations and solution methodology in practice. •We propose mixed–integer programming formulations for train timetabling in suburban transit lines.•We consider passengers being left behind under limited train capacity and express/local stopping mode.•We accurately calculate passenger waiting times under oversaturated traffic conditions.•We present an adaptive genetic algorithm for optimizing train timetables with overtaking possibility.•The proposed algorithm yields good quality solutions in a short computation time. |
| ArticleNumber | 105436 |
| Author | Tang, Lianhua Ding, Xiaobing D’Ariano, Andrea Li, Yantong Samà, Marcella Xu, Xingfang |
| Author_xml | – sequence: 1 givenname: Lianhua surname: Tang fullname: Tang, Lianhua organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, 201804 Shanghai, China – sequence: 2 givenname: Andrea surname: D’Ariano fullname: D’Ariano, Andrea organization: Department of Engineering, Roma Tre University, Via della Vasca Navale, 79, 00146 Roma, Italy – sequence: 3 givenname: Xingfang surname: Xu fullname: Xu, Xingfang email: xfx@tongji.edu.cn organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, 201804 Shanghai, China – sequence: 4 givenname: Yantong orcidid: 0000-0002-9703-3882 surname: Li fullname: Li, Yantong organization: School of Maritime Economics and Management, Dalian Maritime University, 116026 Dalian, China – sequence: 5 givenname: Xiaobing surname: Ding fullname: Ding, Xiaobing organization: School of Urban Rail Transportation, Shanghai University of Engineering Science, 201620 Shanghai, China – sequence: 6 givenname: Marcella surname: Samà fullname: Samà, Marcella organization: Department of Engineering, Roma Tre University, Via della Vasca Navale, 79, 00146 Roma, Italy |
| BookMark | eNp9kLtOwzAUhi0EEuXyAGyWmFt8iZMWJoS4SSAGYLYc-yR1ldrFdlDZGNl5Q54ER2VADHixz-X7fc6_h7add4DQESUTSmh5sphoHyaMMJpjUfByC40IJ2Kcg-n2r_cu2otxQfKpGB2hj0c9B9N31rW481p1WDmDYb0KECNOQVkXsXU49nUfauVwznRD3kWbcMYgnuJ7uwbz9f5pXYIWAs6zDRUV8Cr4NqjlcpAfhJVRq2RfAbfgIFmNVdf6YNN8eYB2GtVFOPy599Hz1eXTxc347uH69uL8bqy5qNIYSjCcEyoqxWdqZth0WgEFwdWsLomuSSEaQ1lZFg2rC66qZsZq0UwL0FBzofk-Ot7o5tFeeohJLnwfXP5SMlGWgvGKF7mr2nTp4GMM0Ehtk0rWu8GSTlIiB9vlQmbb5WC73NieSfqHXAW7VOHtX-Zsw0Be_NVCkFFbcBqMDaCTNN7-Q38DqP2gjQ |
| CitedBy_id | crossref_primary_10_1109_JLT_2023_3341042 crossref_primary_10_1007_s00500_024_10364_3 crossref_primary_10_1080_19427867_2025_2470456 crossref_primary_10_1016_j_tre_2025_104210 crossref_primary_10_1016_j_tre_2022_102942 crossref_primary_10_1016_j_asoc_2024_111570 crossref_primary_10_1007_s10479_024_05994_7 crossref_primary_10_1007_s13042_023_01966_8 crossref_primary_10_3390_app14146273 crossref_primary_10_1016_j_trb_2023_02_015 crossref_primary_10_1007_s40864_024_00214_8 crossref_primary_10_1016_j_trc_2025_105076 crossref_primary_10_1080_21680566_2024_2336041 crossref_primary_10_1016_j_cor_2022_106091 crossref_primary_10_1016_j_ejor_2023_07_031 crossref_primary_10_1007_s10878_023_01055_0 crossref_primary_10_1155_2022_6431231 crossref_primary_10_1016_j_jclepro_2023_136472 crossref_primary_10_3390_app13031497 crossref_primary_10_1016_j_omega_2023_102968 crossref_primary_10_1049_itr2_12487 crossref_primary_10_1016_j_cor_2022_105859 crossref_primary_10_3390_app13031514 crossref_primary_10_3390_systems12050170 crossref_primary_10_1080_23249935_2024_2362356 crossref_primary_10_1139_cjce_2024_0366 crossref_primary_10_1016_j_simpat_2023_102857 crossref_primary_10_1016_j_trc_2024_104756 crossref_primary_10_1109_TASE_2023_3338695 crossref_primary_10_3390_su17030870 crossref_primary_10_3233_JIFS_231970 crossref_primary_10_3390_app11209519 crossref_primary_10_1109_TASE_2022_3192914 crossref_primary_10_1016_j_cie_2025_111018 crossref_primary_10_1016_j_eswa_2025_129326 crossref_primary_10_1016_j_jrtpm_2023_100374 crossref_primary_10_1016_j_future_2022_10_015 crossref_primary_10_1016_j_eswa_2025_126496 crossref_primary_10_1016_j_jrtpm_2022_100334 |
| Cites_doi | 10.1016/j.trb.2017.01.001 10.1016/j.trb.2020.03.009 10.1016/j.trb.2018.10.006 10.1016/j.trb.2019.12.005 10.1016/j.tre.2020.101882 10.1016/j.cor.2015.12.011 10.1016/j.trb.2019.02.017 10.1016/j.trb.2015.03.004 10.1007/s13676-014-0046-4 10.1023/A:1023499201829 10.1016/j.ejor.2007.10.065 10.1016/j.trb.2020.02.008 10.1016/j.trc.2015.07.012 10.1016/j.trc.2021.103025 10.1016/j.trc.2017.04.010 10.1016/j.energy.2017.07.117 10.1287/opre.50.5.851.362 10.1016/j.trb.2017.06.018 10.1016/j.cor.2016.02.008 10.1016/j.trc.2015.12.007 10.1016/j.trb.2006.06.006 10.1155/2011/646917 10.1080/07408179808966488 10.1002/atr.1261 10.1109/TITS.2014.2323116 10.1109/TSMC.1986.289288 10.1016/j.trc.2018.02.016 10.1016/j.trc.2020.102629 10.1016/j.cor.2013.11.011 10.1016/j.cie.2019.04.031 10.1109/ACCESS.2019.2921758 10.1016/0305-0548(95)00032-1 10.1016/j.apm.2018.02.013 10.1016/j.trc.2013.08.016 10.1109/TITS.2016.2549282 10.1057/s41274-017-0248-x 10.1016/j.trc.2020.102681 10.1016/j.trb.2016.08.011 10.1016/j.tre.2017.06.001 10.1016/j.trc.2018.01.003 10.1016/j.conengprac.2017.02.006 10.1016/j.cor.2013.11.003 10.1109/21.286385 10.1016/j.trb.2018.03.002 10.1016/j.trb.2016.07.010 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Pergamon Press Inc. Nov 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Pergamon Press Inc. Nov 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cor.2021.105436 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 0305-0548 |
| ExternalDocumentID | 10_1016_j_cor_2021_105436 S0305054821001921 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQXK AARIN AAXKI AAXUO AAYFN AAYOK ABAOU ABBOA ABDPE ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO AEBSH AEFWE AEHXG AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7SC 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-e6ed330157a39a9d2887e1e53a9b60cb045fd12664f2b43a7f92b5f84eceb35c3 |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687335100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Wed Aug 13 06:41:45 EDT 2025 Sat Nov 29 03:23:43 EST 2025 Tue Nov 18 22:43:39 EST 2025 Sat Jan 18 16:10:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Train overtaking Adaptive genetic algorithm (A–GA) Traditional (all) stopping mode (TSM) Express/local stopping mode (ELM) Suburban rail transit (SRT) Mixed–integer nonlinear programming (MINLP) Passenger travel time (PTT) Train timetabling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c357t-e6ed330157a39a9d2887e1e53a9b60cb045fd12664f2b43a7f92b5f84eceb35c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9703-3882 |
| PQID | 2566523734 |
| PQPubID | 45870 |
| ParticipantIDs | proquest_journals_2566523734 crossref_citationtrail_10_1016_j_cor_2021_105436 crossref_primary_10_1016_j_cor_2021_105436 elsevier_sciencedirect_doi_10_1016_j_cor_2021_105436 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Mo, Yang, Wang, Qi (b31) 2019; 132 Huang, Mannino, Yang, Tang (b22) 2020; 133 Huang, Yang, Tang, Gao, Cao (b24) 2017; 138 Hansen, Pachl (b18) 2014 Srinivas, Patnaik (b43) 1994; 24 Vuchic (b45) 2005 Hong, Meng, D’Ariano, Veelenturf, Long, Corman (b21) 2021; 125 Canca, Barrena, Algaba, Zarzo (b6) 2014; 48 Zhang, Li, Qiao (b60) 2018; 58 Pettit, Swigger (b35) 1983 Samà, D’Ariano, Corman, Pacciarelli (b40) 2017; 78 Clarke (b8) 1995 Holland (b20) 1975 Shang, Li, Liu, Yang, Wang (b41) 2018; 89 Yun, Gen (b58) 2003; 2 Wang, Tang, Ning, Meng (b50) 2017 Xie, Wong, Zhan, Lo, Chen (b51) 2020; 136 Meng, L., 2018. Special issue on Integrated optimization models and algorithms in rail planning and control 88, 87–90. Wang, D’Ariano, Yin, Meng, Tang, Ning (b46) 2018; 118 Yang, Wang, Huang, Li (b54) 2020; 115 Zhang, Gao, Yang, Gao, Qi (b59) 2020; 134 Hassannayebi, Zegordi (b19) 2017; 78 Corman, D’Ariano, Pacciarelli, Pranzo (b10) 2014; 44 Li, Mao, Bai, Chen (b26) 2019; 7 Caprara, Fischetti, Toth (b7) 2002; 50 Niu, Zhou (b33) 2013; 36 . Roeva (b39) 2008 Meng, Zhou (b30) 2019; 125 Liu, Li, Yang (b27) 2020; 90 Yang, Qi, Li, Gao (b53) 2016; 64 Barrena, Canca, Coelho, Laporte (b2) 2014; 44 Vansteenwegen, P., Oudheusden, D. Van, 2007. Decreasing the passenger waiting time for an intercity rail network 41, 478–492. Angelova, Pencheva (b1) 2011 Reeves, Rowe (b37) 2002 Yue, Wang, Zhou, Tong, Saat (b57) 2016; 63 Cacchiani, Qi, Yang (b4) 2020; 136 Corman (b9) 2020 Huang, Yang, Tang, Cao, Gao (b23) 2016; 17 Luan, Miao, Meng, Corman, Lodewijks (b28) 2017; 80 Wang, Tang, Ning, van den Boom, De Schutter (b49) 2015; 60 Yang, Li, Ning, Tang (b52) 2015; 3 Goldberg (b15) 1989 Gu, Amini, Cassidy (b17) 2016; 93 Wang, De Schutter, Van Den Boom, Ning, Tang (b47) 2014; 15 Niu, Zhou, Gao (b34) 2015; 76 Souai, Teghem (b42) 2009; 199 Cai, Goh, M.A. (b5) 1998; 30 Jiang, Cacchiani, Toth (b25) 2017; 104 Yin, Yang, Tang, Gao, Ran (b56) 2017; 97 Robenek, Azadeh, Maknoon, de Lapparent, Bierlaire (b38) 2018; 111 Wang, Liao, Tang, Ning (b48) 2017; 61 Grefenstette (b16) 1986; 16 Qi, Li, Gao, Yang, Liu (b36) 2018; 69 Gao, Yang, Gao (b14) 2016; 93 Yin, D’Ariano, Wang, Yang, Tang (b55) 2021; 1 Gao, Kroon, Yang, Gao (b13) 2018; 80 Zhang, Liu, Chen (b61) 2016 Cacchiani, Galli, Toth (b3) 2015; 4 DeJong (b11) 1975 Dong, Li, Yin, Ding, Cao (b12) 2020; 117 Nachtigall, Voget (b32) 1996; 23 Huang (10.1016/j.cor.2021.105436_b24) 2017; 138 Angelova (10.1016/j.cor.2021.105436_b1) 2011 Robenek (10.1016/j.cor.2021.105436_b38) 2018; 111 Niu (10.1016/j.cor.2021.105436_b33) 2013; 36 Corman (10.1016/j.cor.2021.105436_b9) 2020 Shang (10.1016/j.cor.2021.105436_b41) 2018; 89 10.1016/j.cor.2021.105436_b44 Wang (10.1016/j.cor.2021.105436_b46) 2018; 118 Jiang (10.1016/j.cor.2021.105436_b25) 2017; 104 Luan (10.1016/j.cor.2021.105436_b28) 2017; 80 Gao (10.1016/j.cor.2021.105436_b13) 2018; 80 Wang (10.1016/j.cor.2021.105436_b49) 2015; 60 Zhang (10.1016/j.cor.2021.105436_b61) 2016 Holland (10.1016/j.cor.2021.105436_b20) 1975 Meng (10.1016/j.cor.2021.105436_b30) 2019; 125 Hansen (10.1016/j.cor.2021.105436_b18) 2014 Dong (10.1016/j.cor.2021.105436_b12) 2020; 117 Yang (10.1016/j.cor.2021.105436_b52) 2015; 3 Huang (10.1016/j.cor.2021.105436_b22) 2020; 133 Barrena (10.1016/j.cor.2021.105436_b2) 2014; 44 Qi (10.1016/j.cor.2021.105436_b36) 2018; 69 Wang (10.1016/j.cor.2021.105436_b50) 2017 Grefenstette (10.1016/j.cor.2021.105436_b16) 1986; 16 Canca (10.1016/j.cor.2021.105436_b6) 2014; 48 Gao (10.1016/j.cor.2021.105436_b14) 2016; 93 Yin (10.1016/j.cor.2021.105436_b56) 2017; 97 Pettit (10.1016/j.cor.2021.105436_b35) 1983 Reeves (10.1016/j.cor.2021.105436_b37) 2002 Srinivas (10.1016/j.cor.2021.105436_b43) 1994; 24 Niu (10.1016/j.cor.2021.105436_b34) 2015; 76 Li (10.1016/j.cor.2021.105436_b26) 2019; 7 Samà (10.1016/j.cor.2021.105436_b40) 2017; 78 DeJong (10.1016/j.cor.2021.105436_b11) 1975 Zhang (10.1016/j.cor.2021.105436_b59) 2020; 134 Zhang (10.1016/j.cor.2021.105436_b60) 2018; 58 Yue (10.1016/j.cor.2021.105436_b57) 2016; 63 Huang (10.1016/j.cor.2021.105436_b23) 2016; 17 Hassannayebi (10.1016/j.cor.2021.105436_b19) 2017; 78 10.1016/j.cor.2021.105436_b29 Yang (10.1016/j.cor.2021.105436_b53) 2016; 64 Vuchic (10.1016/j.cor.2021.105436_b45) 2005 Yin (10.1016/j.cor.2021.105436_b55) 2021; 1 Gu (10.1016/j.cor.2021.105436_b17) 2016; 93 Yun (10.1016/j.cor.2021.105436_b58) 2003; 2 Wang (10.1016/j.cor.2021.105436_b48) 2017; 61 Roeva (10.1016/j.cor.2021.105436_b39) 2008 Liu (10.1016/j.cor.2021.105436_b27) 2020; 90 Caprara (10.1016/j.cor.2021.105436_b7) 2002; 50 Cacchiani (10.1016/j.cor.2021.105436_b3) 2015; 4 Nachtigall (10.1016/j.cor.2021.105436_b32) 1996; 23 Souai (10.1016/j.cor.2021.105436_b42) 2009; 199 Hong (10.1016/j.cor.2021.105436_b21) 2021; 125 Wang (10.1016/j.cor.2021.105436_b47) 2014; 15 Cai (10.1016/j.cor.2021.105436_b5) 1998; 30 Corman (10.1016/j.cor.2021.105436_b10) 2014; 44 Cacchiani (10.1016/j.cor.2021.105436_b4) 2020; 136 Clarke (10.1016/j.cor.2021.105436_b8) 1995 Xie (10.1016/j.cor.2021.105436_b51) 2020; 136 Yang (10.1016/j.cor.2021.105436_b54) 2020; 115 Mo (10.1016/j.cor.2021.105436_b31) 2019; 132 Goldberg (10.1016/j.cor.2021.105436_b15) 1989 |
| References_xml | – volume: 48 start-page: 119 year: 2014 end-page: 137 ident: b6 article-title: Design and analysis of demand-adapted railway timetables publication-title: J. Adv. Transp. – volume: 78 start-page: 439 year: 2017 end-page: 453 ident: b19 article-title: Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem publication-title: Comput. Oper. Res. – volume: 132 start-page: 412 year: 2019 end-page: 432 ident: b31 article-title: A flexible metro train scheduling approach to minimize energy cost and passenger waiting time publication-title: Comput. Ind. Eng. – year: 2014 ident: b18 article-title: Railway Timetabling & Operations – reference: Meng, L., 2018. Special issue on Integrated optimization models and algorithms in rail planning and control 88, 87–90. – volume: 64 start-page: 57 year: 2016 end-page: 76 ident: b53 article-title: Collaborative optimization for train scheduling and train stop planning on high-speed railways publication-title: Omega (United Kingdom) – volume: 24 start-page: 656 year: 1994 end-page: 667 ident: b43 article-title: Adaptive probabilities of crossover and mutation in genetic algorithms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 1 year: 2021 ident: b55 article-title: Timetable coordination in a rail transit network with time-dependent passenger demand publication-title: European J. Oper. Res. – year: 2005 ident: b45 article-title: Urban Transit: Operation, Planning and Economics – volume: 97 start-page: 182 year: 2017 end-page: 213 ident: b56 article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches publication-title: Transp. Res. Part B Methodol – volume: 80 start-page: 175 year: 2018 end-page: 191 ident: b13 article-title: Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor publication-title: Omega (United Kingdom) – volume: 16 start-page: 122 year: 1986 end-page: 128 ident: b16 article-title: Optimization of control parameters for genetic algorithms publication-title: IEEE Trans. Syst. Man Cybern. – year: 1995 ident: b8 article-title: An examination of railroad capacity and its implications for rail-highway intermodal transportation – volume: 111 start-page: 19 year: 2018 end-page: 38 ident: b38 article-title: Train timetable design under elastic passenger demand publication-title: Transp. Res. Part B Methodol – year: 2008 ident: b39 article-title: Improvement of genetic algorithm performance for identification of cultivation process models publication-title: Advanced Topics on Evolutionary Computing – volume: 125 year: 2021 ident: b21 article-title: Integrated optimization of capacitated train rescheduling and passenger reassignment under disruptions publication-title: Transp. Res. Part C Emerg. Technol – volume: 80 start-page: 329 year: 2017 end-page: 359 ident: b28 article-title: Integrated optimization on train scheduling and preventive maintenance time slots planning publication-title: Transp. Res. Part C Emerg. Technol – year: 1975 ident: b20 article-title: Adaptation in Natural and Artificial Systems – volume: 4 start-page: 285 year: 2015 end-page: 320 ident: b3 article-title: A tutorial on non-periodic train timetabling and platforming problems publication-title: EURO J. Transp. Logist. – volume: 133 start-page: 38 year: 2020 end-page: 61 ident: b22 article-title: Coupling time-indexed and big-m formulations for real-time train scheduling during metro service disruptions publication-title: Transp. Res. Part B Methodol – year: 2002 ident: b37 article-title: Genetic Algorithms: Principles and Perspectives: A Guide To GA Theory – start-page: 1 year: 2020 end-page: 38 ident: b9 article-title: Interactions and equilibrium between rescheduling train traffic and routing passengers in microscopic delay management: A game theoretical study publication-title: Transp. Sci. – volume: 76 start-page: 117 year: 2015 end-page: 135 ident: b34 article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints publication-title: Transp. Res. Part B Methodol – volume: 90 year: 2020 ident: b27 article-title: Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy publication-title: Omega (United Kingdom) – volume: 44 start-page: 146 year: 2014 end-page: 160 ident: b10 article-title: Dispatching and coordination in multi-area railway traffic management publication-title: Comput. Oper. Res. – volume: 136 start-page: 1 year: 2020 end-page: 29 ident: b4 article-title: Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty publication-title: Transp. Res. Part B Methodol. – year: 2017 ident: b50 article-title: Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines publication-title: Transp. Res. Part E Logist. Transp. Rev. – volume: 136 year: 2020 ident: b51 article-title: Train schedule optimization based on schedule-based stochastic passenger assignment publication-title: Transp. Res. Part E Logist. Transp. Rev. – volume: 36 start-page: 212 year: 2013 end-page: 230 ident: b33 article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions publication-title: Transp. Res. Part C Emerg. Technol – volume: 78 start-page: 480 year: 2017 end-page: 499 ident: b40 article-title: A variable neighbourhood search for fast train scheduling and routing during disturbed railway traffic situations publication-title: Comput. Oper. Res. – year: 2016 ident: b61 article-title: Optimal train scheduling under a flexible skip-stop scheme for urban rail transit based on smartcard data publication-title: 2016 IEEE International Conference on Intelligent Rail Transportation, ICIRT 2016 – volume: 3 start-page: 79 year: 2015 end-page: 98 ident: b52 article-title: An optimisation method for train scheduling with minimum energy consumption and travel time in metro rail systems publication-title: Transp. B – volume: 104 start-page: 149 year: 2017 end-page: 174 ident: b25 article-title: Train timetabling by skip-stop planning in highly congested lines publication-title: Transp. Res. Part B Methodol – volume: 89 start-page: 321 year: 2018 end-page: 343 ident: b41 article-title: Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network publication-title: Transp. Res. Part C Emerg. Technol – volume: 30 start-page: 481 year: 1998 end-page: 493 ident: b5 article-title: Greedy heuristics for rapid scheduling of trains on a single track publication-title: IIE Trans. – volume: 93 start-page: 126 year: 2016 end-page: 145 ident: b17 article-title: Exploring alternative service schemes for busy transit corridors publication-title: Transp. Res. Part B Methodol – year: 1989 ident: b15 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning – reference: Vansteenwegen, P., Oudheusden, D. Van, 2007. Decreasing the passenger waiting time for an intercity rail network 41, 478–492. – volume: 93 start-page: 425 year: 2016 end-page: 449 ident: b14 article-title: Energy consumption and travel time analysis for metro lines with express/local mode publication-title: Transp. Res. Part D Transp. Environ. – year: 1975 ident: b11 article-title: Analysis of the behavior of a class of genetic adaptive systems – volume: 61 start-page: 112 year: 2017 end-page: 123 ident: b48 article-title: Train scheduling and circulation planning in urban rail transit lines publication-title: Control Eng. Pract. – year: 1983 ident: b35 article-title: An analysis of genetic-based pattern tracking and cognitive-based component tracking models of adaptation – volume: 134 start-page: 64 year: 2020 end-page: 92 ident: b59 article-title: Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation publication-title: Transp. Res. Part B Methodol – volume: 50 start-page: 851 year: 2002 end-page: 861 ident: b7 article-title: Modeling and solving the train timetabling problem publication-title: Oper. Res. – volume: 44 start-page: 66 year: 2014 end-page: 74 ident: b2 article-title: Exact formulations and algorithm for the train timetabling problem with dynamic demand publication-title: Comput. Oper. Res. – volume: 69 start-page: 556 year: 2018 end-page: 570 ident: b36 article-title: Joint optimization model for train scheduling and train stop planning with passengers distribution on railway corridors publication-title: J. Oper. Res. Soc. – volume: 117 year: 2020 ident: b12 article-title: Integrated optimization of train stop planning and timetabling for commuter railways with an extended adaptive large neighborhood search metaheuristic approach publication-title: Transp. Res. Part C Emerg. Technol. – volume: 138 start-page: 1124 year: 2017 end-page: 1147 ident: b24 article-title: Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks publication-title: Energy – volume: 2 start-page: 161 year: 2003 end-page: 175 ident: b58 article-title: Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics publication-title: Fuzzy Optim. Decis. Mak. – volume: 115 year: 2020 ident: b54 article-title: Service replanning in urban rail transit networks: Cross-line express trains for reducing the number of passenger transfers and travel time publication-title: Transp. Res. C – year: 2011 ident: b1 article-title: Tuning genetic algorithm parameters to improve convergence time publication-title: Int. J. Chem. Eng. – volume: 7 start-page: 88534 year: 2019 end-page: 88546 ident: b26 article-title: Integrated optimization of train stop planning and scheduling on metro lines with express/local mode publication-title: IEEE Access – reference: . – volume: 118 start-page: 193 year: 2018 end-page: 227 ident: b46 article-title: Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line publication-title: Transp. Res. B – volume: 15 start-page: 2658 year: 2014 end-page: 2670 ident: b47 article-title: Efficient bilevel approach for urban rail transit operation with stop-skipping publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 60 start-page: 1 year: 2015 end-page: 23 ident: b49 article-title: Passenger-demands-oriented train scheduling for an urban rail transit network publication-title: Transp. Res. Part C Emerg. Technol – volume: 23 start-page: 453 year: 1996 end-page: 463 ident: b32 article-title: A genetic algorithm approach to periodic railway synchronization publication-title: Comput. Oper. Res. – volume: 63 start-page: 126 year: 2016 end-page: 146 ident: b57 article-title: Optimizing train stopping patterns and schedules for high-speed passenger rail corridors publication-title: Transp. Res. Part C Emerg. Technol – volume: 125 start-page: 1 year: 2019 end-page: 28 ident: b30 article-title: An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network publication-title: Transp. Res. Part B Methodol – volume: 199 start-page: 674 year: 2009 end-page: 683 ident: b42 article-title: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem publication-title: Eur. J. Oper. Res. – volume: 58 start-page: 421 year: 2018 end-page: 446 ident: b60 article-title: Comprehensive optimization of urban rail transit timetable by minimizing total travel times under time-dependent passenger demand and congested conditions publication-title: Appl. Math. Model. – volume: 17 start-page: 3364 year: 2016 end-page: 3379 ident: b23 article-title: Saving energy and improving service quality: Bicriteria train scheduling in urban rail transit systems publication-title: IEEE Trans. Intell. Transp. Syst. – year: 1989 ident: 10.1016/j.cor.2021.105436_b15 – volume: 97 start-page: 182 year: 2017 ident: 10.1016/j.cor.2021.105436_b56 article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2017.01.001 – year: 1983 ident: 10.1016/j.cor.2021.105436_b35 – volume: 136 start-page: 1 year: 2020 ident: 10.1016/j.cor.2021.105436_b4 article-title: Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2020.03.009 – year: 1995 ident: 10.1016/j.cor.2021.105436_b8 – volume: 118 start-page: 193 year: 2018 ident: 10.1016/j.cor.2021.105436_b46 article-title: Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line publication-title: Transp. Res. B doi: 10.1016/j.trb.2018.10.006 – volume: 133 start-page: 38 year: 2020 ident: 10.1016/j.cor.2021.105436_b22 article-title: Coupling time-indexed and big-m formulations for real-time train scheduling during metro service disruptions publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2019.12.005 – volume: 90 year: 2020 ident: 10.1016/j.cor.2021.105436_b27 article-title: Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy publication-title: Omega (United Kingdom) – volume: 136 year: 2020 ident: 10.1016/j.cor.2021.105436_b51 article-title: Train schedule optimization based on schedule-based stochastic passenger assignment publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2020.101882 – volume: 78 start-page: 439 year: 2017 ident: 10.1016/j.cor.2021.105436_b19 article-title: Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.12.011 – year: 2005 ident: 10.1016/j.cor.2021.105436_b45 – volume: 125 start-page: 1 year: 2019 ident: 10.1016/j.cor.2021.105436_b30 article-title: An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2019.02.017 – volume: 76 start-page: 117 year: 2015 ident: 10.1016/j.cor.2021.105436_b34 article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2015.03.004 – volume: 4 start-page: 285 year: 2015 ident: 10.1016/j.cor.2021.105436_b3 article-title: A tutorial on non-periodic train timetabling and platforming problems publication-title: EURO J. Transp. Logist. doi: 10.1007/s13676-014-0046-4 – volume: 2 start-page: 161 year: 2003 ident: 10.1016/j.cor.2021.105436_b58 article-title: Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1023/A:1023499201829 – volume: 199 start-page: 674 year: 2009 ident: 10.1016/j.cor.2021.105436_b42 article-title: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.10.065 – volume: 134 start-page: 64 year: 2020 ident: 10.1016/j.cor.2021.105436_b59 article-title: Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2020.02.008 – volume: 60 start-page: 1 year: 2015 ident: 10.1016/j.cor.2021.105436_b49 article-title: Passenger-demands-oriented train scheduling for an urban rail transit network publication-title: Transp. Res. Part C Emerg. Technol doi: 10.1016/j.trc.2015.07.012 – volume: 125 year: 2021 ident: 10.1016/j.cor.2021.105436_b21 article-title: Integrated optimization of capacitated train rescheduling and passenger reassignment under disruptions publication-title: Transp. Res. Part C Emerg. Technol doi: 10.1016/j.trc.2021.103025 – volume: 80 start-page: 329 year: 2017 ident: 10.1016/j.cor.2021.105436_b28 article-title: Integrated optimization on train scheduling and preventive maintenance time slots planning publication-title: Transp. Res. Part C Emerg. Technol doi: 10.1016/j.trc.2017.04.010 – volume: 1 year: 2021 ident: 10.1016/j.cor.2021.105436_b55 article-title: Timetable coordination in a rail transit network with time-dependent passenger demand publication-title: European J. Oper. Res. – volume: 138 start-page: 1124 year: 2017 ident: 10.1016/j.cor.2021.105436_b24 article-title: Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks publication-title: Energy doi: 10.1016/j.energy.2017.07.117 – volume: 64 start-page: 57 year: 2016 ident: 10.1016/j.cor.2021.105436_b53 article-title: Collaborative optimization for train scheduling and train stop planning on high-speed railways publication-title: Omega (United Kingdom) – volume: 80 start-page: 175 year: 2018 ident: 10.1016/j.cor.2021.105436_b13 article-title: Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor publication-title: Omega (United Kingdom) – volume: 50 start-page: 851 year: 2002 ident: 10.1016/j.cor.2021.105436_b7 article-title: Modeling and solving the train timetabling problem publication-title: Oper. Res. doi: 10.1287/opre.50.5.851.362 – volume: 104 start-page: 149 year: 2017 ident: 10.1016/j.cor.2021.105436_b25 article-title: Train timetabling by skip-stop planning in highly congested lines publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2017.06.018 – volume: 78 start-page: 480 year: 2017 ident: 10.1016/j.cor.2021.105436_b40 article-title: A variable neighbourhood search for fast train scheduling and routing during disturbed railway traffic situations publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.02.008 – volume: 63 start-page: 126 year: 2016 ident: 10.1016/j.cor.2021.105436_b57 article-title: Optimizing train stopping patterns and schedules for high-speed passenger rail corridors publication-title: Transp. Res. Part C Emerg. Technol doi: 10.1016/j.trc.2015.12.007 – ident: 10.1016/j.cor.2021.105436_b44 doi: 10.1016/j.trb.2006.06.006 – year: 2008 ident: 10.1016/j.cor.2021.105436_b39 article-title: Improvement of genetic algorithm performance for identification of cultivation process models – year: 2016 ident: 10.1016/j.cor.2021.105436_b61 article-title: Optimal train scheduling under a flexible skip-stop scheme for urban rail transit based on smartcard data – year: 2011 ident: 10.1016/j.cor.2021.105436_b1 article-title: Tuning genetic algorithm parameters to improve convergence time publication-title: Int. J. Chem. Eng. doi: 10.1155/2011/646917 – volume: 30 start-page: 481 year: 1998 ident: 10.1016/j.cor.2021.105436_b5 article-title: Greedy heuristics for rapid scheduling of trains on a single track publication-title: IIE Trans. doi: 10.1080/07408179808966488 – volume: 48 start-page: 119 year: 2014 ident: 10.1016/j.cor.2021.105436_b6 article-title: Design and analysis of demand-adapted railway timetables publication-title: J. Adv. Transp. doi: 10.1002/atr.1261 – volume: 15 start-page: 2658 year: 2014 ident: 10.1016/j.cor.2021.105436_b47 article-title: Efficient bilevel approach for urban rail transit operation with stop-skipping publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2323116 – volume: 16 start-page: 122 issue: 1 year: 1986 ident: 10.1016/j.cor.2021.105436_b16 article-title: Optimization of control parameters for genetic algorithms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1986.289288 – volume: 89 start-page: 321 year: 2018 ident: 10.1016/j.cor.2021.105436_b41 article-title: Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network publication-title: Transp. Res. Part C Emerg. Technol doi: 10.1016/j.trc.2018.02.016 – year: 2014 ident: 10.1016/j.cor.2021.105436_b18 – year: 2002 ident: 10.1016/j.cor.2021.105436_b37 – volume: 115 year: 2020 ident: 10.1016/j.cor.2021.105436_b54 article-title: Service replanning in urban rail transit networks: Cross-line express trains for reducing the number of passenger transfers and travel time publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102629 – volume: 44 start-page: 146 year: 2014 ident: 10.1016/j.cor.2021.105436_b10 article-title: Dispatching and coordination in multi-area railway traffic management publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.11.011 – volume: 132 start-page: 412 year: 2019 ident: 10.1016/j.cor.2021.105436_b31 article-title: A flexible metro train scheduling approach to minimize energy cost and passenger waiting time publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.04.031 – volume: 7 start-page: 88534 year: 2019 ident: 10.1016/j.cor.2021.105436_b26 article-title: Integrated optimization of train stop planning and scheduling on metro lines with express/local mode publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921758 – volume: 23 start-page: 453 year: 1996 ident: 10.1016/j.cor.2021.105436_b32 article-title: A genetic algorithm approach to periodic railway synchronization publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(95)00032-1 – volume: 58 start-page: 421 year: 2018 ident: 10.1016/j.cor.2021.105436_b60 article-title: Comprehensive optimization of urban rail transit timetable by minimizing total travel times under time-dependent passenger demand and congested conditions publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.02.013 – volume: 36 start-page: 212 year: 2013 ident: 10.1016/j.cor.2021.105436_b33 article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions publication-title: Transp. Res. Part C Emerg. Technol doi: 10.1016/j.trc.2013.08.016 – volume: 17 start-page: 3364 year: 2016 ident: 10.1016/j.cor.2021.105436_b23 article-title: Saving energy and improving service quality: Bicriteria train scheduling in urban rail transit systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2549282 – volume: 69 start-page: 556 year: 2018 ident: 10.1016/j.cor.2021.105436_b36 article-title: Joint optimization model for train scheduling and train stop planning with passengers distribution on railway corridors publication-title: J. Oper. Res. Soc. doi: 10.1057/s41274-017-0248-x – volume: 117 year: 2020 ident: 10.1016/j.cor.2021.105436_b12 article-title: Integrated optimization of train stop planning and timetabling for commuter railways with an extended adaptive large neighborhood search metaheuristic approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2020.102681 – year: 1975 ident: 10.1016/j.cor.2021.105436_b20 – volume: 93 start-page: 425 year: 2016 ident: 10.1016/j.cor.2021.105436_b14 article-title: Energy consumption and travel time analysis for metro lines with express/local mode publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trb.2016.08.011 – start-page: 1 year: 2020 ident: 10.1016/j.cor.2021.105436_b9 article-title: Interactions and equilibrium between rescheduling train traffic and routing passengers in microscopic delay management: A game theoretical study publication-title: Transp. Sci. – year: 2017 ident: 10.1016/j.cor.2021.105436_b50 article-title: Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2017.06.001 – ident: 10.1016/j.cor.2021.105436_b29 doi: 10.1016/j.trc.2018.01.003 – volume: 61 start-page: 112 year: 2017 ident: 10.1016/j.cor.2021.105436_b48 article-title: Train scheduling and circulation planning in urban rail transit lines publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2017.02.006 – volume: 3 start-page: 79 year: 2015 ident: 10.1016/j.cor.2021.105436_b52 article-title: An optimisation method for train scheduling with minimum energy consumption and travel time in metro rail systems publication-title: Transp. B – volume: 44 start-page: 66 year: 2014 ident: 10.1016/j.cor.2021.105436_b2 article-title: Exact formulations and algorithm for the train timetabling problem with dynamic demand publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.11.003 – volume: 24 start-page: 656 year: 1994 ident: 10.1016/j.cor.2021.105436_b43 article-title: Adaptive probabilities of crossover and mutation in genetic algorithms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.286385 – volume: 111 start-page: 19 year: 2018 ident: 10.1016/j.cor.2021.105436_b38 article-title: Train timetable design under elastic passenger demand publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2018.03.002 – year: 1975 ident: 10.1016/j.cor.2021.105436_b11 – volume: 93 start-page: 126 year: 2016 ident: 10.1016/j.cor.2021.105436_b17 article-title: Exploring alternative service schemes for busy transit corridors publication-title: Transp. Res. Part B Methodol doi: 10.1016/j.trb.2016.07.010 |
| SSID | ssj0000721 |
| Score | 2.527037 |
| Snippet | We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105436 |
| SubjectTerms | Adaptive algorithms Adaptive genetic algorithm (A–GA) Case studies Express/local stopping mode (ELM) Genetic algorithms Integer programming Linear programming Mathematical models Mixed–integer nonlinear programming (MINLP) Nonlinear programming Operations research Optimization Parameter sensitivity Passenger travel time (PTT) Rail transportation Railway stations Sensitivity analysis Suburban rail transit (SRT) Traditional (all) stopping mode (TSM) Train overtaking Train timetabling Trains Travel time |
| Title | Scheduling local and express trains in suburban rail transit lines: Mixed–integer nonlinear programming and adaptive genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.cor.2021.105436 https://www.proquest.com/docview/2566523734 |
| Volume | 135 |
| WOSCitedRecordID | wos000687335100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 0305-0548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFiE48BGKWihoD-RCZan22l6bW0QTAQqhEikyp9XaXqepUid1kipHjtz5ZfwFfgmzX06oQgQHLla0ju3Vvued2fWbGYReZlRIu0edgBee47sidaJAcIeGWZ6GkZ9lKm7tc4_2-1GSxKeNxg8bC3M9pmUZLZfx9L9CDW0Atgyd_Qe465tCA_wG0OEIsMPxr4D_BDDkCxVlrgyV-jwglkrwqitCKAnsbAHDmcLbDS1Sbw4mazQ_kk6nEsl9GC1FbpUQRCWVENVRqRNryPTYWtd1aWMcec6nSoUE_RIqCex4OKlG8_PLdffX1pCYKcZNpqIySjyTc6jemx6YbewesPd8UZuOk5ZH2zCG5aQWY9bnkoVsS6BDBTfmWAqNlFrhiyqVPFzf4vBcE-tnSXkqqqEsvaRVKb8LROV85YDbqedwsaHNzvIkWJun3Y3WQ29kXAD4MlOs58oiyD7ZkKm7_5F1z3o9NugkgxbpTq8cWcZMfu5vkRNNqVto16NBDBPtbvtdJ3m_cg-oCgasO2k_tSvR4Y0n_8lZuuE2KF9o8BDdN4sY3Nbke4QaomyiOzaGookeWJyxMR1NdG8t8eVj9G1FUqxIioFD2JAUa5LiUYktSbEkKTYkxYqkr7Gi6M-v3w05cU1OvEZOdWNLTmzIiWty7qGzbmfw5q1jaoI4GQno3BGhyAkYpYByEvM498BIClcEhMdpeJylsEIpche8Tr_wUp9wWsReGhSRLzKRkiAjT9AOdEfsIwyWLA_BPHE_LHxwm6McnOEgLnhE8zCKsgN0bAefZSZhvhyAMbPKyAsGeDGJF9N4HaBX9SVTnS1m2599iygz7q52YxnwcdtlhxZ9ZqadGYOFSxh4hBL_6fbTz9Dd1Rt2iHbm1UI8R7ez6_loVr0wXP0FnLXXcg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling+local+and+express+trains+in+suburban+rail+transit+lines%3A+Mixed%E2%80%93integer+nonlinear+programming+and+adaptive+genetic+algorithm&rft.jtitle=Computers+%26+operations+research&rft.au=Tang%2C+Lianhua&rft.au=D%27Ariano%2C+Andrea&rft.au=Xu%2C+Xingfang&rft.au=Li%2C+Yantong&rft.date=2021-11-01&rft.pub=Pergamon+Press+Inc&rft.issn=0305-0548&rft.eissn=0305-0548&rft.volume=135&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cor.2021.105436&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |