Scheduling local and express trains in suburban rail transit lines: Mixed–integer nonlinear programming and adaptive genetic algorithm

We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 135; S. 105436
Hauptverfasser: Tang, Lianhua, D’Ariano, Andrea, Xu, Xingfang, Li, Yantong, Ding, Xiaobing, Samà, Marcella
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.11.2021
Pergamon Press Inc
Schlagworte:
ISSN:0305-0548, 0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose two mixed–integer linear programming models for the train timetabling problem under the TSM with and without capacity constraints. Next, we develop two mixed–integer nonlinear programming models under the ELM with and without “overtaking”; thus, a total of four optimization models are proposed. The objective is to minimize the passenger travel time (PTT). Owing to the NP–hardness of the studied problem, we propose an adaptive genetic algorithm (A–GA) that can efficiently solve the four proposed models. The A–GA is customized to solve the train timetabling problem with train capacity, overtaking, and other operational constraints, reducing the PTT. To evaluate the performance of the proposed algorithm, we conduct numerical experiments on 60 randomly generated realistic instances and a real–world case study based on Shanghai Metro Line 16. The computational results for the realistic instances indicate that our A–GA can obtain near–optimal solutions with significantly less computation time than an established commercial solver. The computational results from the real-world case study quantify the benefits of considering the combination of the ELM and overtaking strategies in train timetabling. Furthermore, we perform a sensitivity analysis on key parameters of our mathematical formulations. The results provide insights to railway managers on how to set key parameters when applying the proposed formulations and solution methodology in practice. •We propose mixed–integer programming formulations for train timetabling in suburban transit lines.•We consider passengers being left behind under limited train capacity and express/local stopping mode.•We accurately calculate passenger waiting times under oversaturated traffic conditions.•We present an adaptive genetic algorithm for optimizing train timetables with overtaking possibility.•The proposed algorithm yields good quality solutions in a short computation time.
AbstractList We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose two mixed–integer linear programming models for the train timetabling problem under the TSM with and without capacity constraints. Next, we develop two mixed–integer nonlinear programming models under the ELM with and without "overtaking"; thus, a total of four optimization models are proposed. The objective is to minimize the passenger travel time (PTT). Owing to the NP–hardness of the studied problem, we propose an adaptive genetic algorithm (A–GA) that can efficiently solve the four proposed models. The A–GA is customized to solve the train timetabling problem with train capacity, overtaking, and other operational constraints, reducing the PTT. To evaluate the performance of the proposed algorithm, we conduct numerical experiments on 60 randomly generated realistic instances and a real–world case study based on Shanghai Metro Line 16. The computational results for the realistic instances indicate that our A–GA can obtain near–optimal solutions with significantly less computation time than an established commercial solver. The computational results from the real-world case study quantify the benefits of considering the combination of the ELM and overtaking strategies in train timetabling. Furthermore, we perform a sensitivity analysis on key parameters of our mathematical formulations. The results provide insights to railway managers on how to set key parameters when applying the proposed formulations and solution methodology in practice.
We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at each station, and (2) the express/local stopping mode (ELM), in which express trains can skip certain low–demand stations. We first propose two mixed–integer linear programming models for the train timetabling problem under the TSM with and without capacity constraints. Next, we develop two mixed–integer nonlinear programming models under the ELM with and without “overtaking”; thus, a total of four optimization models are proposed. The objective is to minimize the passenger travel time (PTT). Owing to the NP–hardness of the studied problem, we propose an adaptive genetic algorithm (A–GA) that can efficiently solve the four proposed models. The A–GA is customized to solve the train timetabling problem with train capacity, overtaking, and other operational constraints, reducing the PTT. To evaluate the performance of the proposed algorithm, we conduct numerical experiments on 60 randomly generated realistic instances and a real–world case study based on Shanghai Metro Line 16. The computational results for the realistic instances indicate that our A–GA can obtain near–optimal solutions with significantly less computation time than an established commercial solver. The computational results from the real-world case study quantify the benefits of considering the combination of the ELM and overtaking strategies in train timetabling. Furthermore, we perform a sensitivity analysis on key parameters of our mathematical formulations. The results provide insights to railway managers on how to set key parameters when applying the proposed formulations and solution methodology in practice. •We propose mixed–integer programming formulations for train timetabling in suburban transit lines.•We consider passengers being left behind under limited train capacity and express/local stopping mode.•We accurately calculate passenger waiting times under oversaturated traffic conditions.•We present an adaptive genetic algorithm for optimizing train timetables with overtaking possibility.•The proposed algorithm yields good quality solutions in a short computation time.
ArticleNumber 105436
Author Tang, Lianhua
Ding, Xiaobing
D’Ariano, Andrea
Li, Yantong
Samà, Marcella
Xu, Xingfang
Author_xml – sequence: 1
  givenname: Lianhua
  surname: Tang
  fullname: Tang, Lianhua
  organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, 201804 Shanghai, China
– sequence: 2
  givenname: Andrea
  surname: D’Ariano
  fullname: D’Ariano, Andrea
  organization: Department of Engineering, Roma Tre University, Via della Vasca Navale, 79, 00146 Roma, Italy
– sequence: 3
  givenname: Xingfang
  surname: Xu
  fullname: Xu, Xingfang
  email: xfx@tongji.edu.cn
  organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, 201804 Shanghai, China
– sequence: 4
  givenname: Yantong
  orcidid: 0000-0002-9703-3882
  surname: Li
  fullname: Li, Yantong
  organization: School of Maritime Economics and Management, Dalian Maritime University, 116026 Dalian, China
– sequence: 5
  givenname: Xiaobing
  surname: Ding
  fullname: Ding, Xiaobing
  organization: School of Urban Rail Transportation, Shanghai University of Engineering Science, 201620 Shanghai, China
– sequence: 6
  givenname: Marcella
  surname: Samà
  fullname: Samà, Marcella
  organization: Department of Engineering, Roma Tre University, Via della Vasca Navale, 79, 00146 Roma, Italy
BookMark eNp9kLtOwzAUhi0EEuXyAGyWmFt8iZMWJoS4SSAGYLYc-yR1ldrFdlDZGNl5Q54ER2VADHixz-X7fc6_h7add4DQESUTSmh5sphoHyaMMJpjUfByC40IJ2Kcg-n2r_cu2otxQfKpGB2hj0c9B9N31rW481p1WDmDYb0KECNOQVkXsXU49nUfauVwznRD3kWbcMYgnuJ7uwbz9f5pXYIWAs6zDRUV8Cr4NqjlcpAfhJVRq2RfAbfgIFmNVdf6YNN8eYB2GtVFOPy599Hz1eXTxc347uH69uL8bqy5qNIYSjCcEyoqxWdqZth0WgEFwdWsLomuSSEaQ1lZFg2rC66qZsZq0UwL0FBzofk-Ot7o5tFeeohJLnwfXP5SMlGWgvGKF7mr2nTp4GMM0Ehtk0rWu8GSTlIiB9vlQmbb5WC73NieSfqHXAW7VOHtX-Zsw0Be_NVCkFFbcBqMDaCTNN7-Q38DqP2gjQ
CitedBy_id crossref_primary_10_1109_JLT_2023_3341042
crossref_primary_10_1007_s00500_024_10364_3
crossref_primary_10_1080_19427867_2025_2470456
crossref_primary_10_1016_j_tre_2025_104210
crossref_primary_10_1016_j_tre_2022_102942
crossref_primary_10_1016_j_asoc_2024_111570
crossref_primary_10_1007_s10479_024_05994_7
crossref_primary_10_1007_s13042_023_01966_8
crossref_primary_10_3390_app14146273
crossref_primary_10_1016_j_trb_2023_02_015
crossref_primary_10_1007_s40864_024_00214_8
crossref_primary_10_1016_j_trc_2025_105076
crossref_primary_10_1080_21680566_2024_2336041
crossref_primary_10_1016_j_cor_2022_106091
crossref_primary_10_1016_j_ejor_2023_07_031
crossref_primary_10_1007_s10878_023_01055_0
crossref_primary_10_1155_2022_6431231
crossref_primary_10_1016_j_jclepro_2023_136472
crossref_primary_10_3390_app13031497
crossref_primary_10_1016_j_omega_2023_102968
crossref_primary_10_1049_itr2_12487
crossref_primary_10_1016_j_cor_2022_105859
crossref_primary_10_3390_app13031514
crossref_primary_10_3390_systems12050170
crossref_primary_10_1080_23249935_2024_2362356
crossref_primary_10_1139_cjce_2024_0366
crossref_primary_10_1016_j_simpat_2023_102857
crossref_primary_10_1016_j_trc_2024_104756
crossref_primary_10_1109_TASE_2023_3338695
crossref_primary_10_3390_su17030870
crossref_primary_10_3233_JIFS_231970
crossref_primary_10_3390_app11209519
crossref_primary_10_1109_TASE_2022_3192914
crossref_primary_10_1016_j_cie_2025_111018
crossref_primary_10_1016_j_eswa_2025_129326
crossref_primary_10_1016_j_jrtpm_2023_100374
crossref_primary_10_1016_j_future_2022_10_015
crossref_primary_10_1016_j_eswa_2025_126496
crossref_primary_10_1016_j_jrtpm_2022_100334
Cites_doi 10.1016/j.trb.2017.01.001
10.1016/j.trb.2020.03.009
10.1016/j.trb.2018.10.006
10.1016/j.trb.2019.12.005
10.1016/j.tre.2020.101882
10.1016/j.cor.2015.12.011
10.1016/j.trb.2019.02.017
10.1016/j.trb.2015.03.004
10.1007/s13676-014-0046-4
10.1023/A:1023499201829
10.1016/j.ejor.2007.10.065
10.1016/j.trb.2020.02.008
10.1016/j.trc.2015.07.012
10.1016/j.trc.2021.103025
10.1016/j.trc.2017.04.010
10.1016/j.energy.2017.07.117
10.1287/opre.50.5.851.362
10.1016/j.trb.2017.06.018
10.1016/j.cor.2016.02.008
10.1016/j.trc.2015.12.007
10.1016/j.trb.2006.06.006
10.1155/2011/646917
10.1080/07408179808966488
10.1002/atr.1261
10.1109/TITS.2014.2323116
10.1109/TSMC.1986.289288
10.1016/j.trc.2018.02.016
10.1016/j.trc.2020.102629
10.1016/j.cor.2013.11.011
10.1016/j.cie.2019.04.031
10.1109/ACCESS.2019.2921758
10.1016/0305-0548(95)00032-1
10.1016/j.apm.2018.02.013
10.1016/j.trc.2013.08.016
10.1109/TITS.2016.2549282
10.1057/s41274-017-0248-x
10.1016/j.trc.2020.102681
10.1016/j.trb.2016.08.011
10.1016/j.tre.2017.06.001
10.1016/j.trc.2018.01.003
10.1016/j.conengprac.2017.02.006
10.1016/j.cor.2013.11.003
10.1109/21.286385
10.1016/j.trb.2018.03.002
10.1016/j.trb.2016.07.010
ContentType Journal Article
Copyright 2021
Copyright Pergamon Press Inc. Nov 2021
Copyright_xml – notice: 2021
– notice: Copyright Pergamon Press Inc. Nov 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2021.105436
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 0305-0548
ExternalDocumentID 10_1016_j_cor_2021_105436
S0305054821001921
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AEBSH
AEFWE
AEHXG
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-e6ed330157a39a9d2887e1e53a9b60cb045fd12664f2b43a7f92b5f84eceb35c3
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687335100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Wed Aug 13 06:41:45 EDT 2025
Sat Nov 29 03:23:43 EST 2025
Tue Nov 18 22:43:39 EST 2025
Sat Jan 18 16:10:18 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Train overtaking
Adaptive genetic algorithm (A–GA)
Traditional (all) stopping mode (TSM)
Express/local stopping mode (ELM)
Suburban rail transit (SRT)
Mixed–integer nonlinear programming (MINLP)
Passenger travel time (PTT)
Train timetabling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-e6ed330157a39a9d2887e1e53a9b60cb045fd12664f2b43a7f92b5f84eceb35c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9703-3882
PQID 2566523734
PQPubID 45870
ParticipantIDs proquest_journals_2566523734
crossref_citationtrail_10_1016_j_cor_2021_105436
crossref_primary_10_1016_j_cor_2021_105436
elsevier_sciencedirect_doi_10_1016_j_cor_2021_105436
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2021
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Mo, Yang, Wang, Qi (b31) 2019; 132
Huang, Mannino, Yang, Tang (b22) 2020; 133
Huang, Yang, Tang, Gao, Cao (b24) 2017; 138
Hansen, Pachl (b18) 2014
Srinivas, Patnaik (b43) 1994; 24
Vuchic (b45) 2005
Hong, Meng, D’Ariano, Veelenturf, Long, Corman (b21) 2021; 125
Canca, Barrena, Algaba, Zarzo (b6) 2014; 48
Zhang, Li, Qiao (b60) 2018; 58
Pettit, Swigger (b35) 1983
Samà, D’Ariano, Corman, Pacciarelli (b40) 2017; 78
Clarke (b8) 1995
Holland (b20) 1975
Shang, Li, Liu, Yang, Wang (b41) 2018; 89
Yun, Gen (b58) 2003; 2
Wang, Tang, Ning, Meng (b50) 2017
Xie, Wong, Zhan, Lo, Chen (b51) 2020; 136
Meng, L., 2018. Special issue on Integrated optimization models and algorithms in rail planning and control 88, 87–90.
Wang, D’Ariano, Yin, Meng, Tang, Ning (b46) 2018; 118
Yang, Wang, Huang, Li (b54) 2020; 115
Zhang, Gao, Yang, Gao, Qi (b59) 2020; 134
Hassannayebi, Zegordi (b19) 2017; 78
Corman, D’Ariano, Pacciarelli, Pranzo (b10) 2014; 44
Li, Mao, Bai, Chen (b26) 2019; 7
Caprara, Fischetti, Toth (b7) 2002; 50
Niu, Zhou (b33) 2013; 36
.
Roeva (b39) 2008
Meng, Zhou (b30) 2019; 125
Liu, Li, Yang (b27) 2020; 90
Yang, Qi, Li, Gao (b53) 2016; 64
Barrena, Canca, Coelho, Laporte (b2) 2014; 44
Vansteenwegen, P., Oudheusden, D. Van, 2007. Decreasing the passenger waiting time for an intercity rail network 41, 478–492.
Angelova, Pencheva (b1) 2011
Reeves, Rowe (b37) 2002
Yue, Wang, Zhou, Tong, Saat (b57) 2016; 63
Cacchiani, Qi, Yang (b4) 2020; 136
Corman (b9) 2020
Huang, Yang, Tang, Cao, Gao (b23) 2016; 17
Luan, Miao, Meng, Corman, Lodewijks (b28) 2017; 80
Wang, Tang, Ning, van den Boom, De Schutter (b49) 2015; 60
Yang, Li, Ning, Tang (b52) 2015; 3
Goldberg (b15) 1989
Gu, Amini, Cassidy (b17) 2016; 93
Wang, De Schutter, Van Den Boom, Ning, Tang (b47) 2014; 15
Niu, Zhou, Gao (b34) 2015; 76
Souai, Teghem (b42) 2009; 199
Cai, Goh, M.A. (b5) 1998; 30
Jiang, Cacchiani, Toth (b25) 2017; 104
Yin, Yang, Tang, Gao, Ran (b56) 2017; 97
Robenek, Azadeh, Maknoon, de Lapparent, Bierlaire (b38) 2018; 111
Wang, Liao, Tang, Ning (b48) 2017; 61
Grefenstette (b16) 1986; 16
Qi, Li, Gao, Yang, Liu (b36) 2018; 69
Gao, Yang, Gao (b14) 2016; 93
Yin, D’Ariano, Wang, Yang, Tang (b55) 2021; 1
Gao, Kroon, Yang, Gao (b13) 2018; 80
Zhang, Liu, Chen (b61) 2016
Cacchiani, Galli, Toth (b3) 2015; 4
DeJong (b11) 1975
Dong, Li, Yin, Ding, Cao (b12) 2020; 117
Nachtigall, Voget (b32) 1996; 23
Huang (10.1016/j.cor.2021.105436_b24) 2017; 138
Angelova (10.1016/j.cor.2021.105436_b1) 2011
Robenek (10.1016/j.cor.2021.105436_b38) 2018; 111
Niu (10.1016/j.cor.2021.105436_b33) 2013; 36
Corman (10.1016/j.cor.2021.105436_b9) 2020
Shang (10.1016/j.cor.2021.105436_b41) 2018; 89
10.1016/j.cor.2021.105436_b44
Wang (10.1016/j.cor.2021.105436_b46) 2018; 118
Jiang (10.1016/j.cor.2021.105436_b25) 2017; 104
Luan (10.1016/j.cor.2021.105436_b28) 2017; 80
Gao (10.1016/j.cor.2021.105436_b13) 2018; 80
Wang (10.1016/j.cor.2021.105436_b49) 2015; 60
Zhang (10.1016/j.cor.2021.105436_b61) 2016
Holland (10.1016/j.cor.2021.105436_b20) 1975
Meng (10.1016/j.cor.2021.105436_b30) 2019; 125
Hansen (10.1016/j.cor.2021.105436_b18) 2014
Dong (10.1016/j.cor.2021.105436_b12) 2020; 117
Yang (10.1016/j.cor.2021.105436_b52) 2015; 3
Huang (10.1016/j.cor.2021.105436_b22) 2020; 133
Barrena (10.1016/j.cor.2021.105436_b2) 2014; 44
Qi (10.1016/j.cor.2021.105436_b36) 2018; 69
Wang (10.1016/j.cor.2021.105436_b50) 2017
Grefenstette (10.1016/j.cor.2021.105436_b16) 1986; 16
Canca (10.1016/j.cor.2021.105436_b6) 2014; 48
Gao (10.1016/j.cor.2021.105436_b14) 2016; 93
Yin (10.1016/j.cor.2021.105436_b56) 2017; 97
Pettit (10.1016/j.cor.2021.105436_b35) 1983
Reeves (10.1016/j.cor.2021.105436_b37) 2002
Srinivas (10.1016/j.cor.2021.105436_b43) 1994; 24
Niu (10.1016/j.cor.2021.105436_b34) 2015; 76
Li (10.1016/j.cor.2021.105436_b26) 2019; 7
Samà (10.1016/j.cor.2021.105436_b40) 2017; 78
DeJong (10.1016/j.cor.2021.105436_b11) 1975
Zhang (10.1016/j.cor.2021.105436_b59) 2020; 134
Zhang (10.1016/j.cor.2021.105436_b60) 2018; 58
Yue (10.1016/j.cor.2021.105436_b57) 2016; 63
Huang (10.1016/j.cor.2021.105436_b23) 2016; 17
Hassannayebi (10.1016/j.cor.2021.105436_b19) 2017; 78
10.1016/j.cor.2021.105436_b29
Yang (10.1016/j.cor.2021.105436_b53) 2016; 64
Vuchic (10.1016/j.cor.2021.105436_b45) 2005
Yin (10.1016/j.cor.2021.105436_b55) 2021; 1
Gu (10.1016/j.cor.2021.105436_b17) 2016; 93
Yun (10.1016/j.cor.2021.105436_b58) 2003; 2
Wang (10.1016/j.cor.2021.105436_b48) 2017; 61
Roeva (10.1016/j.cor.2021.105436_b39) 2008
Liu (10.1016/j.cor.2021.105436_b27) 2020; 90
Caprara (10.1016/j.cor.2021.105436_b7) 2002; 50
Cacchiani (10.1016/j.cor.2021.105436_b3) 2015; 4
Nachtigall (10.1016/j.cor.2021.105436_b32) 1996; 23
Souai (10.1016/j.cor.2021.105436_b42) 2009; 199
Hong (10.1016/j.cor.2021.105436_b21) 2021; 125
Wang (10.1016/j.cor.2021.105436_b47) 2014; 15
Cai (10.1016/j.cor.2021.105436_b5) 1998; 30
Corman (10.1016/j.cor.2021.105436_b10) 2014; 44
Cacchiani (10.1016/j.cor.2021.105436_b4) 2020; 136
Clarke (10.1016/j.cor.2021.105436_b8) 1995
Xie (10.1016/j.cor.2021.105436_b51) 2020; 136
Yang (10.1016/j.cor.2021.105436_b54) 2020; 115
Mo (10.1016/j.cor.2021.105436_b31) 2019; 132
Goldberg (10.1016/j.cor.2021.105436_b15) 1989
References_xml – volume: 48
  start-page: 119
  year: 2014
  end-page: 137
  ident: b6
  article-title: Design and analysis of demand-adapted railway timetables
  publication-title: J. Adv. Transp.
– volume: 78
  start-page: 439
  year: 2017
  end-page: 453
  ident: b19
  article-title: Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem
  publication-title: Comput. Oper. Res.
– volume: 132
  start-page: 412
  year: 2019
  end-page: 432
  ident: b31
  article-title: A flexible metro train scheduling approach to minimize energy cost and passenger waiting time
  publication-title: Comput. Ind. Eng.
– year: 2014
  ident: b18
  article-title: Railway Timetabling & Operations
– reference: Meng, L., 2018. Special issue on Integrated optimization models and algorithms in rail planning and control 88, 87–90.
– volume: 64
  start-page: 57
  year: 2016
  end-page: 76
  ident: b53
  article-title: Collaborative optimization for train scheduling and train stop planning on high-speed railways
  publication-title: Omega (United Kingdom)
– volume: 24
  start-page: 656
  year: 1994
  end-page: 667
  ident: b43
  article-title: Adaptive probabilities of crossover and mutation in genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 1
  year: 2021
  ident: b55
  article-title: Timetable coordination in a rail transit network with time-dependent passenger demand
  publication-title: European J. Oper. Res.
– year: 2005
  ident: b45
  article-title: Urban Transit: Operation, Planning and Economics
– volume: 97
  start-page: 182
  year: 2017
  end-page: 213
  ident: b56
  article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches
  publication-title: Transp. Res. Part B Methodol
– volume: 80
  start-page: 175
  year: 2018
  end-page: 191
  ident: b13
  article-title: Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor
  publication-title: Omega (United Kingdom)
– volume: 16
  start-page: 122
  year: 1986
  end-page: 128
  ident: b16
  article-title: Optimization of control parameters for genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 1995
  ident: b8
  article-title: An examination of railroad capacity and its implications for rail-highway intermodal transportation
– volume: 111
  start-page: 19
  year: 2018
  end-page: 38
  ident: b38
  article-title: Train timetable design under elastic passenger demand
  publication-title: Transp. Res. Part B Methodol
– year: 2008
  ident: b39
  article-title: Improvement of genetic algorithm performance for identification of cultivation process models
  publication-title: Advanced Topics on Evolutionary Computing
– volume: 125
  year: 2021
  ident: b21
  article-title: Integrated optimization of capacitated train rescheduling and passenger reassignment under disruptions
  publication-title: Transp. Res. Part C Emerg. Technol
– volume: 80
  start-page: 329
  year: 2017
  end-page: 359
  ident: b28
  article-title: Integrated optimization on train scheduling and preventive maintenance time slots planning
  publication-title: Transp. Res. Part C Emerg. Technol
– year: 1975
  ident: b20
  article-title: Adaptation in Natural and Artificial Systems
– volume: 4
  start-page: 285
  year: 2015
  end-page: 320
  ident: b3
  article-title: A tutorial on non-periodic train timetabling and platforming problems
  publication-title: EURO J. Transp. Logist.
– volume: 133
  start-page: 38
  year: 2020
  end-page: 61
  ident: b22
  article-title: Coupling time-indexed and big-m formulations for real-time train scheduling during metro service disruptions
  publication-title: Transp. Res. Part B Methodol
– year: 2002
  ident: b37
  article-title: Genetic Algorithms: Principles and Perspectives: A Guide To GA Theory
– start-page: 1
  year: 2020
  end-page: 38
  ident: b9
  article-title: Interactions and equilibrium between rescheduling train traffic and routing passengers in microscopic delay management: A game theoretical study
  publication-title: Transp. Sci.
– volume: 76
  start-page: 117
  year: 2015
  end-page: 135
  ident: b34
  article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints
  publication-title: Transp. Res. Part B Methodol
– volume: 90
  year: 2020
  ident: b27
  article-title: Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy
  publication-title: Omega (United Kingdom)
– volume: 44
  start-page: 146
  year: 2014
  end-page: 160
  ident: b10
  article-title: Dispatching and coordination in multi-area railway traffic management
  publication-title: Comput. Oper. Res.
– volume: 136
  start-page: 1
  year: 2020
  end-page: 29
  ident: b4
  article-title: Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty
  publication-title: Transp. Res. Part B Methodol.
– year: 2017
  ident: b50
  article-title: Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
– volume: 136
  year: 2020
  ident: b51
  article-title: Train schedule optimization based on schedule-based stochastic passenger assignment
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
– volume: 36
  start-page: 212
  year: 2013
  end-page: 230
  ident: b33
  article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions
  publication-title: Transp. Res. Part C Emerg. Technol
– volume: 78
  start-page: 480
  year: 2017
  end-page: 499
  ident: b40
  article-title: A variable neighbourhood search for fast train scheduling and routing during disturbed railway traffic situations
  publication-title: Comput. Oper. Res.
– year: 2016
  ident: b61
  article-title: Optimal train scheduling under a flexible skip-stop scheme for urban rail transit based on smartcard data
  publication-title: 2016 IEEE International Conference on Intelligent Rail Transportation, ICIRT 2016
– volume: 3
  start-page: 79
  year: 2015
  end-page: 98
  ident: b52
  article-title: An optimisation method for train scheduling with minimum energy consumption and travel time in metro rail systems
  publication-title: Transp. B
– volume: 104
  start-page: 149
  year: 2017
  end-page: 174
  ident: b25
  article-title: Train timetabling by skip-stop planning in highly congested lines
  publication-title: Transp. Res. Part B Methodol
– volume: 89
  start-page: 321
  year: 2018
  end-page: 343
  ident: b41
  article-title: Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network
  publication-title: Transp. Res. Part C Emerg. Technol
– volume: 30
  start-page: 481
  year: 1998
  end-page: 493
  ident: b5
  article-title: Greedy heuristics for rapid scheduling of trains on a single track
  publication-title: IIE Trans.
– volume: 93
  start-page: 126
  year: 2016
  end-page: 145
  ident: b17
  article-title: Exploring alternative service schemes for busy transit corridors
  publication-title: Transp. Res. Part B Methodol
– year: 1989
  ident: b15
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– reference: Vansteenwegen, P., Oudheusden, D. Van, 2007. Decreasing the passenger waiting time for an intercity rail network 41, 478–492.
– volume: 93
  start-page: 425
  year: 2016
  end-page: 449
  ident: b14
  article-title: Energy consumption and travel time analysis for metro lines with express/local mode
  publication-title: Transp. Res. Part D Transp. Environ.
– year: 1975
  ident: b11
  article-title: Analysis of the behavior of a class of genetic adaptive systems
– volume: 61
  start-page: 112
  year: 2017
  end-page: 123
  ident: b48
  article-title: Train scheduling and circulation planning in urban rail transit lines
  publication-title: Control Eng. Pract.
– year: 1983
  ident: b35
  article-title: An analysis of genetic-based pattern tracking and cognitive-based component tracking models of adaptation
– volume: 134
  start-page: 64
  year: 2020
  end-page: 92
  ident: b59
  article-title: Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation
  publication-title: Transp. Res. Part B Methodol
– volume: 50
  start-page: 851
  year: 2002
  end-page: 861
  ident: b7
  article-title: Modeling and solving the train timetabling problem
  publication-title: Oper. Res.
– volume: 44
  start-page: 66
  year: 2014
  end-page: 74
  ident: b2
  article-title: Exact formulations and algorithm for the train timetabling problem with dynamic demand
  publication-title: Comput. Oper. Res.
– volume: 69
  start-page: 556
  year: 2018
  end-page: 570
  ident: b36
  article-title: Joint optimization model for train scheduling and train stop planning with passengers distribution on railway corridors
  publication-title: J. Oper. Res. Soc.
– volume: 117
  year: 2020
  ident: b12
  article-title: Integrated optimization of train stop planning and timetabling for commuter railways with an extended adaptive large neighborhood search metaheuristic approach
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 138
  start-page: 1124
  year: 2017
  end-page: 1147
  ident: b24
  article-title: Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks
  publication-title: Energy
– volume: 2
  start-page: 161
  year: 2003
  end-page: 175
  ident: b58
  article-title: Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 115
  year: 2020
  ident: b54
  article-title: Service replanning in urban rail transit networks: Cross-line express trains for reducing the number of passenger transfers and travel time
  publication-title: Transp. Res. C
– year: 2011
  ident: b1
  article-title: Tuning genetic algorithm parameters to improve convergence time
  publication-title: Int. J. Chem. Eng.
– volume: 7
  start-page: 88534
  year: 2019
  end-page: 88546
  ident: b26
  article-title: Integrated optimization of train stop planning and scheduling on metro lines with express/local mode
  publication-title: IEEE Access
– reference: .
– volume: 118
  start-page: 193
  year: 2018
  end-page: 227
  ident: b46
  article-title: Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line
  publication-title: Transp. Res. B
– volume: 15
  start-page: 2658
  year: 2014
  end-page: 2670
  ident: b47
  article-title: Efficient bilevel approach for urban rail transit operation with stop-skipping
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 60
  start-page: 1
  year: 2015
  end-page: 23
  ident: b49
  article-title: Passenger-demands-oriented train scheduling for an urban rail transit network
  publication-title: Transp. Res. Part C Emerg. Technol
– volume: 23
  start-page: 453
  year: 1996
  end-page: 463
  ident: b32
  article-title: A genetic algorithm approach to periodic railway synchronization
  publication-title: Comput. Oper. Res.
– volume: 63
  start-page: 126
  year: 2016
  end-page: 146
  ident: b57
  article-title: Optimizing train stopping patterns and schedules for high-speed passenger rail corridors
  publication-title: Transp. Res. Part C Emerg. Technol
– volume: 125
  start-page: 1
  year: 2019
  end-page: 28
  ident: b30
  article-title: An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network
  publication-title: Transp. Res. Part B Methodol
– volume: 199
  start-page: 674
  year: 2009
  end-page: 683
  ident: b42
  article-title: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem
  publication-title: Eur. J. Oper. Res.
– volume: 58
  start-page: 421
  year: 2018
  end-page: 446
  ident: b60
  article-title: Comprehensive optimization of urban rail transit timetable by minimizing total travel times under time-dependent passenger demand and congested conditions
  publication-title: Appl. Math. Model.
– volume: 17
  start-page: 3364
  year: 2016
  end-page: 3379
  ident: b23
  article-title: Saving energy and improving service quality: Bicriteria train scheduling in urban rail transit systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 1989
  ident: 10.1016/j.cor.2021.105436_b15
– volume: 97
  start-page: 182
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b56
  article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2017.01.001
– year: 1983
  ident: 10.1016/j.cor.2021.105436_b35
– volume: 136
  start-page: 1
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b4
  article-title: Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2020.03.009
– year: 1995
  ident: 10.1016/j.cor.2021.105436_b8
– volume: 118
  start-page: 193
  year: 2018
  ident: 10.1016/j.cor.2021.105436_b46
  article-title: Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2018.10.006
– volume: 133
  start-page: 38
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b22
  article-title: Coupling time-indexed and big-m formulations for real-time train scheduling during metro service disruptions
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2019.12.005
– volume: 90
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b27
  article-title: Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy
  publication-title: Omega (United Kingdom)
– volume: 136
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b51
  article-title: Train schedule optimization based on schedule-based stochastic passenger assignment
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
  doi: 10.1016/j.tre.2020.101882
– volume: 78
  start-page: 439
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b19
  article-title: Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.12.011
– year: 2005
  ident: 10.1016/j.cor.2021.105436_b45
– volume: 125
  start-page: 1
  year: 2019
  ident: 10.1016/j.cor.2021.105436_b30
  article-title: An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2019.02.017
– volume: 76
  start-page: 117
  year: 2015
  ident: 10.1016/j.cor.2021.105436_b34
  article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2015.03.004
– volume: 4
  start-page: 285
  year: 2015
  ident: 10.1016/j.cor.2021.105436_b3
  article-title: A tutorial on non-periodic train timetabling and platforming problems
  publication-title: EURO J. Transp. Logist.
  doi: 10.1007/s13676-014-0046-4
– volume: 2
  start-page: 161
  year: 2003
  ident: 10.1016/j.cor.2021.105436_b58
  article-title: Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1023/A:1023499201829
– volume: 199
  start-page: 674
  year: 2009
  ident: 10.1016/j.cor.2021.105436_b42
  article-title: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.10.065
– volume: 134
  start-page: 64
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b59
  article-title: Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2020.02.008
– volume: 60
  start-page: 1
  year: 2015
  ident: 10.1016/j.cor.2021.105436_b49
  article-title: Passenger-demands-oriented train scheduling for an urban rail transit network
  publication-title: Transp. Res. Part C Emerg. Technol
  doi: 10.1016/j.trc.2015.07.012
– volume: 125
  year: 2021
  ident: 10.1016/j.cor.2021.105436_b21
  article-title: Integrated optimization of capacitated train rescheduling and passenger reassignment under disruptions
  publication-title: Transp. Res. Part C Emerg. Technol
  doi: 10.1016/j.trc.2021.103025
– volume: 80
  start-page: 329
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b28
  article-title: Integrated optimization on train scheduling and preventive maintenance time slots planning
  publication-title: Transp. Res. Part C Emerg. Technol
  doi: 10.1016/j.trc.2017.04.010
– volume: 1
  year: 2021
  ident: 10.1016/j.cor.2021.105436_b55
  article-title: Timetable coordination in a rail transit network with time-dependent passenger demand
  publication-title: European J. Oper. Res.
– volume: 138
  start-page: 1124
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b24
  article-title: Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.117
– volume: 64
  start-page: 57
  year: 2016
  ident: 10.1016/j.cor.2021.105436_b53
  article-title: Collaborative optimization for train scheduling and train stop planning on high-speed railways
  publication-title: Omega (United Kingdom)
– volume: 80
  start-page: 175
  year: 2018
  ident: 10.1016/j.cor.2021.105436_b13
  article-title: Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor
  publication-title: Omega (United Kingdom)
– volume: 50
  start-page: 851
  year: 2002
  ident: 10.1016/j.cor.2021.105436_b7
  article-title: Modeling and solving the train timetabling problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.50.5.851.362
– volume: 104
  start-page: 149
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b25
  article-title: Train timetabling by skip-stop planning in highly congested lines
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2017.06.018
– volume: 78
  start-page: 480
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b40
  article-title: A variable neighbourhood search for fast train scheduling and routing during disturbed railway traffic situations
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.02.008
– volume: 63
  start-page: 126
  year: 2016
  ident: 10.1016/j.cor.2021.105436_b57
  article-title: Optimizing train stopping patterns and schedules for high-speed passenger rail corridors
  publication-title: Transp. Res. Part C Emerg. Technol
  doi: 10.1016/j.trc.2015.12.007
– ident: 10.1016/j.cor.2021.105436_b44
  doi: 10.1016/j.trb.2006.06.006
– year: 2008
  ident: 10.1016/j.cor.2021.105436_b39
  article-title: Improvement of genetic algorithm performance for identification of cultivation process models
– year: 2016
  ident: 10.1016/j.cor.2021.105436_b61
  article-title: Optimal train scheduling under a flexible skip-stop scheme for urban rail transit based on smartcard data
– year: 2011
  ident: 10.1016/j.cor.2021.105436_b1
  article-title: Tuning genetic algorithm parameters to improve convergence time
  publication-title: Int. J. Chem. Eng.
  doi: 10.1155/2011/646917
– volume: 30
  start-page: 481
  year: 1998
  ident: 10.1016/j.cor.2021.105436_b5
  article-title: Greedy heuristics for rapid scheduling of trains on a single track
  publication-title: IIE Trans.
  doi: 10.1080/07408179808966488
– volume: 48
  start-page: 119
  year: 2014
  ident: 10.1016/j.cor.2021.105436_b6
  article-title: Design and analysis of demand-adapted railway timetables
  publication-title: J. Adv. Transp.
  doi: 10.1002/atr.1261
– volume: 15
  start-page: 2658
  year: 2014
  ident: 10.1016/j.cor.2021.105436_b47
  article-title: Efficient bilevel approach for urban rail transit operation with stop-skipping
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2323116
– volume: 16
  start-page: 122
  issue: 1
  year: 1986
  ident: 10.1016/j.cor.2021.105436_b16
  article-title: Optimization of control parameters for genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1986.289288
– volume: 89
  start-page: 321
  year: 2018
  ident: 10.1016/j.cor.2021.105436_b41
  article-title: Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network
  publication-title: Transp. Res. Part C Emerg. Technol
  doi: 10.1016/j.trc.2018.02.016
– year: 2014
  ident: 10.1016/j.cor.2021.105436_b18
– year: 2002
  ident: 10.1016/j.cor.2021.105436_b37
– volume: 115
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b54
  article-title: Service replanning in urban rail transit networks: Cross-line express trains for reducing the number of passenger transfers and travel time
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102629
– volume: 44
  start-page: 146
  year: 2014
  ident: 10.1016/j.cor.2021.105436_b10
  article-title: Dispatching and coordination in multi-area railway traffic management
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.011
– volume: 132
  start-page: 412
  year: 2019
  ident: 10.1016/j.cor.2021.105436_b31
  article-title: A flexible metro train scheduling approach to minimize energy cost and passenger waiting time
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.04.031
– volume: 7
  start-page: 88534
  year: 2019
  ident: 10.1016/j.cor.2021.105436_b26
  article-title: Integrated optimization of train stop planning and scheduling on metro lines with express/local mode
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921758
– volume: 23
  start-page: 453
  year: 1996
  ident: 10.1016/j.cor.2021.105436_b32
  article-title: A genetic algorithm approach to periodic railway synchronization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(95)00032-1
– volume: 58
  start-page: 421
  year: 2018
  ident: 10.1016/j.cor.2021.105436_b60
  article-title: Comprehensive optimization of urban rail transit timetable by minimizing total travel times under time-dependent passenger demand and congested conditions
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.02.013
– volume: 36
  start-page: 212
  year: 2013
  ident: 10.1016/j.cor.2021.105436_b33
  article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions
  publication-title: Transp. Res. Part C Emerg. Technol
  doi: 10.1016/j.trc.2013.08.016
– volume: 17
  start-page: 3364
  year: 2016
  ident: 10.1016/j.cor.2021.105436_b23
  article-title: Saving energy and improving service quality: Bicriteria train scheduling in urban rail transit systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2549282
– volume: 69
  start-page: 556
  year: 2018
  ident: 10.1016/j.cor.2021.105436_b36
  article-title: Joint optimization model for train scheduling and train stop planning with passengers distribution on railway corridors
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/s41274-017-0248-x
– volume: 117
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b12
  article-title: Integrated optimization of train stop planning and timetabling for commuter railways with an extended adaptive large neighborhood search metaheuristic approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2020.102681
– year: 1975
  ident: 10.1016/j.cor.2021.105436_b20
– volume: 93
  start-page: 425
  year: 2016
  ident: 10.1016/j.cor.2021.105436_b14
  article-title: Energy consumption and travel time analysis for metro lines with express/local mode
  publication-title: Transp. Res. Part D Transp. Environ.
  doi: 10.1016/j.trb.2016.08.011
– start-page: 1
  year: 2020
  ident: 10.1016/j.cor.2021.105436_b9
  article-title: Interactions and equilibrium between rescheduling train traffic and routing passengers in microscopic delay management: A game theoretical study
  publication-title: Transp. Sci.
– year: 2017
  ident: 10.1016/j.cor.2021.105436_b50
  article-title: Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
  doi: 10.1016/j.tre.2017.06.001
– ident: 10.1016/j.cor.2021.105436_b29
  doi: 10.1016/j.trc.2018.01.003
– volume: 61
  start-page: 112
  year: 2017
  ident: 10.1016/j.cor.2021.105436_b48
  article-title: Train scheduling and circulation planning in urban rail transit lines
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2017.02.006
– volume: 3
  start-page: 79
  year: 2015
  ident: 10.1016/j.cor.2021.105436_b52
  article-title: An optimisation method for train scheduling with minimum energy consumption and travel time in metro rail systems
  publication-title: Transp. B
– volume: 44
  start-page: 66
  year: 2014
  ident: 10.1016/j.cor.2021.105436_b2
  article-title: Exact formulations and algorithm for the train timetabling problem with dynamic demand
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.003
– volume: 24
  start-page: 656
  year: 1994
  ident: 10.1016/j.cor.2021.105436_b43
  article-title: Adaptive probabilities of crossover and mutation in genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.286385
– volume: 111
  start-page: 19
  year: 2018
  ident: 10.1016/j.cor.2021.105436_b38
  article-title: Train timetable design under elastic passenger demand
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2018.03.002
– year: 1975
  ident: 10.1016/j.cor.2021.105436_b11
– volume: 93
  start-page: 126
  year: 2016
  ident: 10.1016/j.cor.2021.105436_b17
  article-title: Exploring alternative service schemes for busy transit corridors
  publication-title: Transp. Res. Part B Methodol
  doi: 10.1016/j.trb.2016.07.010
SSID ssj0000721
Score 2.527037
Snippet We investigate the train timetabling problem in suburban rail transit lines by considering (1) the traditional stopping mode (TSM), in which all trains stop at...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105436
SubjectTerms Adaptive algorithms
Adaptive genetic algorithm (A–GA)
Case studies
Express/local stopping mode (ELM)
Genetic algorithms
Integer programming
Linear programming
Mathematical models
Mixed–integer nonlinear programming (MINLP)
Nonlinear programming
Operations research
Optimization
Parameter sensitivity
Passenger travel time (PTT)
Rail transportation
Railway stations
Sensitivity analysis
Suburban rail transit (SRT)
Traditional (all) stopping mode (TSM)
Train overtaking
Train timetabling
Trains
Travel time
Title Scheduling local and express trains in suburban rail transit lines: Mixed–integer nonlinear programming and adaptive genetic algorithm
URI https://dx.doi.org/10.1016/j.cor.2021.105436
https://www.proquest.com/docview/2566523734
Volume 135
WOSCitedRecordID wos000687335100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 0305-0548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFiE48BGKWihoD-RCZan22l6bW0QTAQqhEikyp9XaXqepUid1kipHjtz5ZfwFfgmzX06oQgQHLla0ju3Vvued2fWbGYReZlRIu0edgBee47sidaJAcIeGWZ6GkZ9lKm7tc4_2-1GSxKeNxg8bC3M9pmUZLZfx9L9CDW0Atgyd_Qe465tCA_wG0OEIsMPxr4D_BDDkCxVlrgyV-jwglkrwqitCKAnsbAHDmcLbDS1Sbw4mazQ_kk6nEsl9GC1FbpUQRCWVENVRqRNryPTYWtd1aWMcec6nSoUE_RIqCex4OKlG8_PLdffX1pCYKcZNpqIySjyTc6jemx6YbewesPd8UZuOk5ZH2zCG5aQWY9bnkoVsS6BDBTfmWAqNlFrhiyqVPFzf4vBcE-tnSXkqqqEsvaRVKb8LROV85YDbqedwsaHNzvIkWJun3Y3WQ29kXAD4MlOs58oiyD7ZkKm7_5F1z3o9NugkgxbpTq8cWcZMfu5vkRNNqVto16NBDBPtbvtdJ3m_cg-oCgasO2k_tSvR4Y0n_8lZuuE2KF9o8BDdN4sY3Nbke4QaomyiOzaGookeWJyxMR1NdG8t8eVj9G1FUqxIioFD2JAUa5LiUYktSbEkKTYkxYqkr7Gi6M-v3w05cU1OvEZOdWNLTmzIiWty7qGzbmfw5q1jaoI4GQno3BGhyAkYpYByEvM498BIClcEhMdpeJylsEIpche8Tr_wUp9wWsReGhSRLzKRkiAjT9AOdEfsIwyWLA_BPHE_LHxwm6McnOEgLnhE8zCKsgN0bAefZSZhvhyAMbPKyAsGeDGJF9N4HaBX9SVTnS1m2599iygz7q52YxnwcdtlhxZ9ZqadGYOFSxh4hBL_6fbTz9Dd1Rt2iHbm1UI8R7ez6_loVr0wXP0FnLXXcg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling+local+and+express+trains+in+suburban+rail+transit+lines%3A+Mixed%E2%80%93integer+nonlinear+programming+and+adaptive+genetic+algorithm&rft.jtitle=Computers+%26+operations+research&rft.au=Tang%2C+Lianhua&rft.au=D%27Ariano%2C+Andrea&rft.au=Xu%2C+Xingfang&rft.au=Li%2C+Yantong&rft.date=2021-11-01&rft.pub=Pergamon+Press+Inc&rft.issn=0305-0548&rft.eissn=0305-0548&rft.volume=135&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cor.2021.105436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon