A systematic review of deep learning applications for rice disease diagnosis: current trends and future directions

BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their im...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in computer science (Lausanne) Ročník 6
Hlavní autori: Seelwal, Pardeep, Dhiman, Poonam, Gulzar, Yonis, Kaur, Amandeep, Wadhwa, Shivani, Onn, Choo Wou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 11.09.2024
Predmet:
ISSN:2624-9898, 2624-9898
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their impact.MethodsThe present study conducts a comprehensive evaluation of contemporary literature pertaining to the identification of rice diseases, covering the period from 2008 to 2023. The process of selecting pertinent studies followed the guidelines outlined by Kitchenham, which ultimately led to the inclusion of 69 studies for the purpose of review. It is worth mentioning that a significant portion of research endeavours have been directed towards studying diseases such as rice brown spot, rice blast, and rice bacterial blight. The primary performance parameter that emerged in the study was accuracy. Researchers strongly advocated for the combination of hybrid deep learning and machine learning methodologies in order to improve the rates of recognition for rice leaf diseases.ResultsThe study presents a comprehensive collection of scholarly investigations focused on the detection and characterization of diseases affecting rice leaves, with specific emphasis on rice brown spot, rice blast, and rice bacterial blight. The prominence of accuracy as a primary performance measure highlights the importance of precision in the detection and diagnosis of diseases. Furthermore, the efficacy of employing hybrid methodologies that combine deep learning and machine learning techniques is exemplified in enhancing the recognition capacities pertaining to diseases affecting rice leaves.ConclusionThis systematic review provides insight into the significant research endeavours conducted by scholars in the field of rice disease detection during the previous decade. The text underscores the significance of precision in evaluation and calls for the implementation of hybrid deep learning and machine learning methodologies to augment disease identification, presenting possible resolutions to the obstacles presented by these agricultural hazards.
AbstractList BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their impact.MethodsThe present study conducts a comprehensive evaluation of contemporary literature pertaining to the identification of rice diseases, covering the period from 2008 to 2023. The process of selecting pertinent studies followed the guidelines outlined by Kitchenham, which ultimately led to the inclusion of 69 studies for the purpose of review. It is worth mentioning that a significant portion of research endeavours have been directed towards studying diseases such as rice brown spot, rice blast, and rice bacterial blight. The primary performance parameter that emerged in the study was accuracy. Researchers strongly advocated for the combination of hybrid deep learning and machine learning methodologies in order to improve the rates of recognition for rice leaf diseases.ResultsThe study presents a comprehensive collection of scholarly investigations focused on the detection and characterization of diseases affecting rice leaves, with specific emphasis on rice brown spot, rice blast, and rice bacterial blight. The prominence of accuracy as a primary performance measure highlights the importance of precision in the detection and diagnosis of diseases. Furthermore, the efficacy of employing hybrid methodologies that combine deep learning and machine learning techniques is exemplified in enhancing the recognition capacities pertaining to diseases affecting rice leaves.ConclusionThis systematic review provides insight into the significant research endeavours conducted by scholars in the field of rice disease detection during the previous decade. The text underscores the significance of precision in evaluation and calls for the implementation of hybrid deep learning and machine learning methodologies to augment disease identification, presenting possible resolutions to the obstacles presented by these agricultural hazards.
Author Dhiman, Poonam
Seelwal, Pardeep
Wadhwa, Shivani
Onn, Choo Wou
Kaur, Amandeep
Gulzar, Yonis
Author_xml – sequence: 1
  givenname: Pardeep
  surname: Seelwal
  fullname: Seelwal, Pardeep
– sequence: 2
  givenname: Poonam
  surname: Dhiman
  fullname: Dhiman, Poonam
– sequence: 3
  givenname: Yonis
  surname: Gulzar
  fullname: Gulzar, Yonis
– sequence: 4
  givenname: Amandeep
  surname: Kaur
  fullname: Kaur, Amandeep
– sequence: 5
  givenname: Shivani
  surname: Wadhwa
  fullname: Wadhwa, Shivani
– sequence: 6
  givenname: Choo Wou
  surname: Onn
  fullname: Onn, Choo Wou
BookMark eNp9UctKBDEQDKLg8wc85Qd2nc4kM4k3EV8geNFz6Ek6S2R2MiSzin_v7KogHrx0NU1V0d11zPaHNBBj51At61qbi-DSelyKSsglSCVMA3vsSDRCLow2ev9Xf8jOSnmtqkooAKXbI5avePkoE61xio5neov0zlPgnmjkPWEe4rDiOI59dDMlDYWHlHmOjriPhbBsEVdDKrFccrfJmYaJT3P1hePgedhMm7wlZXI7g1N2ELAvdPaNJ-zl9ub5-n7x-HT3cH31uHC1aqcFSSE777TvsFPahxYFGmiDgXlmUJEPUgA5VOCaoFsllZYANUpX1w5cfcIevnx9wlc75rjG_GETRrsbpLyymOere7KN9EK3FRAIkE0w6DvdGIAmdFUtlJy99JeXy6mUTMG6OO3-MWWMvYXKbqOwuyjsNgr7HcUsFX-kP6v8I_oEJkOSGg
CitedBy_id crossref_primary_10_3389_frai_2025_1498025
crossref_primary_10_3390_rs17040726
crossref_primary_10_3390_agronomy15051122
crossref_primary_10_3390_jimaging11020032
crossref_primary_10_1186_s13007_025_01381_w
crossref_primary_10_1111_jen_13457
crossref_primary_10_1002_fsn3_70653
crossref_primary_10_1016_j_atech_2025_100954
crossref_primary_10_1038_s41598_025_01553_7
crossref_primary_10_3390_agronomy15061266
crossref_primary_10_1038_s41598_025_96826_6
crossref_primary_10_3389_fpls_2025_1642453
crossref_primary_10_3390_rs17142404
crossref_primary_10_1109_ACCESS_2024_3498606
crossref_primary_10_1002_eng2_70231
Cites_doi 10.1109/ICSPC51351.2021.9451800
10.1016/j.eswa.2021.114770
10.3390/su15042947
10.1016/j.aiia.2020.10.002
10.1109/ICICCT.2018.8473322
10.1007/s11947-016-1767-1
10.1007/s11042-022-13144-z
10.1016/j.aiia.2023.07.001
10.1109/ICon-CuTE47290.2019.8991476
10.1109/ICICT4SD50815.2021.9396986
10.1007/s42161-020-00683-3
10.1109/ECTIDAMTNCON51128.2021.9425696
10.1109/CONFLUENCE.2014.6949363
10.3390/sym14122681
10.1556/0806.43.2015.034
10.1016/j.infsof.2011.09.002
10.1080/07060661.2022.2053588
10.1016/j.eswa.2020.114514
10.1016/j.compag.2021.106184
10.12785/ijcds/140187
10.1007/978-981-33-4543-0_55
10.1126/science.aaa8415
10.1080/03772063.2023.2251445
10.1080/19439342.2012.710641
10.1111/exsy.13136
10.1007/978-981-15-2329-8_56
10.3390/su151411465
10.3389/FAMS.2023.1320177
10.1109/CALCON49167.2020.9106423
10.1007/s40808-023-01918-9
10.3390/ijms19041141
10.1016/j.compag.2020.105527
10.1063/5.0186981
10.3233/IDT-170301
10.1016/j.procs.2020.03.308
10.5120/18973-0445
10.14569/IJACSA.2018.090109
10.1109/ICICCS51141.2021.9432081
10.1007/s11042-023-16047-9
10.1007/s11831-021-09588-5
10.1109/SEATUC.2018.8788863
10.1038/s41598-019-38966-0
10.1109/ICCMC48092.2020.ICCMC-00080
10.1109/ICACCTech61146.2023.00058
10.1007/s12652-021-03289-4
10.3390/su15129643
10.30534/ijatcse/2021/301022021
10.1007/s00521-022-07793-2
10.1016/j.engappai.2023.10583
10.7717/PEERJ-CS.432
10.1109/ICASERT.2019.8934568
10.1016/j.biosystemseng.2020.03.020
10.1007/s11042-021-11790-3
10.1145/3209914.3209945
10.5194/isprs-archives-XLII-3-W6-631-2019
10.1016/j.atech.2023.100195
10.1016/j.dsp.2022.103875
10.1179/174313108X319397
10.3808/jei.202300492
10.1109/CVPRW59228.2023.00663
10.1109/ACCESS.2022.3200688
10.1016/j.neucom.2017.06.023
10.15439/2017R24
10.1016/j.engappai.2023.106020
10.3390/su15097097
10.3390/cancers15143604
10.1007/s10661-023-11612-z
10.3897/ejfa.2024.122928
10.1088/1755-1315/699/1/012020
10.1093/comjnl/bxab022
10.1007/s00371-023-03098-0
10.1007/s00521-020-05364-x
10.3390/jimaging9080163
10.1016/j.biosystemseng.2022.11.007
10.1109/ICMETE.2018.00063
10.1109/ICAIS50930.2021.9395813
10.7763/IJIEE.2012.V2.137
10.12928/telkomnika.v19i2.16488
10.1109/STI47673.2019.9068096
10.1016/j.compag.2012.11.001
10.5815/ijisa.2021.05.04
10.1016/j.chaos.2020.110530
10.3390/agronomy13040961
10.1016/j.compag.2020.105824
10.3390/electronics9081209
10.1007/s10586-018-1949-x
10.1631/jzus.B0900193
10.1007/s10661-022-10656-x
10.1109/CAST.2016.7915015
10.1155/2022/2845320
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fcomp.2024.1452961
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-9898
ExternalDocumentID oai_doaj_org_article_64d28701e12146f9adb869116fb03254
10_3389_fcomp_2024_1452961
GroupedDBID 9T4
AAFWJ
AAYXX
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c357t-e424bdc8dbab58df7a2a917f91c8d9a5edf421eca51c6f8754584113a4c33c1c3
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322485400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-9898
IngestDate Fri Oct 03 12:23:37 EDT 2025
Sat Nov 29 02:12:01 EST 2025
Tue Nov 18 19:49:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-e424bdc8dbab58df7a2a917f91c8d9a5edf421eca51c6f8754584113a4c33c1c3
OpenAccessLink https://doaj.org/article/64d28701e12146f9adb869116fb03254
ParticipantIDs doaj_primary_oai_doaj_org_article_64d28701e12146f9adb869116fb03254
crossref_citationtrail_10_3389_fcomp_2024_1452961
crossref_primary_10_3389_fcomp_2024_1452961
PublicationCentury 2000
PublicationDate 2024-09-11
PublicationDateYYYYMMDD 2024-09-11
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in computer science (Lausanne)
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Jordan (ref47) 2015; 349
Salaba (ref77) 2023
Tuncer (ref96) 2021; 12
Asvitha (ref8) 2024
Kukreja (ref53) 2021
Lu (ref56) 2023; 83
Alkanan (ref4) 2024; 9
Zhou (ref105) 2023; 121
Bari (ref14) 2021; 7
Ramesh (ref73) 2019; 11
Rafeed Rahman (ref71) 2018; 194
Chen (ref19) 2021; 169
Prajapati (ref69) 2017; 11
Simhadri (ref86) 2023; 13
Wang (ref101) 2023
Ding (ref28) 2023; 133
Joshi (ref48) 2016
Lu (ref57) 2017; 267
Liu (ref55) 2010; 11
Jiang (ref46) 2020; 179
Sethy (ref80); 175
Wen (ref103) 2012; 54
Bellapu (ref16) 2021
Atole (ref9) 2018; 9
Ghosal (ref34) 2020
Saha (ref76) 2021
Ahmed (ref3) 2023; 40
Food Summit (ref31) 2009
Goluguri (ref36) 2021; 33
Ahmed (ref2) 2019
Huang (ref41) 2023; 82
Mique (ref61) 2018
Mekha (ref60) 2021
Sankareshwaran (ref78) 2023; 195
Islam (ref43) 2019
Arinichev (ref7) 2021
Thakur (ref95) 2023; 82
Ayoub (ref10) 2022; 14
Pothen (ref68) 2020
Dhiman (ref25) 2014
Singh (ref87) 2018; 19
Ghyar (ref35) 2017
Phadikar (ref67) 2013; 90
Ganatra (ref32) 2020; 11
Snilstveit (ref91) 2012; 4
Sudhesh (ref93) 2023; 120
Amri (ref5) 2024; 10
Ahad (ref1) 2023; 9
Ramesh (ref74) 2020
Phadikar (ref66) 2012; 2
Stephen (ref92) 2023; 35
Gayathri Devi (ref33) 2019; 22
Patil (ref65) 2022; 10
Tete (ref94) 2017
Chumthong (ref21) 2016; 44
Gulzar (ref37) 2024; 36
Kitpo (ref52) 2018
Ayoub (ref11) 2023; 15
Bandara (ref13) 2021
Jiang (ref45) 2021; 186
Shrivastava (ref84) 2019; 42
Khairnar (ref49) 2014; 108
Khan (ref50) 2023; 9
Singh (ref89) 2022; 2022
Ramesh (ref72) 2018
Sethy (ref81); 167
Nayak (ref62) 2023; 4
Pan (ref64) 2023; 225
Singla (ref90) 2023
Bharanidharan (ref17) 2023
Faizal Azizi (ref30) 2022; 44
Appalanaidu (ref6) 2021
Kirtphaiboon (ref51) 2021; 143
Dhiman (ref26); 15
Islam (ref44) 2018
Azim (ref12) 2021; 19
Cubero (ref22) 2016; 9
Wang (ref100) 2021; 178
Liang (ref54) 2019; 9
Singh (ref88) 2020; 4
Shrivastava (ref85) 2021
Daniya (ref24) 2023; 42
Malik (ref58) 2023; 15
Verma (ref99) 2019
Dhiman (ref27); 14
Prashar (ref70) 2022
Sharma (ref82) 2021
Basit (ref15) 2020; 57
Ullah (ref97) 2021; 10
Daniya (ref23) 2022; 65
Gulzar (ref38) 2023; 15
Islam (ref42) 2021; 13
Sanyal (ref79) 2008; 56
Rumy (ref75) 2021
Ding (ref29) 2023; 40
Chiplunkar (ref20) 2021
Chaudhary (ref18) 2012; 3
Haridasan (ref39) 2023; 195
Shrivastava (ref83) 2021; 103
Hasan (ref40) 2019
Verma (ref98) 2023
Zhang (ref104) 2020; 9
Mehmood (ref59) 2023; 15
Nuttakarn (ref63) 2018
Wani (ref102) 2022; 29
References_xml – year: 2021
  ident: ref82
  article-title: Hispa rice disease classification using convolutional neural network
  doi: 10.1109/ICSPC51351.2021.9451800
– volume: 178
  start-page: 114770
  year: 2021
  ident: ref100
  article-title: Rice diseases detection and classification using attention based neural network and bayesian optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114770
– volume: 15
  start-page: 2947
  year: 2023
  ident: ref38
  article-title: OCA: ordered clustering-based algorithm for E-commerce recommendation system
  publication-title: Sustain. For.
  doi: 10.3390/su15042947
– volume: 4
  start-page: 229
  year: 2020
  ident: ref88
  article-title: A review of imaging techniques for plant disease detection
  publication-title: Artif. Intell. Agric.
  doi: 10.1016/j.aiia.2020.10.002
– year: 2018
  ident: ref44
  article-title: A faster technique on rice disease detectionusing image processing of affected area in agro-field
  doi: 10.1109/ICICCT.2018.8473322
– volume: 9
  start-page: 1623
  year: 2016
  ident: ref22
  article-title: Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest—a review
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-016-1767-1
– volume: 82
  start-page: 497
  year: 2023
  ident: ref95
  article-title: VGG-ICNN: a lightweight CNN model for crop disease identification
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13144-z
– volume: 9
  start-page: 22
  year: 2023
  ident: ref1
  article-title: Comparison of CNN-based deep learning architectures for rice diseases classification
  publication-title: Artif. Intell. Agric.
  doi: 10.1016/j.aiia.2023.07.001
– year: 2019
  ident: ref99
  article-title: Vision based detection and classification of disease on rice crops using convolutional neural network
  doi: 10.1109/ICon-CuTE47290.2019.8991476
– year: 2021
  ident: ref76
  article-title: Rice disease detection using intensity moments and random forest
  doi: 10.1109/ICICT4SD50815.2021.9396986
– volume: 103
  start-page: 17
  year: 2021
  ident: ref83
  article-title: Rice plant disease classification using colour features: a machine learning paradigm
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-020-00683-3
– year: 2021
  ident: ref60
  article-title: Image classification of rice leaf diseases using random forest algorithm
  doi: 10.1109/ECTIDAMTNCON51128.2021.9425696
– year: 2014
  ident: ref25
  article-title: Empirical validation of website quality using statistical and machine learning methods
  doi: 10.1109/CONFLUENCE.2014.6949363
– volume: 14
  start-page: 2681
  year: 2022
  ident: ref10
  article-title: Generating image captions using Bahdanau attention mechanism and transfer learning
  publication-title: Symmetry
  doi: 10.3390/sym14122681
– volume: 44
  start-page: 131
  year: 2016
  ident: ref21
  article-title: Spray-dried powder of Bacillus megaterium for control of rice sheath blight disease: formulation protocol and efficacy testing in laboratory and greenhouse
  publication-title: Cereal Res. Commun.
  doi: 10.1556/0806.43.2015.034
– year: 2021
  ident: ref53
  article-title: Rice diseases detection using convolutional neural networks: A survey
– volume: 54
  start-page: 41
  year: 2012
  ident: ref103
  article-title: Systematic literature review of machine learning based software development effort estimation models
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2011.09.002
– volume: 44
  start-page: 627
  year: 2022
  ident: ref30
  article-title: Advanced diagnostic approaches developed for the global menace of rice diseases: a review
  publication-title: Can. J. Plant Pathol.
  doi: 10.1080/07060661.2022.2053588
– volume: 169
  start-page: 114514
  year: 2021
  ident: ref19
  article-title: Identification of rice plant diseases using lightweight attention networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114514
– volume: 186
  start-page: 106184
  year: 2021
  ident: ref45
  article-title: Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106184
– volume: 14
  start-page: 10127
  ident: ref27
  article-title: Citrus fruit disease detection techniques: a survey and comparative analysis of relevant approaches
  publication-title: Int. J. Comput. Digit. Syst.
  doi: 10.12785/ijcds/140187
– year: 2021
  ident: ref6
  article-title: Plant leaf disease detection and classification using machine learning approaches: a review
  doi: 10.1007/978-981-33-4543-0_55
– volume: 349
  start-page: 255
  year: 2015
  ident: ref47
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– start-page: 1
  year: 2023
  ident: ref98
  article-title: A unified lightweight CNN-based model for disease detection and identification in corn, Rice, and wheat
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2023.2251445
– year: 2021
  ident: ref13
  article-title: Detection and classification of rice plant diseases using image processing techniques
– volume: 4
  start-page: 409
  year: 2012
  ident: ref91
  article-title: Narrative approaches to systematic review and synthesis of evidence for international development policy and practice
  publication-title: J. Dev. Eff.
  doi: 10.1080/19439342.2012.710641
– volume: 40
  start-page: e13136
  year: 2023
  ident: ref3
  article-title: Plant disease detection using machine learning approaches
  publication-title: Expert. Syst.
  doi: 10.1111/exsy.13136
– year: 2017
  ident: ref35
  article-title: Computer vision based approach to detect rice leaf diseases using texture and colour descriptors
– year: 2020
  ident: ref74
  article-title: Rice disease detection and classification using deep neural network algorithm
  doi: 10.1007/978-981-15-2329-8_56
– volume: 15
  start-page: 11465
  year: 2023
  ident: ref58
  article-title: Estimation of the extent of the vulnerability of agriculture to climate change using analytical and deep-learning methods: a case study in Jammu, Kashmir, and Ladakh
  publication-title: Sustain. For.
  doi: 10.3390/su151411465
– year: 2021
  ident: ref75
  article-title: An IoT based system with edge intelligence for rice leaf disease detection using machine learning
– volume: 9
  start-page: 1320177
  year: 2024
  ident: ref4
  article-title: Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning
  publication-title: Front. Appl. Math. Stat.
  doi: 10.3389/FAMS.2023.1320177
– volume: 57
  start-page: 100
  year: 2020
  ident: ref15
  article-title: Detection of disease onset in Rice Plant leaves in monochrome light
  publication-title: Nucleus
– year: 2020
  ident: ref34
  article-title: Rice leaf diseases classification using CNN with transfer learning
  doi: 10.1109/CALCON49167.2020.9106423
– volume: 10
  start-page: 2693
  year: 2024
  ident: ref5
  article-title: Advancing automatic plant classification system in Saudi Arabia: introducing a novel dataset and ensemble deep learning approach
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-023-01918-9
– volume-title: Cataloging and classification: An introduction
  year: 2023
  ident: ref77
– volume: 19
  start-page: 1141
  year: 2018
  ident: ref87
  article-title: Prospects of understanding the molecular biology of disease resistance in rice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19041141
– volume: 11
  start-page: 1082
  year: 2020
  ident: ref32
  article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques
  publication-title: Int. J. Emerg. Eng. Res. Technol.
– volume: 175
  start-page: 105527
  ident: ref80
  article-title: Deep feature based rice leaf disease identification using support vector machine
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105527
– year: 2024
  ident: ref8
  article-title: A survey on plant diseases detection using different ML/DL techniques
  doi: 10.1063/5.0186981
– volume: 11
  start-page: 357
  year: 2017
  ident: ref69
  article-title: Detection and classification of rice plant diseases
  publication-title: Intell. Decis. Technol.
  doi: 10.3233/IDT-170301
– volume: 167
  start-page: 516
  ident: ref81
  article-title: Image processing techniques for diagnosing rice plant disease: a survey
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.308
– volume: 108
  start-page: 36
  year: 2014
  ident: ref49
  article-title: Disease detection and diagnosis on plant using image processing—a review
  publication-title: Int. J. Comput. Appl.
  doi: 10.5120/18973-0445
– volume: 9
  year: 2018
  ident: ref9
  article-title: A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/IJACSA.2018.090109
– year: 2021
  ident: ref16
  article-title: Evaluation of homogeneous and heterogeneous distributed ensemble feature selection approaches for classification of Rice Plant diseases
  doi: 10.1109/ICICCS51141.2021.9432081
– year: 2019
  ident: ref43
  article-title: Wavelet based feature extraction for rice plant disease detection and classification
– volume: 83
  start-page: 12799
  year: 2023
  ident: ref56
  article-title: Image recognition of rice leaf diseases using atrous convolutional neural network and improved transfer learning algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16047-9
– volume: 11
  start-page: 31
  year: 2019
  ident: ref73
  article-title: Application of machine learning in detection of blast disease in south Indian rice crops
  publication-title: J. Phytology
– volume: 29
  start-page: 641
  year: 2022
  ident: ref102
  article-title: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: methodologies, applications, and challenges
  publication-title: Arch. Comput. Method Eng.
  doi: 10.1007/s11831-021-09588-5
– year: 2018
  ident: ref52
  article-title: Early rice disease detection and position mapping system using drone and IoT architecture
  doi: 10.1109/SEATUC.2018.8788863
– year: 2022
  ident: ref70
  article-title: An efficient recognition and classification system for Paddy leaf disease using Naïve Bayes with optimization algorithm
– volume: 9
  start-page: 2869
  year: 2019
  ident: ref54
  article-title: Rice blast disease recognition using a deep convolutional neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38966-0
– year: 2020
  ident: ref68
  article-title: Detection of rice leaf diseases using image processing
  doi: 10.1109/ICCMC48092.2020.ICCMC-00080
– year: 2023
  ident: ref90
  article-title: Disease detection in Bombyx Mori silkworm using deep learning algorithm CNN
  doi: 10.1109/ICACCTech61146.2023.00058
– volume: 12
  start-page: 8625
  year: 2021
  ident: ref96
  article-title: Cost-optimized hybrid convolutional neural networks for detection of plant leaf diseases
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-021-03289-4
– volume: 15
  start-page: 9643
  ident: ref26
  article-title: Image acquisition, preprocessing and classification of citrus fruit diseases: a systematic literature review
  publication-title: Sustain. For.
  doi: 10.3390/su15129643
– volume: 10
  start-page: 675
  year: 2021
  ident: ref97
  article-title: Automatic diseases detection and classification in maize crop using convolution neural network
  publication-title: Int. J. Adv. Trends Comput. Sci. Eng.
  doi: 10.30534/ijatcse/2021/301022021
– volume: 35
  start-page: 6737
  year: 2023
  ident: ref92
  article-title: Designing self attention-based ResNet architecture for rice leaf disease classification
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-022-07793-2
– volume: 120
  start-page: 105836
  year: 2023
  ident: ref93
  article-title: AI based rice leaf disease identification enhanced by dynamic mode decomposition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.10583
– volume: 7
  start-page: 1
  year: 2021
  ident: ref14
  article-title: A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/PEERJ-CS.432
– year: 2023
  ident: ref17
  article-title: Multiclass Paddy disease detection using filter based feature transformation technique. IEEE Access
– year: 2019
  ident: ref40
  article-title: Rice disease identification and classification by integrating support vector machine with deep convolutional neural network
  doi: 10.1109/ICASERT.2019.8934568
– volume: 194
  start-page: 112
  year: 2018
  ident: ref71
  article-title: Identification and recognition of Rice diseases and pests using convolutional neural networks
  publication-title: Biosys. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.020
– volume: 82
  start-page: 2121
  year: 2023
  ident: ref41
  article-title: Tomato leaf disease detection system based on FC-SNDPN
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11790-3
– year: 2018
  ident: ref61
  article-title: Rice pest and disease detection using convolutional neural network
  doi: 10.1145/3209914.3209945
– volume: 42
  start-page: 631
  year: 2019
  ident: ref84
  article-title: Rice plant disease classification using transfer learning of deep convolution neural network
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-W6-631-2019
– volume: 4
  start-page: 100195
  year: 2023
  ident: ref62
  article-title: Application of smartphone-image processing and transfer learning for rice disease and nutrient deficiency detection
  publication-title: Smart Agr. Technol.
  doi: 10.1016/j.atech.2023.100195
– volume: 3
  start-page: 65
  year: 2012
  ident: ref18
  article-title: Colour transform based approach for disease spot detection on plant leaf
  publication-title: Int. J. Comput. Commun. Control
– volume: 133
  start-page: 103875
  year: 2023
  ident: ref28
  article-title: Multi-spectral colour vision fusion jointly with two-stream feature interaction and colour transformation network
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103875
– volume: 56
  start-page: 319
  year: 2008
  ident: ref79
  article-title: Pattern recognition method to detect two diseases in rice plants
  publication-title: J. Imaging Sci.
  doi: 10.1179/174313108X319397
– volume: 42
  start-page: 25
  year: 2023
  ident: ref24
  article-title: Rice plant leaf disease detection and classification using optimization enabled deep learning
  publication-title: J. Environ. Inf.
  doi: 10.3808/jei.202300492
– year: 2023
  ident: ref101
  article-title: ECA-ConvNeXt: a Rice leaf disease identification model based on ConvNeXt
  doi: 10.1109/CVPRW59228.2023.00663
– volume: 10
  start-page: 87698
  year: 2022
  ident: ref65
  article-title: Rice transformer: a novel integrated management system for controlling Rice diseases
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3200688
– volume: 267
  start-page: 378
  year: 2017
  ident: ref57
  article-title: Identification of rice diseases using deep convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.023
– year: 2017
  ident: ref94
  article-title: Plant disease detection using different algorithms
  doi: 10.15439/2017R24
– volume: 121
  start-page: 106020
  year: 2023
  ident: ref105
  article-title: Rice leaf disease identification by residual-distilled transformer
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106020
– volume-title: Data science and data analytics: Opportunities and challenges
  year: 2021
  ident: ref20
  article-title: Identification and classification of Paddy crop diseases using big data machine learning techniques
– volume: 15
  start-page: 7097
  year: 2023
  ident: ref11
  article-title: Adversarial approaches to tackle imbalanced data in machine learning
  publication-title: Sustain. For.
  doi: 10.3390/su15097097
– volume: 15
  start-page: 3604
  year: 2023
  ident: ref59
  article-title: SBXception: a shallower and broader Xception architecture for efficient classification of skin lesions
  publication-title: Cancers
  doi: 10.3390/cancers15143604
– volume: 195
  start-page: 1070
  year: 2023
  ident: ref78
  article-title: Optimizing rice plant disease detection with crossover boosted artificial hummingbird algorithm based AX-RetinaNet
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-11612-z
– volume: 36
  start-page: 1
  year: 2024
  ident: ref37
  article-title: Enhancing soybean classification with modified inception model: a transfer learning approach
  publication-title: Emir. J. Food Agric.
  doi: 10.3897/ejfa.2024.122928
– year: 2021
  ident: ref7
  article-title: Applications of convolutional neural networks for the detection and classification of fungal rice diseases
  doi: 10.1088/1755-1315/699/1/012020
– volume: 65
  start-page: 1812
  year: 2022
  ident: ref23
  article-title: Deep neural network for disease detection in rice plant using the texture and deep features
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab022
– volume: 40
  start-page: 4539
  year: 2023
  ident: ref29
  article-title: 3D shape classification based on global and local features extraction with collaborative learning
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-023-03098-0
– volume: 33
  start-page: 5869
  year: 2021
  ident: ref36
  article-title: Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-05364-x
– volume: 9
  start-page: 163
  year: 2023
  ident: ref50
  article-title: MRI-based effective ensemble frameworks for predicting human brain tumor
  publication-title: J. Imaging
  doi: 10.3390/jimaging9080163
– volume: 225
  start-page: 25
  year: 2023
  ident: ref64
  article-title: RiceNet: a two stage machine learning method for rice disease identification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2022.11.007
– year: 2018
  ident: ref72
  article-title: Rice blast disease detection and classification using machine learning algorithm
  doi: 10.1109/ICMETE.2018.00063
– year: 2021
  ident: ref85
  article-title: Application of pre-trained deep convolutional neural networks for rice plant disease classification
  doi: 10.1109/ICAIS50930.2021.9395813
– volume: 2
  start-page: 460
  year: 2012
  ident: ref66
  article-title: Classification of rice leaf diseases based on morphological changes
  publication-title: IJIEEB
  doi: 10.7763/IJIEE.2012.V2.137
– volume: 19
  start-page: 463
  year: 2021
  ident: ref12
  article-title: An effective feature extraction method for rice leaf disease classification
  publication-title: Telkomnika
  doi: 10.12928/telkomnika.v19i2.16488
– year: 2019
  ident: ref2
  article-title: Rice leaf disease detection using machine learning techniques
  doi: 10.1109/STI47673.2019.9068096
– volume: 90
  start-page: 76
  year: 2013
  ident: ref67
  article-title: Rice diseases classification using feature selection and rule generation techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.11.001
– volume: 13
  start-page: 35
  year: 2021
  ident: ref42
  article-title: Rice leaf disease recognition using local threshold based segmentation and deep CNN
  publication-title: Int. J. Intell. Syst. Appl
  doi: 10.5815/ijisa.2021.05.04
– volume: 143
  start-page: 110530
  year: 2021
  ident: ref51
  article-title: Model of rice blast disease under tropical climate conditions
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110530
– year: 2018
  ident: ref63
  article-title: Early Rice disease detection and position mapping system using drone and IoT architecture Nuttakarn
– volume: 13
  start-page: 961
  year: 2023
  ident: ref86
  article-title: Automatic recognition of Rice leaf diseases using transfer learning
  publication-title: Agronomy
  doi: 10.3390/agronomy13040961
– volume: 179
  start-page: 105824
  year: 2020
  ident: ref46
  article-title: Image recognition of four rice leaf diseases based on deep learning and support vector machine
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105824
– volume: 9
  start-page: 1209
  year: 2020
  ident: ref104
  article-title: Pruning convolutional neural networks with an attention mechanism for remote sensing image classification
  publication-title: Electronics
  doi: 10.3390/electronics9081209
– volume: 22
  start-page: 13415
  year: 2019
  ident: ref33
  article-title: Image processing based rice plant leaves diseases in Thanjavur, Tamilnadu
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-018-1949-x
– volume: 11
  start-page: 71
  year: 2010
  ident: ref55
  article-title: Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.B0900193
– volume: 195
  start-page: 120
  year: 2023
  ident: ref39
  article-title: Deep learning system for paddy plant disease detection and classification
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-022-10656-x
– volume-title: Declaration of the world summit on food security
  year: 2009
  ident: ref31
– year: 2016
  ident: ref48
  article-title: Monitoring and controlling rice diseases using image processing techniques
  doi: 10.1109/CAST.2016.7915015
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref89
  article-title: Hybrid feature-based disease detection in plant leaf using convolutional neural network, bayesian optimized SVM, and random forest classifier
  publication-title: J. Food Qual.
  doi: 10.1155/2022/2845320
SSID ssj0002511587
Score 2.4062982
SecondaryResourceType review_article
Snippet BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms Oryza sativa L
pre-processing
recognition
review
rice disease
systematic
Title A systematic review of deep learning applications for rice disease diagnosis: current trends and future directions
URI https://doaj.org/article/64d28701e12146f9adb869116fb03254
Volume 6
WOSCitedRecordID wos001322485400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-9898
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511587
  issn: 2624-9898
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-9898
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511587
  issn: 2624-9898
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1FeuoENRa0Tx4nZCmrFQsUAUrfI8QNVQmnVBkZ-O3dxWsoCC0siWbZlfT777nTn7xi7FpZIofCkpSq2EepbHymDG4La0OSlcDK3vik2kY3H-WSinjZKfVFOWKAHDsD1pLAUi-OOUwlqr7Qtc4knVPqyn6B3Q7dvP1MbzhTdwWQ4p3kWXsmgF6Z6nlK00R-MBV4OFGzkPzTRBmF_o1lG-2y3NQlhEJZywLZcdcj2VuUWoD19R2wxgG_eZQhvTmDmwTo3h7b6wytsRqQBLVIg1iBo4zD4bzLrpstbMIGZCeomKxZ0ZSEQjEBQczTBMXsZDZ_vH6K2ZEJkkjSrIydiUVqT21KXKcKc6VijQ-YVxzalU2e9iLkzOuVGevRVKEzKeaKFSRLDTXLCOtWscqcMfGK9NKnhXqLV4RBzF8vMCeNQ4_et6jK-gq8wLZ84lbV4K9CvIMiLBvKCIC9ayLvsZj1mHtg0fu19R7uy7klM2E0DykfRykfxl3yc_cck52yHFkZ5IpxfsE69eHeXbNt81NPl4qoRPfw-fg6_AEwb3yQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+deep+learning+applications+for+rice+disease+diagnosis%3A+current+trends+and+future+directions&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Pardeep+Seelwal&rft.au=Poonam+Dhiman&rft.au=Yonis+Gulzar&rft.au=Amandeep+Kaur&rft.date=2024-09-11&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9898&rft.volume=6&rft_id=info:doi/10.3389%2Ffcomp.2024.1452961&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64d28701e12146f9adb869116fb03254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon