A systematic review of deep learning applications for rice disease diagnosis: current trends and future directions
BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their im...
Uložené v:
| Vydané v: | Frontiers in computer science (Lausanne) Ročník 6 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Frontiers Media S.A
11.09.2024
|
| Predmet: | |
| ISSN: | 2624-9898, 2624-9898 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their impact.MethodsThe present study conducts a comprehensive evaluation of contemporary literature pertaining to the identification of rice diseases, covering the period from 2008 to 2023. The process of selecting pertinent studies followed the guidelines outlined by Kitchenham, which ultimately led to the inclusion of 69 studies for the purpose of review. It is worth mentioning that a significant portion of research endeavours have been directed towards studying diseases such as rice brown spot, rice blast, and rice bacterial blight. The primary performance parameter that emerged in the study was accuracy. Researchers strongly advocated for the combination of hybrid deep learning and machine learning methodologies in order to improve the rates of recognition for rice leaf diseases.ResultsThe study presents a comprehensive collection of scholarly investigations focused on the detection and characterization of diseases affecting rice leaves, with specific emphasis on rice brown spot, rice blast, and rice bacterial blight. The prominence of accuracy as a primary performance measure highlights the importance of precision in the detection and diagnosis of diseases. Furthermore, the efficacy of employing hybrid methodologies that combine deep learning and machine learning techniques is exemplified in enhancing the recognition capacities pertaining to diseases affecting rice leaves.ConclusionThis systematic review provides insight into the significant research endeavours conducted by scholars in the field of rice disease detection during the previous decade. The text underscores the significance of precision in evaluation and calls for the implementation of hybrid deep learning and machine learning methodologies to augment disease identification, presenting possible resolutions to the obstacles presented by these agricultural hazards. |
|---|---|
| AbstractList | BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their impact.MethodsThe present study conducts a comprehensive evaluation of contemporary literature pertaining to the identification of rice diseases, covering the period from 2008 to 2023. The process of selecting pertinent studies followed the guidelines outlined by Kitchenham, which ultimately led to the inclusion of 69 studies for the purpose of review. It is worth mentioning that a significant portion of research endeavours have been directed towards studying diseases such as rice brown spot, rice blast, and rice bacterial blight. The primary performance parameter that emerged in the study was accuracy. Researchers strongly advocated for the combination of hybrid deep learning and machine learning methodologies in order to improve the rates of recognition for rice leaf diseases.ResultsThe study presents a comprehensive collection of scholarly investigations focused on the detection and characterization of diseases affecting rice leaves, with specific emphasis on rice brown spot, rice blast, and rice bacterial blight. The prominence of accuracy as a primary performance measure highlights the importance of precision in the detection and diagnosis of diseases. Furthermore, the efficacy of employing hybrid methodologies that combine deep learning and machine learning techniques is exemplified in enhancing the recognition capacities pertaining to diseases affecting rice leaves.ConclusionThis systematic review provides insight into the significant research endeavours conducted by scholars in the field of rice disease detection during the previous decade. The text underscores the significance of precision in evaluation and calls for the implementation of hybrid deep learning and machine learning methodologies to augment disease identification, presenting possible resolutions to the obstacles presented by these agricultural hazards. |
| Author | Dhiman, Poonam Seelwal, Pardeep Wadhwa, Shivani Onn, Choo Wou Kaur, Amandeep Gulzar, Yonis |
| Author_xml | – sequence: 1 givenname: Pardeep surname: Seelwal fullname: Seelwal, Pardeep – sequence: 2 givenname: Poonam surname: Dhiman fullname: Dhiman, Poonam – sequence: 3 givenname: Yonis surname: Gulzar fullname: Gulzar, Yonis – sequence: 4 givenname: Amandeep surname: Kaur fullname: Kaur, Amandeep – sequence: 5 givenname: Shivani surname: Wadhwa fullname: Wadhwa, Shivani – sequence: 6 givenname: Choo Wou surname: Onn fullname: Onn, Choo Wou |
| BookMark | eNp9UctKBDEQDKLg8wc85Qd2nc4kM4k3EV8geNFz6Ek6S2R2MiSzin_v7KogHrx0NU1V0d11zPaHNBBj51At61qbi-DSelyKSsglSCVMA3vsSDRCLow2ev9Xf8jOSnmtqkooAKXbI5avePkoE61xio5neov0zlPgnmjkPWEe4rDiOI59dDMlDYWHlHmOjriPhbBsEVdDKrFccrfJmYaJT3P1hePgedhMm7wlZXI7g1N2ELAvdPaNJ-zl9ub5-n7x-HT3cH31uHC1aqcFSSE777TvsFPahxYFGmiDgXlmUJEPUgA5VOCaoFsllZYANUpX1w5cfcIevnx9wlc75rjG_GETRrsbpLyymOere7KN9EK3FRAIkE0w6DvdGIAmdFUtlJy99JeXy6mUTMG6OO3-MWWMvYXKbqOwuyjsNgr7HcUsFX-kP6v8I_oEJkOSGg |
| CitedBy_id | crossref_primary_10_3389_frai_2025_1498025 crossref_primary_10_3390_rs17040726 crossref_primary_10_3390_agronomy15051122 crossref_primary_10_3390_jimaging11020032 crossref_primary_10_1186_s13007_025_01381_w crossref_primary_10_1111_jen_13457 crossref_primary_10_1002_fsn3_70653 crossref_primary_10_1016_j_atech_2025_100954 crossref_primary_10_1038_s41598_025_01553_7 crossref_primary_10_3390_agronomy15061266 crossref_primary_10_1038_s41598_025_96826_6 crossref_primary_10_3389_fpls_2025_1642453 crossref_primary_10_3390_rs17142404 crossref_primary_10_1109_ACCESS_2024_3498606 crossref_primary_10_1002_eng2_70231 |
| Cites_doi | 10.1109/ICSPC51351.2021.9451800 10.1016/j.eswa.2021.114770 10.3390/su15042947 10.1016/j.aiia.2020.10.002 10.1109/ICICCT.2018.8473322 10.1007/s11947-016-1767-1 10.1007/s11042-022-13144-z 10.1016/j.aiia.2023.07.001 10.1109/ICon-CuTE47290.2019.8991476 10.1109/ICICT4SD50815.2021.9396986 10.1007/s42161-020-00683-3 10.1109/ECTIDAMTNCON51128.2021.9425696 10.1109/CONFLUENCE.2014.6949363 10.3390/sym14122681 10.1556/0806.43.2015.034 10.1016/j.infsof.2011.09.002 10.1080/07060661.2022.2053588 10.1016/j.eswa.2020.114514 10.1016/j.compag.2021.106184 10.12785/ijcds/140187 10.1007/978-981-33-4543-0_55 10.1126/science.aaa8415 10.1080/03772063.2023.2251445 10.1080/19439342.2012.710641 10.1111/exsy.13136 10.1007/978-981-15-2329-8_56 10.3390/su151411465 10.3389/FAMS.2023.1320177 10.1109/CALCON49167.2020.9106423 10.1007/s40808-023-01918-9 10.3390/ijms19041141 10.1016/j.compag.2020.105527 10.1063/5.0186981 10.3233/IDT-170301 10.1016/j.procs.2020.03.308 10.5120/18973-0445 10.14569/IJACSA.2018.090109 10.1109/ICICCS51141.2021.9432081 10.1007/s11042-023-16047-9 10.1007/s11831-021-09588-5 10.1109/SEATUC.2018.8788863 10.1038/s41598-019-38966-0 10.1109/ICCMC48092.2020.ICCMC-00080 10.1109/ICACCTech61146.2023.00058 10.1007/s12652-021-03289-4 10.3390/su15129643 10.30534/ijatcse/2021/301022021 10.1007/s00521-022-07793-2 10.1016/j.engappai.2023.10583 10.7717/PEERJ-CS.432 10.1109/ICASERT.2019.8934568 10.1016/j.biosystemseng.2020.03.020 10.1007/s11042-021-11790-3 10.1145/3209914.3209945 10.5194/isprs-archives-XLII-3-W6-631-2019 10.1016/j.atech.2023.100195 10.1016/j.dsp.2022.103875 10.1179/174313108X319397 10.3808/jei.202300492 10.1109/CVPRW59228.2023.00663 10.1109/ACCESS.2022.3200688 10.1016/j.neucom.2017.06.023 10.15439/2017R24 10.1016/j.engappai.2023.106020 10.3390/su15097097 10.3390/cancers15143604 10.1007/s10661-023-11612-z 10.3897/ejfa.2024.122928 10.1088/1755-1315/699/1/012020 10.1093/comjnl/bxab022 10.1007/s00371-023-03098-0 10.1007/s00521-020-05364-x 10.3390/jimaging9080163 10.1016/j.biosystemseng.2022.11.007 10.1109/ICMETE.2018.00063 10.1109/ICAIS50930.2021.9395813 10.7763/IJIEE.2012.V2.137 10.12928/telkomnika.v19i2.16488 10.1109/STI47673.2019.9068096 10.1016/j.compag.2012.11.001 10.5815/ijisa.2021.05.04 10.1016/j.chaos.2020.110530 10.3390/agronomy13040961 10.1016/j.compag.2020.105824 10.3390/electronics9081209 10.1007/s10586-018-1949-x 10.1631/jzus.B0900193 10.1007/s10661-022-10656-x 10.1109/CAST.2016.7915015 10.1155/2022/2845320 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fcomp.2024.1452961 |
| DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2624-9898 |
| ExternalDocumentID | oai_doaj_org_article_64d28701e12146f9adb869116fb03254 10_3389_fcomp_2024_1452961 |
| GroupedDBID | 9T4 AAFWJ AAYXX ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c357t-e424bdc8dbab58df7a2a917f91c8d9a5edf421eca51c6f8754584113a4c33c1c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322485400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-9898 |
| IngestDate | Fri Oct 03 12:23:37 EDT 2025 Sat Nov 29 02:12:01 EST 2025 Tue Nov 18 19:49:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-e424bdc8dbab58df7a2a917f91c8d9a5edf421eca51c6f8754584113a4c33c1c3 |
| OpenAccessLink | https://doaj.org/article/64d28701e12146f9adb869116fb03254 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64d28701e12146f9adb869116fb03254 crossref_citationtrail_10_3389_fcomp_2024_1452961 crossref_primary_10_3389_fcomp_2024_1452961 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-11 |
| PublicationDateYYYYMMDD | 2024-09-11 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in computer science (Lausanne) |
| PublicationYear | 2024 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Jordan (ref47) 2015; 349 Salaba (ref77) 2023 Tuncer (ref96) 2021; 12 Asvitha (ref8) 2024 Kukreja (ref53) 2021 Lu (ref56) 2023; 83 Alkanan (ref4) 2024; 9 Zhou (ref105) 2023; 121 Bari (ref14) 2021; 7 Ramesh (ref73) 2019; 11 Rafeed Rahman (ref71) 2018; 194 Chen (ref19) 2021; 169 Prajapati (ref69) 2017; 11 Simhadri (ref86) 2023; 13 Wang (ref101) 2023 Ding (ref28) 2023; 133 Joshi (ref48) 2016 Lu (ref57) 2017; 267 Liu (ref55) 2010; 11 Jiang (ref46) 2020; 179 Sethy (ref80); 175 Wen (ref103) 2012; 54 Bellapu (ref16) 2021 Atole (ref9) 2018; 9 Ghosal (ref34) 2020 Saha (ref76) 2021 Ahmed (ref3) 2023; 40 Food Summit (ref31) 2009 Goluguri (ref36) 2021; 33 Ahmed (ref2) 2019 Huang (ref41) 2023; 82 Mique (ref61) 2018 Mekha (ref60) 2021 Sankareshwaran (ref78) 2023; 195 Islam (ref43) 2019 Arinichev (ref7) 2021 Thakur (ref95) 2023; 82 Ayoub (ref10) 2022; 14 Pothen (ref68) 2020 Dhiman (ref25) 2014 Singh (ref87) 2018; 19 Ghyar (ref35) 2017 Phadikar (ref67) 2013; 90 Ganatra (ref32) 2020; 11 Snilstveit (ref91) 2012; 4 Sudhesh (ref93) 2023; 120 Amri (ref5) 2024; 10 Ahad (ref1) 2023; 9 Ramesh (ref74) 2020 Phadikar (ref66) 2012; 2 Stephen (ref92) 2023; 35 Gayathri Devi (ref33) 2019; 22 Patil (ref65) 2022; 10 Tete (ref94) 2017 Chumthong (ref21) 2016; 44 Gulzar (ref37) 2024; 36 Kitpo (ref52) 2018 Ayoub (ref11) 2023; 15 Bandara (ref13) 2021 Jiang (ref45) 2021; 186 Shrivastava (ref84) 2019; 42 Khairnar (ref49) 2014; 108 Khan (ref50) 2023; 9 Singh (ref89) 2022; 2022 Ramesh (ref72) 2018 Sethy (ref81); 167 Nayak (ref62) 2023; 4 Pan (ref64) 2023; 225 Singla (ref90) 2023 Bharanidharan (ref17) 2023 Faizal Azizi (ref30) 2022; 44 Appalanaidu (ref6) 2021 Kirtphaiboon (ref51) 2021; 143 Dhiman (ref26); 15 Islam (ref44) 2018 Azim (ref12) 2021; 19 Cubero (ref22) 2016; 9 Wang (ref100) 2021; 178 Liang (ref54) 2019; 9 Singh (ref88) 2020; 4 Shrivastava (ref85) 2021 Daniya (ref24) 2023; 42 Malik (ref58) 2023; 15 Verma (ref99) 2019 Dhiman (ref27); 14 Prashar (ref70) 2022 Sharma (ref82) 2021 Basit (ref15) 2020; 57 Ullah (ref97) 2021; 10 Daniya (ref23) 2022; 65 Gulzar (ref38) 2023; 15 Islam (ref42) 2021; 13 Sanyal (ref79) 2008; 56 Rumy (ref75) 2021 Ding (ref29) 2023; 40 Chiplunkar (ref20) 2021 Chaudhary (ref18) 2012; 3 Haridasan (ref39) 2023; 195 Shrivastava (ref83) 2021; 103 Hasan (ref40) 2019 Verma (ref98) 2023 Zhang (ref104) 2020; 9 Mehmood (ref59) 2023; 15 Nuttakarn (ref63) 2018 Wani (ref102) 2022; 29 |
| References_xml | – year: 2021 ident: ref82 article-title: Hispa rice disease classification using convolutional neural network doi: 10.1109/ICSPC51351.2021.9451800 – volume: 178 start-page: 114770 year: 2021 ident: ref100 article-title: Rice diseases detection and classification using attention based neural network and bayesian optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114770 – volume: 15 start-page: 2947 year: 2023 ident: ref38 article-title: OCA: ordered clustering-based algorithm for E-commerce recommendation system publication-title: Sustain. For. doi: 10.3390/su15042947 – volume: 4 start-page: 229 year: 2020 ident: ref88 article-title: A review of imaging techniques for plant disease detection publication-title: Artif. Intell. Agric. doi: 10.1016/j.aiia.2020.10.002 – year: 2018 ident: ref44 article-title: A faster technique on rice disease detectionusing image processing of affected area in agro-field doi: 10.1109/ICICCT.2018.8473322 – volume: 9 start-page: 1623 year: 2016 ident: ref22 article-title: Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest—a review publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-016-1767-1 – volume: 82 start-page: 497 year: 2023 ident: ref95 article-title: VGG-ICNN: a lightweight CNN model for crop disease identification publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13144-z – volume: 9 start-page: 22 year: 2023 ident: ref1 article-title: Comparison of CNN-based deep learning architectures for rice diseases classification publication-title: Artif. Intell. Agric. doi: 10.1016/j.aiia.2023.07.001 – year: 2019 ident: ref99 article-title: Vision based detection and classification of disease on rice crops using convolutional neural network doi: 10.1109/ICon-CuTE47290.2019.8991476 – year: 2021 ident: ref76 article-title: Rice disease detection using intensity moments and random forest doi: 10.1109/ICICT4SD50815.2021.9396986 – volume: 103 start-page: 17 year: 2021 ident: ref83 article-title: Rice plant disease classification using colour features: a machine learning paradigm publication-title: J. Plant Pathol. doi: 10.1007/s42161-020-00683-3 – year: 2021 ident: ref60 article-title: Image classification of rice leaf diseases using random forest algorithm doi: 10.1109/ECTIDAMTNCON51128.2021.9425696 – year: 2014 ident: ref25 article-title: Empirical validation of website quality using statistical and machine learning methods doi: 10.1109/CONFLUENCE.2014.6949363 – volume: 14 start-page: 2681 year: 2022 ident: ref10 article-title: Generating image captions using Bahdanau attention mechanism and transfer learning publication-title: Symmetry doi: 10.3390/sym14122681 – volume: 44 start-page: 131 year: 2016 ident: ref21 article-title: Spray-dried powder of Bacillus megaterium for control of rice sheath blight disease: formulation protocol and efficacy testing in laboratory and greenhouse publication-title: Cereal Res. Commun. doi: 10.1556/0806.43.2015.034 – year: 2021 ident: ref53 article-title: Rice diseases detection using convolutional neural networks: A survey – volume: 54 start-page: 41 year: 2012 ident: ref103 article-title: Systematic literature review of machine learning based software development effort estimation models publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2011.09.002 – volume: 44 start-page: 627 year: 2022 ident: ref30 article-title: Advanced diagnostic approaches developed for the global menace of rice diseases: a review publication-title: Can. J. Plant Pathol. doi: 10.1080/07060661.2022.2053588 – volume: 169 start-page: 114514 year: 2021 ident: ref19 article-title: Identification of rice plant diseases using lightweight attention networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114514 – volume: 186 start-page: 106184 year: 2021 ident: ref45 article-title: Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106184 – volume: 14 start-page: 10127 ident: ref27 article-title: Citrus fruit disease detection techniques: a survey and comparative analysis of relevant approaches publication-title: Int. J. Comput. Digit. Syst. doi: 10.12785/ijcds/140187 – year: 2021 ident: ref6 article-title: Plant leaf disease detection and classification using machine learning approaches: a review doi: 10.1007/978-981-33-4543-0_55 – volume: 349 start-page: 255 year: 2015 ident: ref47 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – start-page: 1 year: 2023 ident: ref98 article-title: A unified lightweight CNN-based model for disease detection and identification in corn, Rice, and wheat publication-title: IETE J. Res. doi: 10.1080/03772063.2023.2251445 – year: 2021 ident: ref13 article-title: Detection and classification of rice plant diseases using image processing techniques – volume: 4 start-page: 409 year: 2012 ident: ref91 article-title: Narrative approaches to systematic review and synthesis of evidence for international development policy and practice publication-title: J. Dev. Eff. doi: 10.1080/19439342.2012.710641 – volume: 40 start-page: e13136 year: 2023 ident: ref3 article-title: Plant disease detection using machine learning approaches publication-title: Expert. Syst. doi: 10.1111/exsy.13136 – year: 2017 ident: ref35 article-title: Computer vision based approach to detect rice leaf diseases using texture and colour descriptors – year: 2020 ident: ref74 article-title: Rice disease detection and classification using deep neural network algorithm doi: 10.1007/978-981-15-2329-8_56 – volume: 15 start-page: 11465 year: 2023 ident: ref58 article-title: Estimation of the extent of the vulnerability of agriculture to climate change using analytical and deep-learning methods: a case study in Jammu, Kashmir, and Ladakh publication-title: Sustain. For. doi: 10.3390/su151411465 – year: 2021 ident: ref75 article-title: An IoT based system with edge intelligence for rice leaf disease detection using machine learning – volume: 9 start-page: 1320177 year: 2024 ident: ref4 article-title: Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning publication-title: Front. Appl. Math. Stat. doi: 10.3389/FAMS.2023.1320177 – volume: 57 start-page: 100 year: 2020 ident: ref15 article-title: Detection of disease onset in Rice Plant leaves in monochrome light publication-title: Nucleus – year: 2020 ident: ref34 article-title: Rice leaf diseases classification using CNN with transfer learning doi: 10.1109/CALCON49167.2020.9106423 – volume: 10 start-page: 2693 year: 2024 ident: ref5 article-title: Advancing automatic plant classification system in Saudi Arabia: introducing a novel dataset and ensemble deep learning approach publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-023-01918-9 – volume-title: Cataloging and classification: An introduction year: 2023 ident: ref77 – volume: 19 start-page: 1141 year: 2018 ident: ref87 article-title: Prospects of understanding the molecular biology of disease resistance in rice publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19041141 – volume: 11 start-page: 1082 year: 2020 ident: ref32 article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques publication-title: Int. J. Emerg. Eng. Res. Technol. – volume: 175 start-page: 105527 ident: ref80 article-title: Deep feature based rice leaf disease identification using support vector machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105527 – year: 2024 ident: ref8 article-title: A survey on plant diseases detection using different ML/DL techniques doi: 10.1063/5.0186981 – volume: 11 start-page: 357 year: 2017 ident: ref69 article-title: Detection and classification of rice plant diseases publication-title: Intell. Decis. Technol. doi: 10.3233/IDT-170301 – volume: 167 start-page: 516 ident: ref81 article-title: Image processing techniques for diagnosing rice plant disease: a survey publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.308 – volume: 108 start-page: 36 year: 2014 ident: ref49 article-title: Disease detection and diagnosis on plant using image processing—a review publication-title: Int. J. Comput. Appl. doi: 10.5120/18973-0445 – volume: 9 year: 2018 ident: ref9 article-title: A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.14569/IJACSA.2018.090109 – year: 2021 ident: ref16 article-title: Evaluation of homogeneous and heterogeneous distributed ensemble feature selection approaches for classification of Rice Plant diseases doi: 10.1109/ICICCS51141.2021.9432081 – year: 2019 ident: ref43 article-title: Wavelet based feature extraction for rice plant disease detection and classification – volume: 83 start-page: 12799 year: 2023 ident: ref56 article-title: Image recognition of rice leaf diseases using atrous convolutional neural network and improved transfer learning algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16047-9 – volume: 11 start-page: 31 year: 2019 ident: ref73 article-title: Application of machine learning in detection of blast disease in south Indian rice crops publication-title: J. Phytology – volume: 29 start-page: 641 year: 2022 ident: ref102 article-title: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: methodologies, applications, and challenges publication-title: Arch. Comput. Method Eng. doi: 10.1007/s11831-021-09588-5 – year: 2018 ident: ref52 article-title: Early rice disease detection and position mapping system using drone and IoT architecture doi: 10.1109/SEATUC.2018.8788863 – year: 2022 ident: ref70 article-title: An efficient recognition and classification system for Paddy leaf disease using Naïve Bayes with optimization algorithm – volume: 9 start-page: 2869 year: 2019 ident: ref54 article-title: Rice blast disease recognition using a deep convolutional neural network publication-title: Sci. Rep. doi: 10.1038/s41598-019-38966-0 – year: 2020 ident: ref68 article-title: Detection of rice leaf diseases using image processing doi: 10.1109/ICCMC48092.2020.ICCMC-00080 – year: 2023 ident: ref90 article-title: Disease detection in Bombyx Mori silkworm using deep learning algorithm CNN doi: 10.1109/ICACCTech61146.2023.00058 – volume: 12 start-page: 8625 year: 2021 ident: ref96 article-title: Cost-optimized hybrid convolutional neural networks for detection of plant leaf diseases publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03289-4 – volume: 15 start-page: 9643 ident: ref26 article-title: Image acquisition, preprocessing and classification of citrus fruit diseases: a systematic literature review publication-title: Sustain. For. doi: 10.3390/su15129643 – volume: 10 start-page: 675 year: 2021 ident: ref97 article-title: Automatic diseases detection and classification in maize crop using convolution neural network publication-title: Int. J. Adv. Trends Comput. Sci. Eng. doi: 10.30534/ijatcse/2021/301022021 – volume: 35 start-page: 6737 year: 2023 ident: ref92 article-title: Designing self attention-based ResNet architecture for rice leaf disease classification publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-022-07793-2 – volume: 120 start-page: 105836 year: 2023 ident: ref93 article-title: AI based rice leaf disease identification enhanced by dynamic mode decomposition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.10583 – volume: 7 start-page: 1 year: 2021 ident: ref14 article-title: A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework publication-title: PeerJ Comput. Sci. doi: 10.7717/PEERJ-CS.432 – year: 2023 ident: ref17 article-title: Multiclass Paddy disease detection using filter based feature transformation technique. IEEE Access – year: 2019 ident: ref40 article-title: Rice disease identification and classification by integrating support vector machine with deep convolutional neural network doi: 10.1109/ICASERT.2019.8934568 – volume: 194 start-page: 112 year: 2018 ident: ref71 article-title: Identification and recognition of Rice diseases and pests using convolutional neural networks publication-title: Biosys. Eng. doi: 10.1016/j.biosystemseng.2020.03.020 – volume: 82 start-page: 2121 year: 2023 ident: ref41 article-title: Tomato leaf disease detection system based on FC-SNDPN publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11790-3 – year: 2018 ident: ref61 article-title: Rice pest and disease detection using convolutional neural network doi: 10.1145/3209914.3209945 – volume: 42 start-page: 631 year: 2019 ident: ref84 article-title: Rice plant disease classification using transfer learning of deep convolution neural network publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-3-W6-631-2019 – volume: 4 start-page: 100195 year: 2023 ident: ref62 article-title: Application of smartphone-image processing and transfer learning for rice disease and nutrient deficiency detection publication-title: Smart Agr. Technol. doi: 10.1016/j.atech.2023.100195 – volume: 3 start-page: 65 year: 2012 ident: ref18 article-title: Colour transform based approach for disease spot detection on plant leaf publication-title: Int. J. Comput. Commun. Control – volume: 133 start-page: 103875 year: 2023 ident: ref28 article-title: Multi-spectral colour vision fusion jointly with two-stream feature interaction and colour transformation network publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103875 – volume: 56 start-page: 319 year: 2008 ident: ref79 article-title: Pattern recognition method to detect two diseases in rice plants publication-title: J. Imaging Sci. doi: 10.1179/174313108X319397 – volume: 42 start-page: 25 year: 2023 ident: ref24 article-title: Rice plant leaf disease detection and classification using optimization enabled deep learning publication-title: J. Environ. Inf. doi: 10.3808/jei.202300492 – year: 2023 ident: ref101 article-title: ECA-ConvNeXt: a Rice leaf disease identification model based on ConvNeXt doi: 10.1109/CVPRW59228.2023.00663 – volume: 10 start-page: 87698 year: 2022 ident: ref65 article-title: Rice transformer: a novel integrated management system for controlling Rice diseases publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3200688 – volume: 267 start-page: 378 year: 2017 ident: ref57 article-title: Identification of rice diseases using deep convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.023 – year: 2017 ident: ref94 article-title: Plant disease detection using different algorithms doi: 10.15439/2017R24 – volume: 121 start-page: 106020 year: 2023 ident: ref105 article-title: Rice leaf disease identification by residual-distilled transformer publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106020 – volume-title: Data science and data analytics: Opportunities and challenges year: 2021 ident: ref20 article-title: Identification and classification of Paddy crop diseases using big data machine learning techniques – volume: 15 start-page: 7097 year: 2023 ident: ref11 article-title: Adversarial approaches to tackle imbalanced data in machine learning publication-title: Sustain. For. doi: 10.3390/su15097097 – volume: 15 start-page: 3604 year: 2023 ident: ref59 article-title: SBXception: a shallower and broader Xception architecture for efficient classification of skin lesions publication-title: Cancers doi: 10.3390/cancers15143604 – volume: 195 start-page: 1070 year: 2023 ident: ref78 article-title: Optimizing rice plant disease detection with crossover boosted artificial hummingbird algorithm based AX-RetinaNet publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-11612-z – volume: 36 start-page: 1 year: 2024 ident: ref37 article-title: Enhancing soybean classification with modified inception model: a transfer learning approach publication-title: Emir. J. Food Agric. doi: 10.3897/ejfa.2024.122928 – year: 2021 ident: ref7 article-title: Applications of convolutional neural networks for the detection and classification of fungal rice diseases doi: 10.1088/1755-1315/699/1/012020 – volume: 65 start-page: 1812 year: 2022 ident: ref23 article-title: Deep neural network for disease detection in rice plant using the texture and deep features publication-title: Comput. J. doi: 10.1093/comjnl/bxab022 – volume: 40 start-page: 4539 year: 2023 ident: ref29 article-title: 3D shape classification based on global and local features extraction with collaborative learning publication-title: Vis. Comput. doi: 10.1007/s00371-023-03098-0 – volume: 33 start-page: 5869 year: 2021 ident: ref36 article-title: Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-05364-x – volume: 9 start-page: 163 year: 2023 ident: ref50 article-title: MRI-based effective ensemble frameworks for predicting human brain tumor publication-title: J. Imaging doi: 10.3390/jimaging9080163 – volume: 225 start-page: 25 year: 2023 ident: ref64 article-title: RiceNet: a two stage machine learning method for rice disease identification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2022.11.007 – year: 2018 ident: ref72 article-title: Rice blast disease detection and classification using machine learning algorithm doi: 10.1109/ICMETE.2018.00063 – year: 2021 ident: ref85 article-title: Application of pre-trained deep convolutional neural networks for rice plant disease classification doi: 10.1109/ICAIS50930.2021.9395813 – volume: 2 start-page: 460 year: 2012 ident: ref66 article-title: Classification of rice leaf diseases based on morphological changes publication-title: IJIEEB doi: 10.7763/IJIEE.2012.V2.137 – volume: 19 start-page: 463 year: 2021 ident: ref12 article-title: An effective feature extraction method for rice leaf disease classification publication-title: Telkomnika doi: 10.12928/telkomnika.v19i2.16488 – year: 2019 ident: ref2 article-title: Rice leaf disease detection using machine learning techniques doi: 10.1109/STI47673.2019.9068096 – volume: 90 start-page: 76 year: 2013 ident: ref67 article-title: Rice diseases classification using feature selection and rule generation techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.11.001 – volume: 13 start-page: 35 year: 2021 ident: ref42 article-title: Rice leaf disease recognition using local threshold based segmentation and deep CNN publication-title: Int. J. Intell. Syst. Appl doi: 10.5815/ijisa.2021.05.04 – volume: 143 start-page: 110530 year: 2021 ident: ref51 article-title: Model of rice blast disease under tropical climate conditions publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.110530 – year: 2018 ident: ref63 article-title: Early Rice disease detection and position mapping system using drone and IoT architecture Nuttakarn – volume: 13 start-page: 961 year: 2023 ident: ref86 article-title: Automatic recognition of Rice leaf diseases using transfer learning publication-title: Agronomy doi: 10.3390/agronomy13040961 – volume: 179 start-page: 105824 year: 2020 ident: ref46 article-title: Image recognition of four rice leaf diseases based on deep learning and support vector machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105824 – volume: 9 start-page: 1209 year: 2020 ident: ref104 article-title: Pruning convolutional neural networks with an attention mechanism for remote sensing image classification publication-title: Electronics doi: 10.3390/electronics9081209 – volume: 22 start-page: 13415 year: 2019 ident: ref33 article-title: Image processing based rice plant leaves diseases in Thanjavur, Tamilnadu publication-title: Cluster Comput. doi: 10.1007/s10586-018-1949-x – volume: 11 start-page: 71 year: 2010 ident: ref55 article-title: Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.B0900193 – volume: 195 start-page: 120 year: 2023 ident: ref39 article-title: Deep learning system for paddy plant disease detection and classification publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10656-x – volume-title: Declaration of the world summit on food security year: 2009 ident: ref31 – year: 2016 ident: ref48 article-title: Monitoring and controlling rice diseases using image processing techniques doi: 10.1109/CAST.2016.7915015 – volume: 2022 start-page: 1 year: 2022 ident: ref89 article-title: Hybrid feature-based disease detection in plant leaf using convolutional neural network, bayesian optimized SVM, and random forest classifier publication-title: J. Food Qual. doi: 10.1155/2022/2845320 |
| SSID | ssj0002511587 |
| Score | 2.4062982 |
| SecondaryResourceType | review_article |
| Snippet | BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | Oryza sativa L pre-processing recognition review rice disease systematic |
| Title | A systematic review of deep learning applications for rice disease diagnosis: current trends and future directions |
| URI | https://doaj.org/article/64d28701e12146f9adb869116fb03254 |
| Volume | 6 |
| WOSCitedRecordID | wos001322485400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-9898 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511587 issn: 2624-9898 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-9898 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511587 issn: 2624-9898 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1FeuoENRa0Tx4nZCmrFQsUAUrfI8QNVQmnVBkZ-O3dxWsoCC0siWbZlfT777nTn7xi7FpZIofCkpSq2EepbHymDG4La0OSlcDK3vik2kY3H-WSinjZKfVFOWKAHDsD1pLAUi-OOUwlqr7Qtc4knVPqyn6B3Q7dvP1MbzhTdwWQ4p3kWXsmgF6Z6nlK00R-MBV4OFGzkPzTRBmF_o1lG-2y3NQlhEJZywLZcdcj2VuUWoD19R2wxgG_eZQhvTmDmwTo3h7b6wytsRqQBLVIg1iBo4zD4bzLrpstbMIGZCeomKxZ0ZSEQjEBQczTBMXsZDZ_vH6K2ZEJkkjSrIydiUVqT21KXKcKc6VijQ-YVxzalU2e9iLkzOuVGevRVKEzKeaKFSRLDTXLCOtWscqcMfGK9NKnhXqLV4RBzF8vMCeNQ4_et6jK-gq8wLZ84lbV4K9CvIMiLBvKCIC9ayLvsZj1mHtg0fu19R7uy7klM2E0DykfRykfxl3yc_cck52yHFkZ5IpxfsE69eHeXbNt81NPl4qoRPfw-fg6_AEwb3yQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+deep+learning+applications+for+rice+disease+diagnosis%3A+current+trends+and+future+directions&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Pardeep+Seelwal&rft.au=Poonam+Dhiman&rft.au=Yonis+Gulzar&rft.au=Amandeep+Kaur&rft.date=2024-09-11&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9898&rft.volume=6&rft_id=info:doi/10.3389%2Ffcomp.2024.1452961&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64d28701e12146f9adb869116fb03254 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon |