How Reduced Data Precision and Degree of Parallelism Impact the Reliability of Convolutional Neural Networks on FPGAs

Convolutional neural networks (CNNs) are becoming attractive alternatives to traditional image-processing algorithms in self-driving vehicles for automotive, military, and aerospace applications. The high computational demand of state-of-the-art CNN architectures requires the use of hardware acceler...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on nuclear science Ročník 68; číslo 5; s. 865 - 872
Hlavní autoři: Libano, F., Rech, P., Neuman, B., Leavitt, J., Wirthlin, M., Brunhaver, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9499, 1558-1578
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolutional neural networks (CNNs) are becoming attractive alternatives to traditional image-processing algorithms in self-driving vehicles for automotive, military, and aerospace applications. The high computational demand of state-of-the-art CNN architectures requires the use of hardware acceleration on parallel devices. Field-programmable gate arrays (FPGAs) offer a great level of design flexibility, low power consumption, and are relatively low cost, which make them very good candidates for efficiently accelerating neural networks. Unfortunately, the configuration memories of SRAM-based FPGAs are sensitive to radiation-induced errors, which can compromise the circuit implemented on the programmable fabric and the overall reliability of the system. Through neutron beam experiments, we evaluate how lossless quantization processes and subsequent data precision reduction impact the area, performance, radiation sensitivity, and failure rate of neural networks on FPGAs. Our results show that an 8-bit integer design can deliver over six times more fault-free executions than a 32-bit floating-point implementation. Moreover, we discuss the tradeoffs associated with varying degrees of parallelism in a neural network accelerator. We show that, although increased parallelism increases radiation sensitivity, the performance gains generally outweigh it in terms of global failure rate.
AbstractList Convolutional neural networks (CNNs) are becoming attractive alternatives to traditional image-processing algorithms in self-driving vehicles for automotive, military, and aerospace applications. The high computational demand of state-of-the-art CNN architectures requires the use of hardware acceleration on parallel devices. Field-programmable gate arrays (FPGAs) offer a great level of design flexibility, low power consumption, and are relatively low cost, which make them very good candidates for efficiently accelerating neural networks. Unfortunately, the configuration memories of SRAM-based FPGAs are sensitive to radiation-induced errors, which can compromise the circuit implemented on the programmable fabric and the overall reliability of the system. Through neutron beam experiments, we evaluate how lossless quantization processes and subsequent data precision reduction impact the area, performance, radiation sensitivity, and failure rate of neural networks on FPGAs. Our results show that an 8-bit integer design can deliver over six times more fault-free executions than a 32-bit floating-point implementation. Moreover, we discuss the tradeoffs associated with varying degrees of parallelism in a neural network accelerator. We show that, although increased parallelism increases radiation sensitivity, the performance gains generally outweigh it in terms of global failure rate.
Author Rech, P.
Brunhaver, J.
Leavitt, J.
Neuman, B.
Libano, F.
Wirthlin, M.
Author_xml – sequence: 1
  givenname: F.
  orcidid: 0000-0002-0638-1102
  surname: Libano
  fullname: Libano, F.
  email: flibano@asu.edu
  organization: School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University (ASU), Tempe, AZ, USA
– sequence: 2
  givenname: P.
  orcidid: 0000-0002-0821-1879
  surname: Rech
  fullname: Rech, P.
  email: prech@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
– sequence: 3
  givenname: B.
  surname: Neuman
  fullname: Neuman, B.
  email: bneuman@lanl.gov
  organization: Los Alamos National Laboratory (LANL), Los Alamos, NM, USA
– sequence: 4
  givenname: J.
  surname: Leavitt
  fullname: Leavitt, J.
  email: jleavitt@byu.edu
  organization: Department of Electrical and Computer Engineering, Brigham Young University (BYU), Provo, UT, USA
– sequence: 5
  givenname: M.
  orcidid: 0000-0003-0328-6713
  surname: Wirthlin
  fullname: Wirthlin, M.
  email: wirthlin@byu.edu
  organization: Department of Electrical and Computer Engineering, Brigham Young University (BYU), Provo, UT, USA
– sequence: 6
  givenname: J.
  surname: Brunhaver
  fullname: Brunhaver, J.
  email: jbrunhaver@asu.edu
  organization: School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University (ASU), Tempe, AZ, USA
BookMark eNp9kEtLxDAUhYMoOD72gpuA6455NE26lPEJooOPdUnTW41mmjFJFf-9GUdcuHB1uJfzHe49O2hz8AMgdEDJlFJSHz_c3E8ZYXTKiSCSyA00oUKoggqpNtGEEKqKuqzrbbQT40seS0HEBI2X_gPfQTca6PCpThrPAxgbrR-wHvIKngIA9j2e66CdA2fjAl8tltoknJ4hs87q1jqbPleumR_evRtT5rXDNzCGb0kfPrxGnEPP5xcncQ9t9dpF2P_RXfR4fvYwuyyuby-uZifXheFCpgK41JXuVMkqVrWCMCXaupdUVrzsKDWlYp0wRHZV26pKGt4KaHsGldbAe9LzXXS0zl0G_zZCTM2LH0O-LDZMMFWXOZlnV7V2meBjDNA3xia9eiEFbV1DSbOquMkVN6uKm5-KM0j-gMtgFzp8_occrhELAL_2mtOalop_AfvjiPw
CODEN IETNAE
CitedBy_id crossref_primary_10_1016_j_cosrev_2024_100682
crossref_primary_10_1109_MDAT_2023_3241116
crossref_primary_10_1109_TNS_2024_3377596
crossref_primary_10_1109_TNS_2024_3491503
crossref_primary_10_1016_j_microrel_2025_115859
crossref_primary_10_1145_3638242
crossref_primary_10_1109_TCASAI_2025_3552735
crossref_primary_10_1109_TNS_2023_3262448
crossref_primary_10_1109_TNS_2022_3224538
crossref_primary_10_1016_j_microrel_2024_115392
crossref_primary_10_1016_j_sysarc_2023_102872
crossref_primary_10_1016_j_microrel_2023_115092
crossref_primary_10_1109_TNS_2021_3131346
crossref_primary_10_3390_electronics13224461
crossref_primary_10_1109_TNS_2025_3595388
crossref_primary_10_1016_j_microrel_2023_114974
crossref_primary_10_1109_MDAT_2022_3174181
crossref_primary_10_1016_j_jpdc_2023_104746
crossref_primary_10_3390_electronics13050879
crossref_primary_10_1109_JETCAS_2024_3460792
crossref_primary_10_1109_TNS_2025_3585859
crossref_primary_10_1109_TDMR_2023_3235767
crossref_primary_10_1109_TVLSI_2021_3138491
crossref_primary_10_1109_TCSI_2023_3300899
crossref_primary_10_1049_ipr2_13206
crossref_primary_10_1109_TNS_2022_3176485
crossref_primary_10_1109_TVLSI_2024_3443834
Cites_doi 10.1109/SBCCI.2018.8533235
10.1109/DFT.2019.8875362
10.1109/ETS.2019.8791554
10.1109/TNS.2017.2784367
10.1145/3195970.3195997
10.1109/JPROC.2015.2404212
10.1109/FCCM.2019.00077
10.1109/ICComm.2012.6262539
10.1109/ISPASS.2015.7095801
10.1109/TNS.2018.2884460
10.1109/TDMR.2011.2168959
10.1109/DSN-W.2017.47
10.1109/5.726791
10.1109/JPROC.2006.887327
10.1109/INDUSCON.2016.7874605
10.1109/ACCESS.2018.2877890
10.1109/ISCID.2018.00029
10.1109/ISOCC47750.2019.9027715
10.1109/TNS.2015.2508981
10.1109/DSN.2014.49
10.1109/JSTARS.2019.2936771
10.1109/HPCA.2019.00041
10.1109/TNS.2020.2983662
10.1145/3079856.3080246
10.1109/TR.2018.2878387
10.1109/TMI.2016.2528162
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
DOI 10.1109/TNS.2021.3050707
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1578
EndPage 872
ExternalDocumentID 10_1109_TNS_2021_3050707
9319148
Genre orig-research
GrantInformation_xml – fundername: CAPES Foundation of the Ministry of Education
– fundername: Department of Energy of the United States
– fundername: CNPq Research Council of the Ministry of Science and Technology
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
ID FETCH-LOGICAL-c357t-e37a6ad842626b50285b9f717634d11c482d5c07d6bb867c3b5ebf2e6aae3f0f3
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655537500052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9499
IngestDate Mon Jun 30 10:11:33 EDT 2025
Sat Nov 29 05:53:25 EST 2025
Tue Nov 18 22:33:35 EST 2025
Wed Aug 27 02:30:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-e37a6ad842626b50285b9f717634d11c482d5c07d6bb867c3b5ebf2e6aae3f0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0328-6713
0000-0002-0821-1879
0000-0002-0638-1102
PQID 2528944263
PQPubID 85457
PageCount 8
ParticipantIDs proquest_journals_2528944263
crossref_primary_10_1109_TNS_2021_3050707
crossref_citationtrail_10_1109_TNS_2021_3050707
ieee_primary_9319148
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
(ref4) 2020
(ref38) 2020
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
(ref2) 2020
ref39
ref16
(ref41) 2020
(ref35) 2020
ref19
ref18
(ref7) 2020
(ref34) 2020
(ref37) 2020
(ref27) 2020
(ref17) 2020
ref24
ref23
ref26
(ref29) 2020
ref25
ref20
ref42
ref22
ref21
(ref3) 2020
ref8
ref9
(ref1) 2020
hubara (ref28) 2017; 18
(ref6) 2020
ref5
ref40
(ref33) 2020
References_xml – year: 2020
  ident: ref17
  publication-title: 7 Series FPGA Configuration User Guide
– ident: ref22
  doi: 10.1109/SBCCI.2018.8533235
– ident: ref31
  doi: 10.1109/DFT.2019.8875362
– ident: ref24
  doi: 10.1109/ETS.2019.8791554
– ident: ref21
  doi: 10.1109/TNS.2017.2784367
– ident: ref18
  doi: 10.1145/3195970.3195997
– ident: ref16
  doi: 10.1109/JPROC.2015.2404212
– ident: ref14
  doi: 10.1109/FCCM.2019.00077
– year: 2020
  ident: ref33
  publication-title: Zynq-7000 SoC
– ident: ref9
  doi: 10.1109/ICComm.2012.6262539
– ident: ref12
  doi: 10.1109/ISPASS.2015.7095801
– ident: ref30
  doi: 10.1109/TNS.2018.2884460
– ident: ref39
  doi: 10.1109/TDMR.2011.2168959
– ident: ref19
  doi: 10.1109/DSN-W.2017.47
– year: 2020
  ident: ref6
  publication-title: Mars 2020 Mission Perseverance Rover
– year: 2020
  ident: ref38
  publication-title: Device Reliability Report
– year: 2020
  ident: ref4
  publication-title: Autopilot
– ident: ref32
  doi: 10.1109/5.726791
– year: 2020
  ident: ref41
  publication-title: Zynq DPU
– year: 2020
  ident: ref37
  publication-title: ISO 26262
– year: 2020
  ident: ref35
  publication-title: JEDEC Standard JESD89
– ident: ref5
  doi: 10.1109/JPROC.2006.887327
– ident: ref15
  doi: 10.1109/INDUSCON.2016.7874605
– ident: ref26
  doi: 10.1109/ACCESS.2018.2877890
– year: 2020
  ident: ref34
  publication-title: Zynq ultrascale+ mpsoc
– ident: ref10
  doi: 10.1109/ISCID.2018.00029
– ident: ref13
  doi: 10.1109/ISOCC47750.2019.9027715
– year: 2020
  ident: ref7
  publication-title: Mars Helicopter
– year: 2020
  ident: ref2
  publication-title: Mercedes-Benz Innovation Autonomous
– ident: ref40
  doi: 10.1109/TNS.2015.2508981
– ident: ref36
  doi: 10.1109/DSN.2014.49
– volume: 18
  start-page: 6898
  year: 2017
  ident: ref28
  article-title: Quantized neural networks: Training neural networks with low precision weights and activations
  publication-title: J Mach Learn Res
– year: 2020
  ident: ref27
  publication-title: Tensorflow Model Optimization Toolkit-Post-training integer quantization
– ident: ref11
  doi: 10.1109/JSTARS.2019.2936771
– ident: ref23
  doi: 10.1109/HPCA.2019.00041
– ident: ref25
  doi: 10.1109/TNS.2020.2983662
– ident: ref42
  doi: 10.1145/3079856.3080246
– ident: ref20
  doi: 10.1109/TR.2018.2878387
– ident: ref8
  doi: 10.1109/TMI.2016.2528162
– year: 2020
  ident: ref1
  publication-title: Automotive Revolution-Perspective Towards 2030
– year: 2020
  ident: ref3
  publication-title: Autonomous Driving|Intellisafe
– year: 2020
  ident: ref29
  publication-title: TensorFlow Lite
SSID ssj0014505
Score 2.4869149
Snippet Convolutional neural networks (CNNs) are becoming attractive alternatives to traditional image-processing algorithms in self-driving vehicles for automotive,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 865
SubjectTerms Algorithms
Artificial neural networks
Autonomous cars
Biological neural networks
Computer applications
Data reduction
Failure rates
Field programmable gate arrays
Field-programmable gate array (FPGA)
Floating point arithmetic
Image processing
Military applications
Network reliability
Neural networks
Neutron beams
Parallel processing
parallelism
Power consumption
Quantization (signal)
Radiation
Radiation effects
reduced precision
Reliability
Reliability analysis
Resource management
Sensitivity
Title How Reduced Data Precision and Degree of Parallelism Impact the Reliability of Convolutional Neural Networks on FPGAs
URI https://ieeexplore.ieee.org/document/9319148
https://www.proquest.com/docview/2528944263
Volume 68
WOSCitedRecordID wos000655537500052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014505
  issn: 0018-9499
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeeLZiy0M-cEEibNZJ7PiIgAUuq1VLJW6RHxMJiSbVZpeq_75jx7uioqrEKVFkO1Y-O57xjL8P4NQpr16uRGJ1jkkuhUk0uRGJ0bS6jZBnWOsgNiEnk_LxUU3X4Hx1FgYRQ_IZXvjbEMt3rV34rbKhyjwbWbkO61KK_qzWKmKQF2lUK6AJTGb8MiSZquHD5Bs5gnx0QWPbs9v8tQQFTZU3P-Kwuoy339evHdiKViS77GHfhTVs9uDjK27BfVjctb_YV0_Mio5d67lm01nU02G6oUdInjaytmZTPfOCKs9P3Q92Hw5NMrIKmU9W7km8f_tSV23zEocpvdlzeoRLSCLvGDU6nt5edp_g-_jm4eouiRoLic0KOU8wk1poV3piemEKsjYKo2ry8USWu9HI5iV3hU2lE8aUQtrMFGhqjkJrzOq0zj7DRtM2eACMOyODxcNTlxe8NDW5Qo5bjblTZCoMYLj87JWNBOReB-O5Co5IqioCqvJAVRGoAZytavzsyTf-U3bfA7MqFzEZwNES2SrOzq7i1DuVe6r6L_-udQgffNt9YuMRbMxnCzyGTfsyf-pmJ2Hg_QGjxNVg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BRYIe2vKo2Ja2PnBBImzWcR4-ItrtotLVii4St8iPiYREE7TZBfXfd-x4V62KkHpKFNmxlc-OZzzj7wM4stKpl8ssMkpgJPJMR4rciEgrWt0GyBOslBebyMfj4uZGTtbgZHUWBhF98hmeulsfy7eNWbitsr5MHBtZsQ4vUiF43J3WWsUMRBoHvQKawmTIL4OSsexPxz_IFeSDUxrdjt_mr0XIq6r88yv268vw9f_17A28CnYkO-uA34E1rHfh5R_sgnuwGDWP7MpRs6Jln9VcscksKOowVdMjJF8bWVOxiZo5SZW72_Ynu_DHJhnZhcylK3c03r9cqfOmfggDlVp2rB7-4tPIW0YvHU6-nrX7cD38Mj0fRUFlITJJms8jTHKVKVs4avpMp2RvpFpW5OVlibCDgREFt6mJc5tpXWS5SXSKuuKYKYVJFVfJW9iomxoPgHGrc2_z8NiKlBe6ImfIcqNQWEnGQg_6y89emkBB7pQw7krvisSyJKBKB1QZgOrB8arGfUe_8UzZPQfMqlzApAeHS2TLMD_bklPvpHBk9e-ervUJtkbT75fl5cX423vYdu10aY6HsDGfLfADbJqH-W07--gH4W_lPNin
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Reduced+Data+Precision+and+Degree+of+Parallelism+Impact+the+Reliability+of+Convolutional+Neural+Networks+on+FPGAs&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Libano%2C+F&rft.au=Rech%2C+P&rft.au=Neuman%2C+B&rft.au=Leavitt%2C+J&rft.date=2021-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=68&rft.issue=5&rft.spage=865&rft_id=info:doi/10.1109%2FTNS.2021.3050707&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon