Effects of personal exposure to the oxidative potential of PM2.5 on oxidative stress biomarkers in pregnant women
Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant wome...
Uloženo v:
| Vydáno v: | The Science of the total environment Ročník 911; číslo 1; s. 168475 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier
10.02.2024
|
| Témata: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM2.5 samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM2.5 mass (OPm) and 2) sampled air volume (OPv). A pool of three urine spots collected on the 7th day of PM sampling was analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and 8-isoprostaglandin-F2α (8-isoPGF2α). Associations were investigated using adjusted multiple linear regressions. OP effects were additionally investigated by stratifying by median PM2.5 concentration (14 μg m-3). In the main models, no association was observed with 8-isoPGF2α, nor MDA. An interquartile range (IQR) increase in OPmAA exposure was associated with increased 8-OHdG (percent change: 6.2 %; 95 % CI: 0.2 % to 12.6 %). In the stratified analysis, exposure to OPmAA was associated with 8-OHdG for participants exposed to low levels of PM2.5 (percent change: 11.4 %; 95 % CI: 3.3 % to 20.1 %), but not for those exposed to high levels (percent change: -1.0 %; 95 % CI: -10.6 % to 9.6 %). Associations for OPmDTT also followed a similar pattern (p-values for OPmAA-PM and OPmDTT-PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPmAA may be associated with increased DNA oxidative damage. This association was not observed with PM2.5 mass concentration exposure. The effects of OPmAA in 8-OHdG tended to be stronger at lower (below median) vs. higher concentrations of PM2.5. Further epidemiological, toxicological and aerosol research are needed to further investigate the OPmAA effects on 8-OHdG and the potential modifying effect of PM mass concentration on this association.Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM2.5 samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM2.5 mass (OPm) and 2) sampled air volume (OPv). A pool of three urine spots collected on the 7th day of PM sampling was analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and 8-isoprostaglandin-F2α (8-isoPGF2α). Associations were investigated using adjusted multiple linear regressions. OP effects were additionally investigated by stratifying by median PM2.5 concentration (14 μg m-3). In the main models, no association was observed with 8-isoPGF2α, nor MDA. An interquartile range (IQR) increase in OPmAA exposure was associated with increased 8-OHdG (percent change: 6.2 %; 95 % CI: 0.2 % to 12.6 %). In the stratified analysis, exposure to OPmAA was associated with 8-OHdG for participants exposed to low levels of PM2.5 (percent change: 11.4 %; 95 % CI: 3.3 % to 20.1 %), but not for those exposed to high levels (percent change: -1.0 %; 95 % CI: -10.6 % to 9.6 %). Associations for OPmDTT also followed a similar pattern (p-values for OPmAA-PM and OPmDTT-PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPmAA may be associated with increased DNA oxidative damage. This association was not observed with PM2.5 mass concentration exposure. The effects of OPmAA in 8-OHdG tended to be stronger at lower (below median) vs. higher concentrations of PM2.5. Further epidemiological, toxicological and aerosol research are needed to further investigate the OPmAA effects on 8-OHdG and the potential modifying effect of PM mass concentration on this association. |
|---|---|
| AbstractList | Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM₂.₅) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM₂.₅ samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM₂.₅ mass (OPₘ) and 2) sampled air volume (OPᵥ). A pool of three urine spots collected on the 7th day of PM sampling was analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and 8-isoprostaglandin-F2α (8-isoPGF2α). Associations were investigated using adjusted multiple linear regressions. OP effects were additionally investigated by stratifying by median PM₂.₅ concentration (14 μg m⁻³). In the main models, no association was observed with 8-isoPGF2α, nor MDA. An interquartile range (IQR) increase in OPₘᴬᴬ exposure was associated with increased 8-OHdG (percent change: 6.2 %; 95 % CI: 0.2 % to 12.6 %). In the stratified analysis, exposure to OPₘᴬᴬ was associated to 8-OHdG for participants exposed to low levels of PM₂.₅ (percent change: 11.4 %; 95 % CI: 3.3 % to 20.1 %), but not for those exposed to high levels (percent change: −1.0 %; 95 % CI: −10.6 % to 9.6 %). Associations for OPₘᴰᵀᵀ also followed a similar pattern (p-values for OPₘᴬᴬ-PM and OPₘᴰᵀᵀ-PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPₘᴬᴬ may be associated with increased DNA oxidative damage. This association was not observed with PM₂.₅ mass concentration exposure. The effects of OPₘᴬᴬ in 8-OHdG tended to be stronger at lower (below median) vs. higher concentrations of PM₂.₅. Further epidemiological, toxicological and aerosol research are needed to further investigate the OPₘᴬᴬ effects on 8-OHdG and the potential modifying effect of PM mass concentration on this association. Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM2.5 samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM2.5 mass (OPm) and 2) sampled air volume (OPv). A pool of three urine spots collected on the 7th day of PM sampling was analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and 8-isoprostaglandin-F2α (8-isoPGF2α). Associations were investigated using adjusted multiple linear regressions. OP effects were additionally investigated by stratifying by median PM2.5 concentration (14 μg m-3). In the main models, no association was observed with 8-isoPGF2α, nor MDA. An interquartile range (IQR) increase in OPmAA exposure was associated with increased 8-OHdG (percent change: 6.2 %; 95 % CI: 0.2 % to 12.6 %). In the stratified analysis, exposure to OPmAA was associated with 8-OHdG for participants exposed to low levels of PM2.5 (percent change: 11.4 %; 95 % CI: 3.3 % to 20.1 %), but not for those exposed to high levels (percent change: -1.0 %; 95 % CI: -10.6 % to 9.6 %). Associations for OPmDTT also followed a similar pattern (p-values for OPmAA-PM and OPmDTT-PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPmAA may be associated with increased DNA oxidative damage. This association was not observed with PM2.5 mass concentration exposure. The effects of OPmAA in 8-OHdG tended to be stronger at lower (below median) vs. higher concentrations of PM2.5. Further epidemiological, toxicological and aerosol research are needed to further investigate the OPmAA effects on 8-OHdG and the potential modifying effect of PM mass concentration on this association.Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM2.5 samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM2.5 mass (OPm) and 2) sampled air volume (OPv). A pool of three urine spots collected on the 7th day of PM sampling was analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and 8-isoprostaglandin-F2α (8-isoPGF2α). Associations were investigated using adjusted multiple linear regressions. OP effects were additionally investigated by stratifying by median PM2.5 concentration (14 μg m-3). In the main models, no association was observed with 8-isoPGF2α, nor MDA. An interquartile range (IQR) increase in OPmAA exposure was associated with increased 8-OHdG (percent change: 6.2 %; 95 % CI: 0.2 % to 12.6 %). In the stratified analysis, exposure to OPmAA was associated with 8-OHdG for participants exposed to low levels of PM2.5 (percent change: 11.4 %; 95 % CI: 3.3 % to 20.1 %), but not for those exposed to high levels (percent change: -1.0 %; 95 % CI: -10.6 % to 9.6 %). Associations for OPmDTT also followed a similar pattern (p-values for OPmAA-PM and OPmDTT-PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPmAA may be associated with increased DNA oxidative damage. This association was not observed with PM2.5 mass concentration exposure. The effects of OPmAA in 8-OHdG tended to be stronger at lower (below median) vs. higher concentrations of PM2.5. Further epidemiological, toxicological and aerosol research are needed to further investigate the OPmAA effects on 8-OHdG and the potential modifying effect of PM mass concentration on this association. There are conflicting data regarding the magnitude and determinants of chronic obstructive pulmonary disease (COPD) risk in farmers. In a cross-sectional study of 917 nonfarming working controls and 3787 farmers aged 40–75 years, we assessed respiratory symptoms, tobacco exposure, job history (without direct exposure measurement) and lung function. COPD was defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criterion (post-bronchodilator forced expiratory volume in 1 s (FEV 1 )/forced vital capacity (FVC) <0.70) and by the Quanjer reference equation (post-bronchodilator FEV 1 /FVC <lower limit of normal (LLN)). The prevalence (95% CI) of COPD according to the GOLD criterion was 5.1% (4.4–5.8%) and 2.9% (1.8–4.0%) in farmers and controls, respectively (p=0.005), and 3.1% (2.5–3.6%) and 1.5% (0.7–2.3%), respectively, for the LLN criterion (p<0.01). For both COPD criteria after adjustment for age, sex and smoking status, COPD prevalence was similar in controls and crop farmers. Compared to controls, four job categories had a higher prevalence of COPD according to the GOLD criterion, namely, cattle breeders, swine breeders, poultry breeders and breeders of two or more livestock types. Among cattle breeders, only those from Franche-Comté had higher prevalence of COPD according to both GOLD and LLN criteria. The prevalence of COPD in farmers is higher than in nonfarming working controls, and depends on the farming activity, the region and the criterion used to define COPD. |
| ArticleNumber | 168475 |
| Author | Chartier, Ryan Uzu, Gaëlle Thomas, Aurélien Philippat, Claire Darfeuil, Sophie Lepeule, Johanna Marsal, Anouk Bayat, Sam Siroux, Valérie Borlaza, Lucille Joanna S. Jaffrezo, Jean-Luc Boudier, Anne Sauvain, Jean-Jacques Elazzouzi, Rhabira Slama, Rémy Lyon-Caen, Sarah |
| Author_xml | – sequence: 1 givenname: Anouk surname: Marsal fullname: Marsal, Anouk – sequence: 2 givenname: Jean-Jacques surname: Sauvain fullname: Sauvain, Jean-Jacques – sequence: 3 givenname: Aurélien surname: Thomas fullname: Thomas, Aurélien – sequence: 4 givenname: Sarah surname: Lyon-Caen fullname: Lyon-Caen, Sarah – sequence: 5 givenname: Lucille Joanna S. surname: Borlaza fullname: Borlaza, Lucille Joanna S. – sequence: 6 givenname: Claire surname: Philippat fullname: Philippat, Claire – sequence: 7 givenname: Jean-Luc surname: Jaffrezo fullname: Jaffrezo, Jean-Luc – sequence: 8 givenname: Anne surname: Boudier fullname: Boudier, Anne – sequence: 9 givenname: Sophie surname: Darfeuil fullname: Darfeuil, Sophie – sequence: 10 givenname: Rhabira surname: Elazzouzi fullname: Elazzouzi, Rhabira – sequence: 11 givenname: Johanna surname: Lepeule fullname: Lepeule, Johanna – sequence: 12 givenname: Ryan surname: Chartier fullname: Chartier, Ryan – sequence: 13 givenname: Sam surname: Bayat fullname: Bayat, Sam – sequence: 14 givenname: Rémy surname: Slama fullname: Slama, Rémy – sequence: 15 givenname: Valérie surname: Siroux fullname: Siroux, Valérie – sequence: 16 givenname: Gaëlle surname: Uzu fullname: Uzu, Gaëlle |
| BackLink | https://hal.science/hal-04302028$$DView record in HAL |
| BookMark | eNqFkUtvEzEURi1URNPCb8BLWMzgx_i1YFFVhSIFwQLWluO5Qx0m9tR2Qvn3OAogxKbeWLLPd699zwU6iykCQi8p6Smh8s22Lz7UVCEeekYY76nUgxJP0IpqZTpKmDxDK0IG3Rlp1Dm6KGVL2lKaPkPnXBlBmTArdH8zTeBrwWnCC-SSopsxPCyp7DPgmnC9A5wewuhqOABeji1raEzjP39kvcAp_nNfaoZS8CakncvfWz0cIl4yfIsuVvwj7SA-R08nNxd48Xu_RF_f3Xy5vu3Wn95_uL5ad54LVbsRJm-kIhvBhJiI8lSywXMnNwB08oIMozJajxs9UmAURgGOekFHrkeileSX6PWp7p2b7ZJDe9BPm1ywt1drezwjAydtdvpAG_vqxC453e-hVLsLxcM8uwhpXywnAxmYkIY8ijKtDRsoJbyhb0-oz6mUDJNtztqcUqzZhdlSYo8y7db-lWmPMu1JZsur__J_vvFY8hcvYamf |
| CitedBy_id | crossref_primary_10_1038_s41598_025_09250_1 crossref_primary_10_3390_environments11060128 crossref_primary_10_1016_j_scitotenv_2025_178651 crossref_primary_10_1016_j_taap_2025_117559 crossref_primary_10_3390_antiox14040385 crossref_primary_10_1016_j_ijheh_2025_114589 crossref_primary_10_3390_antiox13121464 crossref_primary_10_18093_0869_0189_2025_35_4_540_552 crossref_primary_10_1016_j_atmosenv_2025_121552 crossref_primary_10_1039_D5EA00025D crossref_primary_10_1177_11786302251329853 crossref_primary_10_5194_acp_24_3257_2024 |
| Cites_doi | 10.1080/01621459.1988.10478722 10.1038/s41598-017-11178-0 10.1038/s41598-017-11979-3 10.1016/j.ijheh.2016.11.010 10.1021/acs.est.0c02558 10.1016/j.envres.2020.109244 10.1289/ehp.7337 10.1016/j.envpol.2016.09.047 10.1016/j.atmosenv.2015.08.087 10.5194/acp-18-7863-2018 10.1016/j.envres.2020.110275 10.1016/S2542-5196(21)00277-1 10.1016/j.envint.2020.106341 10.1016/j.envpol.2018.09.074 10.1016/j.redox.2018.05.003 10.1016/j.envres.2005.01.003 10.1289/EHP11155 10.1371/journal.pone.0240244 10.1021/acs.est.5b02967 10.5194/acp-21-11353-2021 10.1183/13993003.030992020 10.1021/acs.est.8b05729 10.1177/0960327114559992 10.1038/s41370-018-0043-z 10.1007/s11869-010-0095-2 10.5194/acp-22-7029-2022 10.1164/rccm.202205-0896OC 10.1016/j.envres.2020.110105 10.1016/j.envint.2021.106405 10.1136/oemed-2014-102303 10.1080/10715762.2016.1178738 10.1016/j.sjbs.2016.11.008 10.1097/EDE.0b013e31824e613e 10.3390/ijerph16203888 10.5194/acp-12-9321-2012 10.1155/2011/487074 10.1136/oem.60.8.612 10.3390/atmos10100626 10.1016/j.freeradbiomed.2006.04.001 10.1038/s41586-020-2902-8 10.1016/j.atmosenv.2014.01.011 10.5562/cca2902 10.1021/acs.est.8b00883 10.1016/j.atmosenv.2020.117624 10.1016/j.reprotox.2004.10.007 10.1016/S0140-6736(20)30752-2 10.1016/j.envpol.2017.06.051 10.1016/j.ijheh.2016.05.010 10.1080/10643389.2022.2050148 10.1016/j.envint.2018.10.055 10.1126/sciadv.abo3381 10.3390/antiox10010038 10.1016/j.jhazmat.2015.02.006 10.1021/acs.est.8b03430 10.1016/j.jaerosci.2014.02.003 10.1080/08958370701665517 10.3390/toxics10040196 10.5194/acp-21-5549-2021 10.1021/es5006016 10.1081/CBI-120002914 10.1289/EHP2535 10.1016/j.envres.2015.12.013 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright © 2023 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7X8 7S9 L.6 1XC |
| DOI | 10.1016/j.scitotenv.2023.168475 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | oai:HAL:hal-04302028v1 10_1016_j_scitotenv_2023_168475 |
| GeographicLocations | France |
| GeographicLocations_xml | – name: France |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9DU 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO AAYXX ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADXHL AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K WUQ XPP ZXP ZY4 ~02 ~G- ~HD ~KM 7X8 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c357t-defc9670b5255f07c1624c3a6bee1fc504d7988db8d1e21ed5ea1c51d38d08763 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127880000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Tue Oct 14 20:49:23 EDT 2025 Sat Sep 27 18:21:20 EDT 2025 Sat Sep 27 22:19:08 EDT 2025 Tue Nov 18 21:07:29 EST 2025 Sat Nov 29 07:26:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c357t-defc9670b5255f07c1624c3a6bee1fc504d7988db8d1e21ed5ea1c51d38d08763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7720-0233 0000-0002-8565-0293 0000-0003-3307-2548 0000-0002-6921-5160 |
| PMID | 37951259 |
| PQID | 2889241103 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04302028v1 proquest_miscellaneous_3040425690 proquest_miscellaneous_2889241103 crossref_citationtrail_10_1016_j_scitotenv_2023_168475 crossref_primary_10_1016_j_scitotenv_2023_168475 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-10 |
| PublicationDateYYYYMMDD | 2024-02-10 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2024 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| References | Nagiah (10.1016/j.scitotenv.2023.168475_bb0235) 2015; 34 Barr (10.1016/j.scitotenv.2023.168475_bb5000) 2005; 113 Borlaza (10.1016/j.scitotenv.2023.168475_bb0035) 2021 He (10.1016/j.scitotenv.2023.168475_bb0115) 2020; 54 Marsal (10.1016/j.scitotenv.2023.168475_bb0215) 2023; 131 Martinez (10.1016/j.scitotenv.2023.168475_bb0220) 2018; 52 Borlaza (10.1016/j.scitotenv.2023.168475_bb0030) 2018; 243 Rubin (10.1016/j.scitotenv.2023.168475_bb0260) 1987 Gong (10.1016/j.scitotenv.2023.168475_bb0095) 2014; 48 MacPherson (10.1016/j.scitotenv.2023.168475_bb0210) 2018; 28 Lavigne (10.1016/j.scitotenv.2023.168475_bb0170) 2018; 126 Pietrogrande (10.1016/j.scitotenv.2023.168475_bb0255) 2022; 10 Grange (10.1016/j.scitotenv.2023.168475_bb0100) 2022; 22 Li (10.1016/j.scitotenv.2023.168475_bb0175) 2015; 287 Liu (10.1016/j.scitotenv.2023.168475_bb0195) 2021; 57 Calas (10.1016/j.scitotenv.2023.168475_bb0055) 2018; 18 He (10.1016/j.scitotenv.2023.168475_bb0110) 2023; 53 Karagulian (10.1016/j.scitotenv.2023.168475_bb0150) 2015; 120 Bush (10.1016/j.scitotenv.2023.168475_bb0045) 2021; 40 Murray (10.1016/j.scitotenv.2023.168475_bb0230) 2020; 396 Stafoggia (10.1016/j.scitotenv.2023.168475_bb0280) 2022; 6 Weitner (10.1016/j.scitotenv.2023.168475_bb0330) 2016; 89 Kim (10.1016/j.scitotenv.2023.168475_bb0160) 2005; 19 Pietrogrande (10.1016/j.scitotenv.2023.168475_bb0250) 2019; 10 Ambroz (10.1016/j.scitotenv.2023.168475_bb0005) 2016; 219 Health Effects Institute (10.1016/j.scitotenv.2023.168475_bb0120) 2020 Lodovici (10.1016/j.scitotenv.2023.168475_bb0200) 2011; 2011 Ayres (10.1016/j.scitotenv.2023.168475_bb0010) 2008; 20 Weichenthal (10.1016/j.scitotenv.2023.168475_bb0325) 2022; 8 Samake (10.1016/j.scitotenv.2023.168475_bb0265) 2017; 7 Sley (10.1016/j.scitotenv.2023.168475_bb0275) 2020; 15 Calas (10.1016/j.scitotenv.2023.168475_bb0050) 2017; 7 Wang (10.1016/j.scitotenv.2023.168475_bb0310) 2020; 235 Moller (10.1016/j.scitotenv.2023.168475_bb0225) 2006; 41 Cho (10.1016/j.scitotenv.2023.168475_bb0070) 2005; 99 van Buuren (10.1016/j.scitotenv.2023.168475_bb0290) 2011; 45 Little (10.1016/j.scitotenv.2023.168475_bb0185) 1988; 83 Delfino (10.1016/j.scitotenv.2023.168475_bb0090) 2011; 4 Hu (10.1016/j.scitotenv.2023.168475_bb0135) 2021; 147 Zhang (10.1016/j.scitotenv.2023.168475_bb0340) 2021; 149 Hough (10.1016/j.scitotenv.2023.168475_bb0130) 2020; 183 Korsiak (10.1016/j.scitotenv.2023.168475_bb0165) 2022; 206 Weber (10.1016/j.scitotenv.2023.168475_bb0315) 2021; 21 Bin (10.1016/j.scitotenv.2023.168475_bb0025) 2016; 50 Kelly (10.1016/j.scitotenv.2023.168475_bb0155) 2003; 60 van ’t Erve (10.1016/j.scitotenv.2023.168475_bb0295) 2019; 53 Sambiagio (10.1016/j.scitotenv.2023.168475_bb0270) 2021; 10 Liu (10.1016/j.scitotenv.2023.168475_bb0190) 2018; 121 Crobeddu (10.1016/j.scitotenv.2023.168475_bb0080) 2017; 230 Borlaza (10.1016/j.scitotenv.2023.168475_bb0040) 2022 Daellenbach (10.1016/j.scitotenv.2023.168475_bb0085) 2020; 587 Kanabrocki (10.1016/j.scitotenv.2023.168475_bb0145) 2002; 19 Lyon-Caen (10.1016/j.scitotenv.2023.168475_bb0205) 2019; 16 Hellack (10.1016/j.scitotenv.2023.168475_bb0125) 2014; 72 Bates (10.1016/j.scitotenv.2023.168475_bb0020) 2019; 53 van’t Erve (10.1016/j.scitotenv.2023.168475_bb0300) 2018; 17 WHO (10.1016/j.scitotenv.2023.168475_bb0335) Campbell (10.1016/j.scitotenv.2023.168475_bb0060) 2021; 21 Bates (10.1016/j.scitotenv.2023.168475_bb0015) 2015; 49 Tonne (10.1016/j.scitotenv.2023.168475_bb0285) 2012; 23 Clements (10.1016/j.scitotenv.2023.168475_bb0075) 2014; 89 Weichenthal (10.1016/j.scitotenv.2023.168475_bb0320) 2016; 146 Visentin (10.1016/j.scitotenv.2023.168475_bb0305) 2016; 219 Li (10.1016/j.scitotenv.2023.168475_bb0180) 2020; 191 Janssen (10.1016/j.scitotenv.2023.168475_bb0140) 2015; 72 Philippat (10.1016/j.scitotenv.2023.168475_bb0245) 2021; 192 Hashemzadeh (10.1016/j.scitotenv.2023.168475_bb0105) 2019; 26 Pelletier (10.1016/j.scitotenv.2023.168475_bb0240) 2017; 220 Charrier (10.1016/j.scitotenv.2023.168475_bb0065) 2012; 12 |
| References_xml | – volume: 83 start-page: 1198 issue: 404 year: 1988 ident: 10.1016/j.scitotenv.2023.168475_bb0185 article-title: A test of missing completely at random for multivariate data with missing values publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478722 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2023.168475_bb0265 article-title: The unexpected role of bioaerosols in the oxidative potential of PM publication-title: Sci. Rep. doi: 10.1038/s41598-017-11178-0 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2023.168475_bb0050 article-title: The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter publication-title: Sci. Rep. doi: 10.1038/s41598-017-11979-3 – volume: 220 start-page: 387 issue: 2, Part B year: 2017 ident: 10.1016/j.scitotenv.2023.168475_bb0240 article-title: Associations between urinary biomarkers of oxidative stress and air pollutants observed in a randomized crossover exposure to steel mill emissions publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2016.11.010 – volume: 54 start-page: 11405 issue: 18 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0115 article-title: Malondialdehyde in nasal fluid: a biomarker for monitoring asthma control in relation to air pollution exposure publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02558 – volume: 183 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0130 article-title: A multi-resolution air temperature model for France from MODIS and Landsat thermal data publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109244 – volume: 113 start-page: 192 issue: 2 year: 2005 ident: 10.1016/j.scitotenv.2023.168475_bb5000 article-title: Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements publication-title: Environ. Health Perspect. doi: 10.1289/ehp.7337 – volume: 219 start-page: 72 year: 2016 ident: 10.1016/j.scitotenv.2023.168475_bb0305 article-title: Urban PM2.5 oxidative potential: importance of chemical species and comparison of two spectrophotometric cell-free assays publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.047 – year: 2022 ident: 10.1016/j.scitotenv.2023.168475_bb0040 article-title: Personal exposure to PM2.5 oxidative potential and its association to birth outcomes publication-title: J. Exposure Sci. Environ. Epidemiol. – volume: 120 start-page: 475 year: 2015 ident: 10.1016/j.scitotenv.2023.168475_bb0150 article-title: Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.08.087 – volume: 18 start-page: 7863 issue: 11 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0055 article-title: Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France) publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-7863-2018 – volume: 192 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0245 article-title: Comparison of strategies to efficiently combine repeated urine samples in biomarker-based studies publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110275 – volume: 6 start-page: e9 issue: 1 year: 2022 ident: 10.1016/j.scitotenv.2023.168475_bb0280 article-title: Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project publication-title: Lancet Planet. Health doi: 10.1016/S2542-5196(21)00277-1 – volume: 147 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0135 article-title: Ambient particulate matter compositions and increased oxidative stress: exposure-response analysis among high-level exposed population publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106341 – volume: 243 start-page: 1679 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0030 article-title: Oxidative potential of fine ambient particles in various environments publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.074 – year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0035 publication-title: Atmos. Chem. Phys. – volume: 17 start-page: 284 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0300 article-title: Strategies to decrease oxidative stress biomarker levels in human medical conditions: a meta-analysis on 8-iso-prostaglandin F2α publication-title: Redox Biol. doi: 10.1016/j.redox.2018.05.003 – volume: 99 start-page: 40 issue: 1 year: 2005 ident: 10.1016/j.scitotenv.2023.168475_bb0070 article-title: Redox activity of airborne particulate matter at different sites in the Los Angeles Basin publication-title: Environ. Res. doi: 10.1016/j.envres.2005.01.003 – volume: 131 issue: 1 year: 2023 ident: 10.1016/j.scitotenv.2023.168475_bb0215 article-title: Prenatal exposure to PM2.5 oxidative potential and lung function in infants and preschool-age children: a prospective study publication-title: Environ. Health Perspect. doi: 10.1289/EHP11155 – volume: 15 issue: 10 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0275 article-title: Omega-3 fatty acid supplement use and oxidative stress levels in pregnancy publication-title: PloS One doi: 10.1371/journal.pone.0240244 – volume: 49 start-page: 13605 issue: 22 year: 2015 ident: 10.1016/j.scitotenv.2023.168475_bb0015 article-title: Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02967 – volume: 21 start-page: 11353 issue: 14 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0315 article-title: Source apportionment of atmospheric PM10 oxidative potential: synthesis of 15 year-round urban datasets in France publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-11353-2021 – year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0120 – volume: 57 issue: 6 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0195 article-title: Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project publication-title: Eur. Respir. J. doi: 10.1183/13993003.030992020 – volume: 45 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.scitotenv.2023.168475_bb0290 article-title: Multivariate imputation by chained equations in R publication-title: J. Stat. Softw. – volume: 53 start-page: 3258 issue: 6 year: 2019 ident: 10.1016/j.scitotenv.2023.168475_bb0295 article-title: Phthalates and phthalate alternatives have diverse associations with oxidative stress and inflammation in pregnant women publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05729 – volume: 34 start-page: 838 issue: 8 year: 2015 ident: 10.1016/j.scitotenv.2023.168475_bb0235 article-title: Oxidative stress and air pollution exposure during pregnancy: a molecular assessment publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327114559992 – volume: 28 issue: 5 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0210 article-title: Adjusting urinary chemical biomarkers for hydration status during pregnancy publication-title: J. Exposure Sci. Environ. Epidemiol. doi: 10.1038/s41370-018-0043-z – volume: 4 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.scitotenv.2023.168475_bb0090 article-title: Air pollution and circulating biomarkers of oxidative stress publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-010-0095-2 – volume: 22 start-page: 7029 issue: 10 year: 2022 ident: 10.1016/j.scitotenv.2023.168475_bb0100 article-title: Linking Switzerland’s PM10 and PM2.5 oxidative potential (OP) with emission sources publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-7029-2022 – volume: 206 start-page: 1370 issue: 11 year: 2022 ident: 10.1016/j.scitotenv.2023.168475_bb0165 article-title: Air pollution and pediatric respiratory hospitalizations: effect modification by particle constituents and oxidative potential publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202205-0896OC – volume: 191 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0180 article-title: Association between short-term exposure to ambient particulate air pollution and biomarkers of oxidative stress: a meta-analysis publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110105 – volume: 149 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0340 article-title: Polycyclic aromatic hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in human body: a case study in the indoor environment of Guangzhou, South China publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106405 – volume: 72 start-page: 49 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2023.168475_bb0140 article-title: Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers publication-title: Occup. Environ. Med. doi: 10.1136/oemed-2014-102303 – volume: 50 start-page: 820 issue: 8 year: 2016 ident: 10.1016/j.scitotenv.2023.168475_bb0025 article-title: Increased levels of urinary biomarkers of lipid peroxidation products among workers occupationally exposed to diesel engine exhaust publication-title: Free Radic. Res. doi: 10.1080/10715762.2016.1178738 – volume: 26 start-page: 473 issue: 3 year: 2019 ident: 10.1016/j.scitotenv.2023.168475_bb0105 article-title: Effects of PM2.5 and NO2 on the 8-isoprostane and lung function indices of FVC and FEV1 in students of Ahvaz city, Iran publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2016.11.008 – volume: 23 start-page: 486 issue: 3 year: 2012 ident: 10.1016/j.scitotenv.2023.168475_bb0285 article-title: PM mass concentration and PM oxidative potential in relation to carotid intima-media thickness publication-title: Epidemiology (Cambridge, Mass.) doi: 10.1097/EDE.0b013e31824e613e – volume: 16 start-page: 3888 issue: 20 year: 2019 ident: 10.1016/j.scitotenv.2023.168475_bb0205 article-title: Deciphering the impact of early-life exposures to highly variable environmental factors on Foetal and child health: design of SEPAGES couple-child cohort publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16203888 – volume: 12 start-page: 9321 issue: 19 year: 2012 ident: 10.1016/j.scitotenv.2023.168475_bb0065 article-title: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-9321-2012 – volume: 2011 year: 2011 ident: 10.1016/j.scitotenv.2023.168475_bb0200 article-title: Oxidative stress and air pollution exposure publication-title: J. Toxicol. doi: 10.1155/2011/487074 – volume: 40 start-page: 24 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0045 article-title: Impact of early life exposures on respiratory disease publication-title: Paediatr. Respir. Rev. – volume: 60 start-page: 612 issue: 8 year: 2003 ident: 10.1016/j.scitotenv.2023.168475_bb0155 article-title: Oxidative stress: its role in air pollution and adverse health effects publication-title: Occup. Environ. Med. doi: 10.1136/oem.60.8.612 – volume: 10 start-page: 626 issue: 10 year: 2019 ident: 10.1016/j.scitotenv.2023.168475_bb0250 article-title: Review of PM oxidative potential measured with acellular assays in urban and rural sites across Italy publication-title: Atmosphere doi: 10.3390/atmos10100626 – volume: 41 start-page: 388 issue: 3 year: 2006 ident: 10.1016/j.scitotenv.2023.168475_bb0225 article-title: Dietary antioxidants and beneficial effect on oxidatively damaged DNA publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.04.001 – ident: 10.1016/j.scitotenv.2023.168475_bb0335 – volume: 587 start-page: 414 issue: 7834 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0085 article-title: Sources of particulate-matter air pollution and its oxidative potential in Europe publication-title: Nature doi: 10.1038/s41586-020-2902-8 – volume: 89 start-page: 373 year: 2014 ident: 10.1016/j.scitotenv.2023.168475_bb0075 article-title: Concentrations and source insights for trace elements in fine and coarse particulate matter publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.01.011 – volume: 89 start-page: 133 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2023.168475_bb0330 article-title: Spectrophotometric determination of malondialdehyde in urine suitable for epidemiological studies publication-title: Croat. Chem. Acta doi: 10.5562/cca2902 – volume: 52 start-page: 6647 issue: 11 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0220 article-title: Simultaneous analysis of seven biomarkers of oxidative damage to lipids, proteins, and DNA in urine publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00883 – volume: 235 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0310 article-title: Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: biomass burning versus fossil fuel combustion publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117624 – volume: 19 start-page: 487 issue: 4 year: 2005 ident: 10.1016/j.scitotenv.2023.168475_bb0160 article-title: Oxidative stress in pregnant women and birth weight reduction publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2004.10.007 – volume: 396 start-page: 1223 issue: 10258 year: 2020 ident: 10.1016/j.scitotenv.2023.168475_bb0230 article-title: Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019 publication-title: Lancet doi: 10.1016/S0140-6736(20)30752-2 – volume: 230 start-page: 125 year: 2017 ident: 10.1016/j.scitotenv.2023.168475_bb0080 article-title: Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.06.051 – volume: 219 start-page: 545 issue: 6 year: 2016 ident: 10.1016/j.scitotenv.2023.168475_bb0005 article-title: Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2016.05.010 – volume: 53 start-page: 177 issue: 2 year: 2023 ident: 10.1016/j.scitotenv.2023.168475_bb0110 article-title: Particulate matter (PM) oxidative potential: measurement methods and links to PM physicochemical characteristics and health effects publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2022.2050148 – volume: 121 start-page: 1331 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0190 article-title: Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: a controlled exposure study publication-title: Environ. Int. doi: 10.1016/j.envint.2018.10.055 – volume: 8 issue: 39 year: 2022 ident: 10.1016/j.scitotenv.2023.168475_bb0325 article-title: How low can you go? Air pollution affects mortality at very low levels publication-title: Sci. Adv. doi: 10.1126/sciadv.abo3381 – volume: 10 issue: 1 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0270 article-title: Rapid liquid chromatography—tandem mass spectrometry analysis of two urinary oxidative stress biomarkers: 8-oxodG and 8-isoprostane publication-title: Antioxidants doi: 10.3390/antiox10010038 – volume: 287 start-page: 392 year: 2015 ident: 10.1016/j.scitotenv.2023.168475_bb0175 article-title: Mitochondrial damage: an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.006 – volume: 53 start-page: 4003 issue: 8 year: 2019 ident: 10.1016/j.scitotenv.2023.168475_bb0020 article-title: Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03430 – volume: 72 start-page: 47 year: 2014 ident: 10.1016/j.scitotenv.2023.168475_bb0125 article-title: Intrinsic hydroxyl radical generation measurements directly from sampled filters as a metric for the oxidative potential of ambient particulate matter publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2014.02.003 – volume: 20 start-page: 75 issue: 1 year: 2008 ident: 10.1016/j.scitotenv.2023.168475_bb0010 article-title: Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement publication-title: Inhal. Toxicol. doi: 10.1080/08958370701665517 – volume: 10 start-page: 196 issue: 4 year: 2022 ident: 10.1016/j.scitotenv.2023.168475_bb0255 article-title: Synergistic and antagonistic effects of aerosol components on its oxidative potential as predictor of particle toxicity publication-title: Toxics doi: 10.3390/toxics10040196 – volume: 21 start-page: 5549 issue: 7 year: 2021 ident: 10.1016/j.scitotenv.2023.168475_bb0060 article-title: Atmospheric conditions and composition that influence PM2.5 oxidative potential in Beijing, China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-5549-2021 – volume: 48 start-page: 5264 issue: 9 year: 2014 ident: 10.1016/j.scitotenv.2023.168475_bb0095 article-title: Comparisons of ultrafine and fine particles in their associations with biomarkers reflecting physiological pathways publication-title: Environ. Sci. Technol. doi: 10.1021/es5006016 – volume: 19 start-page: 423 issue: 2 year: 2002 ident: 10.1016/j.scitotenv.2023.168475_bb0145 article-title: Circadian variation in oxidative stress markers in healthy and type II diabetic men publication-title: Chronobiol. Int. doi: 10.1081/CBI-120002914 – volume: 126 issue: 7 year: 2018 ident: 10.1016/j.scitotenv.2023.168475_bb0170 article-title: Fine particulate air pollution and adverse birth outcomes: effect modification by regional nonvolatile oxidative potential publication-title: Environ. Health Perspect. doi: 10.1289/EHP2535 – start-page: i year: 1987 ident: 10.1016/j.scitotenv.2023.168475_bb0260 – volume: 146 start-page: 92 year: 2016 ident: 10.1016/j.scitotenv.2023.168475_bb0320 article-title: Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian census health and environment cohort (CanCHEC) publication-title: Environ. Res. doi: 10.1016/j.envres.2015.12.013 |
| SSID | ssj0000781 |
| Score | 2.5110753 |
| Snippet | Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has... Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM₂.₅) exposure. Oxidative potential (OP) of PM has... There are conflicting data regarding the magnitude and determinants of chronic obstructive pulmonary disease (COPD) risk in farmers. In a cross-sectional study... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 168475 |
| SubjectTerms | aerosols air ascorbic acid biomarkers dithiothreitol DNA environment Environmental Sciences France Life Sciences malondialdehyde oxidative stress particulates Santé publique et épidémiologie toxicology urine |
| Title | Effects of personal exposure to the oxidative potential of PM2.5 on oxidative stress biomarkers in pregnant women |
| URI | https://www.proquest.com/docview/2889241103 https://www.proquest.com/docview/3040425690 https://hal.science/hal-04302028 |
| Volume | 911 |
| WOSCitedRecordID | wos001127880000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5sp4VCKa3bUPcRtqX0JqP3ro4mOKTBdQN1wDexWq1ShyAptmycS397Z7wryemDpodehJFWltH3eWd29psZQj6ohAeJq5glFIZustC2hKdsywcy-34a2kLZu2YTbDrl83l03ul8r3NhNtcsz_l2G5X_FWo4B2Bj6uw_wN18KZyAzwA6HAF2ON4L-HGr0CiNp411_AsMBdaeZrFdpLrid1lUqBfSLun5Z3cY4PZBe93kkmCWPgp5llp2vlSXKKDR9Rv2_VtkXT1dGPVBVWC-5V5CXRsEX66E1gjkxbrJGPoq1htheoQpkVtnQqLt2lew6CS00dps84Mb3QqLbovcOhZ6Mm3D3Sau4foohTYKVzNX-zAVh1q9-8tEr2MOV0PwEyp8UZsh9oEfOiFY26C1bfV-_vRLfHIxmcSz8Xz2sbyxsOsY7s6bFixdcuCyIOI9cjD6NJ6ftbaccd1z0fyWOwrB3z77jn_T_Ybq2p-M_M5zmT0lT8ySg440VZ6Rjsr75KFuQnrbJ4fjFhoYZtBb9cljHdKlOlPtObkxzKJFRmtm0ZpZtCoooE0b5tCGWTh-xyxa5HvXNbNoyyy6yGnNLLpj1gtycTKeHZ9apmOHJb2AVVaqMhmFzE4CWKlmNpNO6PrSE2GilJPJwPZTrI-XJjx1lOuoNFDCkYGTejzd1UY8JL28yNVLQmGZ7qWcKe5z11fCFVL6UqiEwQI58LNoQML6PcfSlLPHrirXca1bvIobgGIEKNYADYjd3Fjqii5_v-U9ANmMxorsp6NJjOewZB6M5BtnQN7VOMcwReO-m8hVsV7FLucROMqO7f15jAfGFMxnGNmv7jHmNXnU_mXekF61XKu35IHcVIvV8oh02ZwfGSr_AC3xxio |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+personal+exposure+to+the+oxidative+potential+of+PM2.5+on+oxidative+stress+biomarkers+in+pregnant+women&rft.jtitle=The+Science+of+the+total+environment&rft.au=Marsal%2C+Anouk&rft.au=Sauvain%2C+Jean-Jacques&rft.au=Thomas%2C+Aur%C3%A9lien&rft.au=Lyon-Caen%2C+Sarah&rft.date=2024-02-10&rft.issn=0048-9697&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.168475&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |